1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
use crate::trampoline::{
    generate_global_export, generate_memory_export, generate_table_export, StoreInstanceHandle,
};
use crate::values::{from_checked_anyfunc, into_checked_anyfunc, Val};
use crate::{
    ExternRef, ExternType, Func, GlobalType, Instance, MemoryType, Module, Mutability, Store,
    TableType, Trap, ValType,
};
use anyhow::{anyhow, bail, Result};
use std::mem;
use std::ptr;
use std::slice;
use wasmtime_environ::wasm;
use wasmtime_runtime::{self as runtime, InstanceHandle};

// Externals

/// An external item to a WebAssembly module, or a list of what can possibly be
/// exported from a wasm module.
///
/// This is both returned from [`Instance::exports`](crate::Instance::exports)
/// as well as required by [`Instance::new`](crate::Instance::new). In other
/// words, this is the type of extracted values from an instantiated module, and
/// it's also used to provide imported values when instantiating a module.
#[derive(Clone)]
pub enum Extern {
    /// A WebAssembly `func` which can be called.
    Func(Func),
    /// A WebAssembly `global` which acts like a `Cell<T>` of sorts, supporting
    /// `get` and `set` operations.
    Global(Global),
    /// A WebAssembly `table` which is an array of `Val` types.
    Table(Table),
    /// A WebAssembly linear memory.
    Memory(Memory),
    /// A WebAssembly instance.
    Instance(Instance),
    /// A WebAssembly module.
    Module(Module),
}

impl Extern {
    /// Returns the underlying `Func`, if this external is a function.
    ///
    /// Returns `None` if this is not a function.
    pub fn into_func(self) -> Option<Func> {
        match self {
            Extern::Func(func) => Some(func),
            _ => None,
        }
    }

    /// Returns the underlying `Global`, if this external is a global.
    ///
    /// Returns `None` if this is not a global.
    pub fn into_global(self) -> Option<Global> {
        match self {
            Extern::Global(global) => Some(global),
            _ => None,
        }
    }

    /// Returns the underlying `Table`, if this external is a table.
    ///
    /// Returns `None` if this is not a table.
    pub fn into_table(self) -> Option<Table> {
        match self {
            Extern::Table(table) => Some(table),
            _ => None,
        }
    }

    /// Returns the underlying `Memory`, if this external is a memory.
    ///
    /// Returns `None` if this is not a memory.
    pub fn into_memory(self) -> Option<Memory> {
        match self {
            Extern::Memory(memory) => Some(memory),
            _ => None,
        }
    }

    /// Returns the underlying `Instance`, if this external is a instance.
    ///
    /// Returns `None` if this is not a instance.
    pub fn into_instance(self) -> Option<Instance> {
        match self {
            Extern::Instance(instance) => Some(instance),
            _ => None,
        }
    }

    /// Returns the underlying `Module`, if this external is a module.
    ///
    /// Returns `None` if this is not a module.
    pub fn into_module(self) -> Option<Module> {
        match self {
            Extern::Module(module) => Some(module),
            _ => None,
        }
    }

    /// Returns the type associated with this `Extern`.
    pub fn ty(&self) -> ExternType {
        match self {
            Extern::Func(ft) => ExternType::Func(ft.ty()),
            Extern::Memory(ft) => ExternType::Memory(ft.ty()),
            Extern::Table(tt) => ExternType::Table(tt.ty()),
            Extern::Global(gt) => ExternType::Global(gt.ty()),
            Extern::Instance(i) => ExternType::Instance(i.ty()),
            Extern::Module(m) => ExternType::Module(m.ty()),
        }
    }

    pub(crate) fn from_wasmtime_export(
        wasmtime_export: wasmtime_runtime::Export,
        instance: StoreInstanceHandle,
    ) -> Extern {
        match wasmtime_export {
            wasmtime_runtime::Export::Function(f) => {
                Extern::Func(Func::from_wasmtime_function(f, instance))
            }
            wasmtime_runtime::Export::Memory(m) => {
                Extern::Memory(Memory::from_wasmtime_memory(m, instance))
            }
            wasmtime_runtime::Export::Global(g) => {
                Extern::Global(Global::from_wasmtime_global(g, instance))
            }
            wasmtime_runtime::Export::Table(t) => {
                Extern::Table(Table::from_wasmtime_table(t, instance))
            }
            wasmtime_runtime::Export::Instance(i) => {
                let handle = unsafe { instance.store.existing_instance_handle(i.clone()) };
                Extern::Instance(Instance::from_wasmtime(handle))
            }
            wasmtime_runtime::Export::Module(m) => {
                Extern::Module(m.downcast_ref::<Module>().unwrap().clone())
            }
        }
    }

