1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
use crate::ast::{self, kw};
use crate::parser::{Lookahead1, Parse, Parser, Peek, Result};

/// A defined WebAssembly memory instance inside of a module.
#[derive(Debug)]
pub struct Memory<'a> {
    /// Where this `memory` was defined
    pub span: ast::Span,
    /// An optional name to refer to this memory by.
    pub id: Option<ast::Id<'a>>,
    /// An optional name for this function stored in the custom `name` section.
    pub name: Option<ast::NameAnnotation<'a>>,
    /// If present, inline export annotations which indicate names this
    /// definition should be exported under.
    pub exports: ast::InlineExport<'a>,
    /// How this memory is defined in the module.
    pub kind: MemoryKind<'a>,
}

/// Different syntactical ways a memory can be defined in a module.
#[derive(Debug)]
pub enum MemoryKind<'a> {
    /// This memory is actually an inlined import definition.
    #[allow(missing_docs)]
    Import {
        import: ast::InlineImport<'a>,
        ty: ast::MemoryType,
    },

    /// A typical memory definition which simply says the limits of the memory
    Normal(ast::MemoryType),

    /// The data of this memory, starting from 0, explicitly listed
    Inline {
        /// Whether or not this will be creating a 32-bit memory
        is_32: bool,
        /// The inline data specified for this memory
        data: Vec<DataVal<'a>>,
    },
}

impl<'a> Parse<'a> for Memory<'a> {
    fn parse(parser: Parser<'a>) -> Result<Self> {
        let span = parser.parse::<kw::memory>()?.0;
        let id = parser.parse()?;
        let name = parser.parse()?;
        let exports = parser.parse()?;

        // Afterwards figure out which style this is, either:
        //
        //  *   `(import "a" "b") limits`
        //  *   `(data ...)`
        //  *   `limits`
        let mut l = parser.lookahead1();
        let kind = if let Some(import) = parser.parse()? {
            MemoryKind::Import {
                import,
                ty: parser.parse()?,
            }
        } else if l.peek::<ast::LParen>() || parser.peek2::<ast::LParen>() {
            let is_32 = if parser.parse::<Option<kw::i32>>()?.is_some() {
                true
            } else if parser.parse::<Option<kw::i64>>()?.is_some() {
                false
            } else {
                true
            };
            let data = parser.parens(|parser| {
                parser.parse::<kw::data>()?;
                let mut data = Vec::new();
                while !parser.is_empty() {
                    data.push(parser.parse()?);
                }
                Ok(data)
            })?;
            MemoryKind::Inline { data, is_32 }
        } else if l.peek::<u32>() || l.peek::<kw::i32>() || l.peek::<kw::i64>() {
            MemoryKind::Normal(parser.parse()?)
        } else {
            return Err(l.error());
        };
        Ok(Memory {
            span,
            id,
            name,
            exports,
            kind,
        })
    }
}

/// A `data` directive in a WebAssembly module.
#[derive(Debug)]
pub struct Data<'a> {
    /// Where this `data` was defined
    pub span: ast::Span,

    /// The optional name of this data segment
    pub id: Option<ast::Id<'a>>,

    /// An optional name for this data stored in the custom `name` section.
    pub name: Option<ast::NameAnnotation<'a>>,

    /// Whether this data segment is passive or active
    pub kind: DataKind<'a>,

    /// Bytes for this `Data` segment, viewed as the concatenation of all the
    /// contained slices.
    pub data: Vec<DataVal<'a>>,
}

/// Different kinds of data segments, either passive or active.
#[derive(Debug)]
pub enum DataKind<'a> {
    /// A passive data segment which isn't associated with a memory and is
    /// referenced from various instructions.
    Passive,

    /// An active data segment which is associated and loaded into a particular
    /// memory on module instantiation.
    Active {
        /// The memory that this `Data` will be associated with.
        memory: ast::ItemRef<'a, kw::memory>,

        /// Initial offset to load this data segment at
        offset: ast::Expression<'a>,
    },
}

impl<'a> Parse<'a> for Data<'a> {
    fn parse(parser: Parser<'a>) -> Result<Self> {
        let span = parser.parse::<kw::data>()?.0;
        let id = parser.parse()?;
        let name = parser.parse()?;