    pub(crate) fn comes_from_same_store(&self, store: &Store) -> bool {
        let my_store = match self {
            Extern::Func(f) => f.store(),
            Extern::Global(g) => &g.instance.store,
            Extern::Memory(m) => &m.instance.store,
            Extern::Table(t) => &t.instance.store,
            Extern::Instance(i) => i.store(),
            // Modules don't live in stores right now, so they're compatible
            // with all stores.
            Extern::Module(_) => return true,
        };
        Store::same(my_store, store)
    }

    pub(crate) fn desc(&self) -> &'static str {
        match self {
            Extern::Func(_) => "function",
            Extern::Table(_) => "table",
            Extern::Memory(_) => "memory",
            Extern::Global(_) => "global",
            Extern::Instance(_) => "instance",
            Extern::Module(_) => "module",
        }
    }
}

impl From<Func> for Extern {
    fn from(r: Func) -> Self {
        Extern::Func(r)
    }
}

impl From<Global> for Extern {
    fn from(r: Global) -> Self {
        Extern::Global(r)
    }
}

impl From<Memory> for Extern {
    fn from(r: Memory) -> Self {
        Extern::Memory(r)
    }
}

impl From<Table> for Extern {
    fn from(r: Table) -> Self {
        Extern::Table(r)
    }
}

impl From<Instance> for Extern {
    fn from(r: Instance) -> Self {
        Extern::Instance(r)
    }
}

impl From<Module> for Extern {
    fn from(r: Module) -> Self {
        Extern::Module(r)
    }
}

/// A WebAssembly `global` value which can be read and written to.
///
/// A `global` in WebAssembly is sort of like a global variable within an
/// [`Instance`](crate::Instance). The `global.get` and `global.set`
/// instructions will modify and read global values in a wasm module. Globals
/// can either be imported or exported from wasm modules.
///
/// If you're familiar with Rust already you can think of a `Global` as a sort
/// of `Rc<Cell<Val>>`, more or less.
///
/// # `Global` and `Clone`
///
/// Globals are internally reference counted so you can `clone` a `Global`. The
/// cloning process only performs a shallow clone, so two cloned `Global`
/// instances are equivalent in their functionality.
#[derive(Clone)]
pub struct Global {
    instance: StoreInstanceHandle,
    wasmtime_export: wasmtime_runtime::ExportGlobal,
}

impl Global {
    /// Creates a new WebAssembly `global` value with the provide type `ty` and
    /// initial value `val`.
    ///
    /// The `store` argument provided is used as a general global cache for
    /// information, and otherwise the `ty` and `val` arguments are used to
    /// initialize the global.
    ///
    /// # Errors
    ///
    /// Returns an error if the `ty` provided does not match the type of the
    /// value `val`.
    pub fn new(store: &Store, ty: GlobalType, val: Val) -> Result<Global> {
        if !val.comes_from_same_store(store) {
            bail!("cross-`Store` globals are not supported");
        }
        if val.ty() != *ty.content() {
            bail!("value provided does not match the type of this global");
        }
        let (instance, wasmtime_export) = generate_global_export(store, &ty, val)?;
        Ok(Global {
            instance,
            wasmtime_export,
        })
    }

    /// Returns the underlying type of this `global`.
    pub fn ty(&self) -> GlobalType {
        // The original export is coming from wasmtime_runtime itself we should
        // support all the types coming out of it, so assert such here.
        GlobalType::from_wasmtime_global(&self.wasmtime_export.global)
    }

    /// Returns the value type of this `global`.
    pub fn val_type(&self) -> ValType {
        ValType::from_wasm_type(&self.wasmtime_export.global.wasm_ty)
    }

    /// Returns the underlying mutability of this `global`.
    pub fn mutability(&self) -> Mutability {
        if self.wasmtime_export.global.mutability {
            Mutability::Var
        } else {
            Mutability::Const
        }
    }

    /// Returns the current [`Val`] of this global.
    pub fn get(&self) -> Val {
        unsafe {
            let definition = &mut *self.wasmtime_export.definition;
            match self.val_type() {
                ValType::I32 => Val::from(*definition.as_i32()),
                ValType::I64 => Val::from(*definition.as_i64()),
                ValType::F32 => Val::F32(*definition.as_u32()),
                ValType::F64 => Val::F64(*definition.as_u64()),
                ValType::ExternRef => Val::ExternRef(
                    definition
                        .as_externref()
                        .clone()
                        .map(|inner| ExternRef { inner }),
                ),
                ValType::FuncRef => {
                    from_checked_anyfunc(definition.as_anyfunc() as *mut _, &self.instance.store)
                }
                ty => unimplemented!("Global::get for {:?}", ty),
            }
        }
    }

    /// Attempts to set the current value of this global to [`Val`].
    ///
    /// # Errors
    ///
    /// Returns an error if this global has a different type than `Val`, or if
    /// it's not a mutable global.
    pub fn set(&self, val: Val) -> Result<()> {
        if self.mutability() != Mutability::Var {
            bail!("immutable global cannot be set");
        }
        let ty = self.val_type();
        if val.ty() != ty {
            bail!("global of type {:?} cannot be set to {:?}", ty, val.ty());
        }
        if !val.comes_from_same_store(&self.instance.store) {
            bail!("cross-`Store` values are not supported");
        }
        unsafe {
            let definition = &mut *self.wasmtime_export.definition;
            match val {
                Val::I32(i) => *definition.as_i32_mut() = i,
                Val::I64(i) => *definition.as_i64_mut() = i,
                Val::F32(f) => *definition.as_u32_mut() = f,
                Val::F64(f) => *definition.as_u64_mut() = f,
                Val::FuncRef(f) => {
                    *definition.as_anyfunc_mut() = f.map_or(ptr::null(), |f| {
                        f.caller_checked_anyfunc().as_ptr() as *const _
                    });
                }
                Val::ExternRef(x) => {
                    // In case the old value's `Drop` implementation is
                    // re-entrant and tries to touch this global again, do a
                    // replace, and then drop. This way no one can observe a
                    // halfway-deinitialized value.
                    let old = mem::replace(definition.as_externref_mut(), x.map(|x| x.inner));
                    drop(old);
                }
                _ => unimplemented!("Global::set for {:?}", val.ty()),
            }
        }
        Ok(())
    }

    pub(crate) fn from_wasmtime_global(
        wasmtime_export: wasmtime_runtime::ExportGlobal,
        instance: StoreInstanceHandle,
    ) -> Global {
        Global {
            instance,
            wasmtime_export,
        }
    }

    pub(crate) fn wasmtime_ty(&self) -> &wasmtime_environ::wasm::Global {
        &self.wasmtime_export.global
    }

    pub(crate) fn vmimport(&self) -> wasmtime_runtime::VMGlobalImport {
        wasmtime_runtime::VMGlobalImport {
            from: self.wasmtime_export.definition,
        }
    }
}

/// A WebAssembly `table`, or an array of values.
///
/// Like [`Memory`] a table is an indexed array of values, but unlike [`Memory`]
/// it's an array of WebAssembly values rather than bytes. One of the most
/// common usages of a table is a function table for wasm modules, where each
/// element has the `Func` type.
///
/// Tables, like globals, are not threadsafe and can only be used on one thread.
/// Tables can be grown in size and each element can be read/written.
///
/// # `Table` and `Clone`
///
/// Tables are internally reference counted so you can `clone` a `Table`. The
/// cloning process only performs a shallow clone, so two cloned `Table`
/// instances are equivalent in their functionality.
#[derive(Clone)]
pub struct Table {
    instance: StoreInstanceHandle,
    wasmtime_export: wasmtime_runtime::ExportTable,
}

fn set_table_item(
    instance: &InstanceHandle,
    table_index: wasm::DefinedTableIndex,
    item_index: u32,
    item: runtime::TableElement,
) -> Result<()> {
    instance
        .table_set(table_index, item_index, item)
        .map_err(|()| anyhow!("table element index out of bounds"))
}

impl Table {
    /// Creates a new `Table` with the given parameters.
    ///
    /// * `store` - a global cache to store information in
    /// * `ty` - the type of this table, containing both the element type as
    ///   well as the initial size and maximum size, if any.
    /// * `init` - the initial value to fill all table entries with, if the
    ///   table starts with an initial size.
    ///
    /// # Errors
    ///
    /// Returns an error if `init` does not match the element type of the table.
    pub fn new(store: &Store, ty: TableType, init: Val) -> Result<Table> {
        let (instance, wasmtime_export) = generate_table_export(store, &ty)?;

        let init: runtime::TableElement = match ty.element() {
            ValType::FuncRef => into_checked_anyfunc(init, store)?.into(),
            ValType::ExternRef => init
                .externref()
                .ok_or_else(|| {
                    anyhow!("table initialization value does not have expected type `externref`")
                })?
                .map(|x| x.inner)
                .into(),
            ty => bail!("unsupported table element type: {:?}", ty),
        };