        // The `passive` keyword is mentioned in the current spec but isn't
        // mentioned in `wabt` tests, so consider it optional for now
        let kind = if parser.peek::<kw::passive>() {
            parser.parse::<kw::passive>()?;
            DataKind::Passive

        // If data directly follows then assume this is a passive segment
        } else if parser.peek::<&[u8]>() {
            DataKind::Passive

        // ... and otherwise we must be attached to a particular memory as well
        // as having an initialization offset.
        } else {
            let memory = if let Some(index) = parser.parse::<Option<ast::IndexOrRef<_>>>()? {
                index.0
            } else {
                ast::ItemRef::Item {
                    kind: kw::memory(parser.prev_span()),
                    idx: ast::Index::Num(0, span),
                    exports: Vec::new(),
                    #[cfg(wast_check_exhaustive)]
                    visited: false,
                }
            };
            let offset = parser.parens(|parser| {
                if parser.peek::<kw::offset>() {
                    parser.parse::<kw::offset>()?;
                }
                parser.parse()
            })?;
            DataKind::Active { memory, offset }
        };

        let mut data = Vec::new();
        while !parser.is_empty() {
            data.push(parser.parse()?);
        }
        Ok(Data {
            span,
            id,
            name,
            kind,
            data,
        })
    }
}

/// Differnet ways the value of a data segment can be defined.
#[derive(Debug)]
#[allow(missing_docs)]
pub enum DataVal<'a> {
    String(&'a [u8]),
    Integral(Vec<u8>),
}

impl DataVal<'_> {
    /// Returns the length, in bytes, of the memory used to represent this data
    /// value.
    pub fn len(&self) -> usize {
        match self {
            DataVal::String(s) => s.len(),
            DataVal::Integral(s) => s.len(),
        }
    }

    /// Pushes the value of this data value onto the provided list of bytes.
    pub fn push_onto(&self, dst: &mut Vec<u8>) {
        match self {
            DataVal::String(s) => dst.extend_from_slice(s),
            DataVal::Integral(s) => dst.extend_from_slice(s),
        }
    }
}

impl<'a> Parse<'a> for DataVal<'a> {
    fn parse(parser: Parser<'a>) -> Result<Self> {
        if !parser.peek::<ast::LParen>() {
            return Ok(DataVal::String(parser.parse()?));
        }

        return parser.parens(|p| {
            let mut result = Vec::new();
            let mut lookahead = p.lookahead1();
            let l = &mut lookahead;
            let r = &mut result;
            if consume::<kw::i8, i8, _>(p, l, r, |u, v| v.push(u as u8))?
                || consume::<kw::i16, i16, _>(p, l, r, |u, v| v.extend(&u.to_le_bytes()))?
                || consume::<kw::i32, i32, _>(p, l, r, |u, v| v.extend(&u.to_le_bytes()))?
                || consume::<kw::i64, i64, _>(p, l, r, |u, v| v.extend(&u.to_le_bytes()))?
                || consume::<kw::f32, ast::Float32, _>(p, l, r, |u, v| {
                    v.extend(&u.bits.to_le_bytes())
                })?
                || consume::<kw::f64, ast::Float64, _>(p, l, r, |u, v| {
                    v.extend(&u.bits.to_le_bytes())
                })?
                || consume::<kw::v128, ast::V128Const, _>(p, l, r, |u, v| {
                    v.extend(&u.to_le_bytes())
                })?
            {
                Ok(DataVal::Integral(result))
            } else {
                Err(lookahead.error())
            }
        });

        fn consume<'a, T: Peek + Parse<'a>, U: Parse<'a>, F>(
            parser: Parser<'a>,
            lookahead: &mut Lookahead1<'a>,
            dst: &mut Vec<u8>,
            push: F,
        ) -> Result<bool>
        where
            F: Fn(U, &mut Vec<u8>),
        {
            if !lookahead.peek::<T>() {
                return Ok(false);
            }
            parser.parse::<T>()?;
            while !parser.is_empty() {
                let val = parser.parse::<U>()?;
                push(val, dst);
            }
            Ok(true)
        }
    }
}