        // Initialize entries with the init value.
        let definition = unsafe { &*wasmtime_export.definition };
        let index = instance.table_index(definition);
        for i in 0..definition.current_elements {
            set_table_item(&instance, index, i, init.clone())?;
        }

        Ok(Table {
            instance,
            wasmtime_export,
        })
    }

    /// Returns the underlying type of this table, including its element type as
    /// well as the maximum/minimum lower bounds.
    pub fn ty(&self) -> TableType {
        TableType::from_wasmtime_table(&self.wasmtime_export.table.table)
    }

    fn wasmtime_table_index(&self) -> wasm::DefinedTableIndex {
        unsafe { self.instance.table_index(&*self.wasmtime_export.definition) }
    }

    /// Returns the table element value at `index`.
    ///
    /// Returns `None` if `index` is out of bounds.
    pub fn get(&self, index: u32) -> Option<Val> {
        let table_index = self.wasmtime_table_index();
        let item = self.instance.table_get(table_index, index)?;
        match item {
            runtime::TableElement::FuncRef(f) => {
                Some(unsafe { from_checked_anyfunc(f, &self.instance.store) })
            }
            runtime::TableElement::ExternRef(None) => Some(Val::ExternRef(None)),
            runtime::TableElement::ExternRef(Some(x)) => {
                Some(Val::ExternRef(Some(ExternRef { inner: x })))
            }
        }
    }

    /// Writes the `val` provided into `index` within this table.
    ///
    /// # Errors
    ///
    /// Returns an error if `index` is out of bounds or if `val` does not have
    /// the right type to be stored in this table.
    pub fn set(&self, index: u32, val: Val) -> Result<()> {
        if !val.comes_from_same_store(&self.instance.store) {
            bail!("cross-`Store` values are not supported in tables");
        }
        let table_index = self.wasmtime_table_index();
        set_table_item(
            &self.instance,
            table_index,
            index,
            val.into_table_element()?,
        )
    }

    /// Returns the current size of this table.
    pub fn size(&self) -> u32 {
        unsafe { (*self.wasmtime_export.definition).current_elements }
    }

    /// Grows the size of this table by `delta` more elements, initialization
    /// all new elements to `init`.
    ///
    /// Returns the previous size of this table if successful.
    ///
    /// # Errors
    ///
    /// Returns an error if the table cannot be grown by `delta`, for example
    /// if it would cause the table to exceed its maximum size. Also returns an
    /// error if `init` is not of the right type.
    pub fn grow(&self, delta: u32, init: Val) -> Result<u32> {
        let index = self.wasmtime_table_index();
        let orig_size = match self.ty().element() {
            ValType::FuncRef => {
                let init = into_checked_anyfunc(init, &self.instance.store)?;
                self.instance.defined_table_grow(index, delta, init.into())
            }
            ValType::ExternRef => {
                let init = match init {
                    Val::ExternRef(Some(x)) => Some(x.inner),
                    Val::ExternRef(None) => None,
                    _ => bail!("incorrect init value for growing table"),
                };
                self.instance.defined_table_grow(
                    index,
                    delta,
                    runtime::TableElement::ExternRef(init),
                )
            }
            _ => unreachable!("only `funcref` and `externref` tables are supported"),
        };
        if let Some(size) = orig_size {
            Ok(size)
        } else {
            bail!("failed to grow table by `{}`", delta)
        }
    }

    /// Copy `len` elements from `src_table[src_index..]` into
    /// `dst_table[dst_index..]`.
    ///
    /// # Errors
    ///
    /// Returns an error if the range is out of bounds of either the source or
    /// destination tables.
    pub fn copy(
        dst_table: &Table,
        dst_index: u32,
        src_table: &Table,
        src_index: u32,
        len: u32,
    ) -> Result<()> {
        if !Store::same(&dst_table.instance.store, &src_table.instance.store) {
            bail!("cross-`Store` table copies are not supported");
        }

        // NB: We must use the `dst_table`'s `wasmtime_handle` for the
        // `dst_table_index` and vice versa for `src_table` since each table can
        // come from different modules.

        let dst_table_index = dst_table.wasmtime_table_index();
        let dst_table_index = dst_table.instance.get_defined_table(dst_table_index);

        let src_table_index = src_table.wasmtime_table_index();
        let src_table_index = src_table.instance.get_defined_table(src_table_index);

        runtime::Table::copy(dst_table_index, src_table_index, dst_index, src_index, len)
            .map_err(|e| Trap::from_runtime(&dst_table.instance.store, e))?;
        Ok(())
    }

    /// Fill `table[dst..(dst + len)]` with the given value.
    ///
    /// # Errors
    ///
    /// Returns an error if
    ///
    /// * `val` is not of the same type as this table's
    ///   element type,
    ///
    /// * the region to be filled is out of bounds, or
    ///
    /// * `val` comes from a different `Store` from this table.
    pub fn fill(&self, dst: u32, val: Val, len: u32) -> Result<()> {
        if !val.comes_from_same_store(&self.instance.store) {
            bail!("cross-`Store` table fills are not supported");
        }

        let table_index = self.wasmtime_table_index();
        self.instance
            .handle
            .defined_table_fill(table_index, dst, val.into_table_element()?, len)
            .map_err(|e| Trap::from_runtime(&self.instance.store, e))?;

        Ok(())
    }

    pub(crate) fn from_wasmtime_table(
        wasmtime_export: wasmtime_runtime::ExportTable,
        instance: StoreInstanceHandle,
    ) -> Table {
        Table {
            instance,
            wasmtime_export,
        }
    }

    pub(crate) fn wasmtime_ty(&self) -> &wasmtime_environ::wasm::Table {
        &self.wasmtime_export.table.table
    }

    pub(crate) fn vmimport(&self) -> wasmtime_runtime::VMTableImport {
        wasmtime_runtime::VMTableImport {
            from: self.wasmtime_export.definition,
            vmctx: self.wasmtime_export.vmctx,
        }
    }
}

/// A WebAssembly linear memory.
///
/// WebAssembly memories represent a contiguous array of bytes that have a size
/// that is always a multiple of the WebAssembly page size, currently 64
/// kilobytes.
///
/// WebAssembly memory is used for global data, statics in C/C++/Rust, shadow
/// stack memory, etc. Accessing wasm memory is generally quite fast!
///
/// # `Memory` and `Clone`
///
/// Memories are internally reference counted so you can `clone` a `Memory`. The
/// cloning process only performs a shallow clone, so two cloned `Memory`
/// instances are equivalent in their functionality.
///
/// # `Memory` and threads
///
/// It is intended that `Memory` is safe to share between threads. At this time
/// this is not implemented in `wasmtime`, however. This is planned to be
/// implemented though!
///
/// # `Memory` and Safety
///
/// Linear memory is a lynchpin of safety for WebAssembly, but it turns out
/// there are very few ways to safely inspect the contents of a memory from the
/// host (Rust). This is because memory safety is quite tricky when working with
/// a `Memory` and we're still working out the best idioms to encapsulate
/// everything safely where it's efficient and ergonomic. This section of
/// documentation, however, is intended to help educate a bit what is and isn't
/// safe when working with `Memory`.
///
/// For safety purposes you can think of a `Memory` as a glorified
/// `Rc<UnsafeCell<Vec<u8>>>`. There are a few consequences of this
/// interpretation:
///
/// * At any time someone else may have access to the memory (hence the `Rc`).
///   This could be a wasm instance, other host code, or a set of wasm instances
///   which all reference a `Memory`. When in doubt assume someone else has a
///   handle to your `Memory`.
///
/// * At any time, memory can be read from or written to (hence the
///   `UnsafeCell`). Anyone with a handle to a wasm memory can read/write to it.
///   Primarily other instances can execute the `load` and `store` family of
///   instructions, as well as any other which modifies or reads memory.
///
/// * At any time memory may grow (hence the `Vec<..>`). Growth may relocate the
///   base memory pointer (similar to how `vec.push(...)` can change the result
///   of `.as_ptr()`)
///
/// So given that we're working roughly with `Rc<UnsafeCell<Vec<u8>>>` that's a
/// lot to keep in mind! It's hopefully though sort of setting the stage as to
/// what you can safely do with memories.
///
/// Let's run through a few safe examples first of how you can use a `Memory`.
///
/// ```rust
/// use wasmtime::Memory;
///
/// fn safe_examples(mem: &Memory) {
///     // Just like wasm, it's safe to read memory almost at any time. The
///     // gotcha here is that we need to be sure to load from the correct base
///     // pointer and perform the bounds check correctly. So long as this is
///     // all self contained here (e.g. not arbitrary code in the middle) we're
///     // good to go.
///     let byte = unsafe { mem.data_unchecked()[0x123] };
///
///     // Short-lived borrows of memory are safe, but they must be scoped and
///     // not have code which modifies/etc `Memory` while the borrow is active.
///     // For example if you want to read a string from memory it is safe to do
///     // so:
///     let string_base = 0xdead;
///     let string_len = 0xbeef;
///     let string = unsafe {
///         let bytes = &mem.data_unchecked()[string_base..][..string_len];
///         match std::str::from_utf8(bytes) {
///             Ok(s) => s.to_string(), // copy out of wasm memory
///             Err(_) => panic!("not valid utf-8"),
///         }
///     };
///
///     // Additionally like wasm you can write to memory at any point in time,
///     // again making sure that after you get the unchecked slice you don't
///     // execute code which could read/write/modify `Memory`:
///     unsafe {
///         mem.data_unchecked_mut()[0x123] = 3;
///     }
///
///     // When working with *borrows* that point directly into wasm memory you
///     // need to be extremely careful. Any functionality that operates on a
///     // borrow into wasm memory needs to be thoroughly audited to effectively
///     // not touch the `Memory` at all
///     let data_base = 0xfeed;
///     let data_len = 0xface;
///     unsafe {
///         let data = &mem.data_unchecked()[data_base..][..data_len];
///         host_function_that_doesnt_touch_memory(data);
///
///         // effectively the same rules apply to mutable borrows
///         let data_mut = &mut mem.data_unchecked_mut()[data_base..][..data_len];
///         host_function_that_doesnt_touch_memory(data);
///     }
/// }
/// # fn host_function_that_doesnt_touch_memory(_: &[u8]){}
/// ```
///
/// It's worth also, however, covering some examples of **incorrect**,
/// **unsafe** usages of `Memory`. Do not do these things!
///
/// ```rust
/// # use anyhow::Result;
/// use wasmtime::Memory;
///
/// // NOTE: All code in this function is not safe to execute and may cause
/// // segfaults/undefined behavior at runtime. Do not copy/paste these examples
/// // into production code!
/// unsafe fn unsafe_examples(mem: &Memory) -> Result<()> {
///     // First and foremost, any borrow can be invalidated at any time via the
///     // `Memory::grow` function. This can relocate memory which causes any
///     // previous pointer to be possibly invalid now.
///     let pointer: &u8 = &mem.data_unchecked()[0x100];
///     mem.grow(1)?; // invalidates `pointer`!
///     // println!("{}", *pointer); // FATAL: use-after-free
///
///     // Note that the use-after-free also applies to slices, whether they're
///     // slices of bytes or strings.
///     let slice: &[u8] = &mem.data_unchecked()[0x100..0x102];
///     mem.grow(1)?; // invalidates `slice`!
///     // println!("{:?}", slice); // FATAL: use-after-free
///
///     // Due to the reference-counted nature of `Memory` note that literal
///     // calls to `Memory::grow` are not sufficient to audit for. You'll need
///     // to be careful that any mutation of `Memory` doesn't happen while
///     // you're holding an active borrow.
///     let slice: &[u8] = &mem.data_unchecked()[0x100..0x102];
///     some_other_function(); // may invalidate `slice` through another `mem` reference
///     // println!("{:?}", slice); // FATAL: maybe a use-after-free
///
///     // An especially subtle aspect of accessing a wasm instance's memory is
///     // that you need to be extremely careful about aliasing. Anyone at any
///     // time can call `data_unchecked()` or `data_unchecked_mut()`, which
///     // means you can easily have aliasing mutable references:
///     let ref1: &u8 = &mem.data_unchecked()[0x100];
///     let ref2: &mut u8 = &mut mem.data_unchecked_mut()[0x100];
///     // *ref2 = *ref1; // FATAL: violates Rust's aliasing rules
///
///     // Note that aliasing applies to strings as well, for example this is
///     // not valid because the slices overlap.
///     let slice1: &mut [u8] = &mut mem.data_unchecked_mut()[0x100..][..3];
///     let slice2: &mut [u8] = &mut mem.data_unchecked_mut()[0x102..][..4];
///     // println!("{:?} {:?}", slice1, slice2); // FATAL: aliasing mutable pointers
///
///     Ok(())
/// }
/// # fn some_other_function() {}
/// ```
///
/// Overall there's some general rules of thumb when working with `Memory` and
/// getting raw pointers inside of it:
///
/// * If you never have a "long lived" pointer into memory, you're likely in the
///   clear. Care still needs to be taken in threaded scenarios or when/where
///   data is read, but you'll be shielded from many classes of issues.
/// * Long-lived pointers must always respect Rust'a aliasing rules. It's ok for
///   shared borrows to overlap with each other, but mutable borrows must
///   overlap with nothing.
/// * Long-lived pointers are only valid if `Memory` isn't used in an unsafe way
///   while the pointer is valid. This includes both aliasing and growth.
///
/// At this point it's worth reiterating again that working with `Memory` is
/// pretty tricky and that's not great! Proposals such as [interface types] are
/// intended to prevent wasm modules from even needing to import/export memory
/// in the first place, which obviates the need for all of these safety caveats!
/// Additionally over time we're still working out the best idioms to expose in
/// `wasmtime`, so if you've got ideas or questions please feel free to [open an
/// issue]!
///
/// ## `Memory` Safety and Threads
///
/// Currently the `wasmtime` crate does not implement the wasm threads proposal,
/// but it is planned to do so. It's additionally worthwhile discussing how this
/// affects memory safety and what was previously just discussed as well.
///
/// Once threads are added into the mix, all of the above rules still apply.
/// There's an additional, rule, however, that all reads and writes can
/// happen *concurrently*. This effectively means that long-lived borrows into
/// wasm memory are virtually never safe to have.
///
/// Mutable pointers are fundamentally unsafe to have in a concurrent scenario
/// in the face of arbitrary wasm code. Only if you dynamically know for sure
/// that wasm won't access a region would it be safe to construct a mutable
/// pointer. Additionally even shared pointers are largely unsafe because their
/// underlying contents may change, so unless `UnsafeCell` in one form or
/// another is used everywhere there's no safety.
///
/// One important point about concurrency is that `Memory::grow` can indeed
/// happen concurrently. This, however, will never relocate the base pointer.
/// Shared memories must always have a maximum size and they will be
/// preallocated such that growth will never relocate the base pointer. The
/// maximum length of the memory, however, will change over time.
///
/// Overall the general rule of thumb for shared memories is that you must
/// atomically read and write everything. Nothing can be borrowed and everything
/// must be eagerly copied out.
///
/// [interface types]: https://github.com/webassembly/interface-types
/// [open an issue]: https://github.com/bytecodealliance/wasmtime/issues/new
#[derive(Clone)]
pub struct Memory {
    instance: StoreInstanceHandle,
    wasmtime_export: wasmtime_runtime::ExportMemory,
}

impl Memory {
    /// Creates a new WebAssembly memory given the configuration of `ty`.
    ///
    /// The `store` argument is a general location for cache information, and
    /// otherwise the memory will immediately be allocated according to the
    /// type's configuration. All WebAssembly memory is initialized to zero.
    ///
    /// # Examples
    ///
    /// ```
    /// # use wasmtime::*;
    /// # fn main() -> anyhow::Result<()> {
    /// let engine = Engine::default();
    /// let store = Store::new(&engine);
    ///
    /// let memory_ty = MemoryType::new(Limits::new(1, None));
    /// let memory = Memory::new(&store, memory_ty);
    ///
    /// let module = Module::new(&engine, "(module (memory (import \"\" \"\") 1))")?;
    /// let instance = Instance::new(&store, &module, &[memory.into()])?;
    /// // ...
    /// # Ok(())
    /// # }
    /// ```
    pub fn new(store: &Store, ty: MemoryType) -> Memory {
        let (instance, wasmtime_export) =
            generate_memory_export(store, &ty).expect("generated memory");
        Memory {
            instance,
            wasmtime_export,
        }
    }

    /// Returns the underlying type of this memory.
    ///
    /// # Examples
    ///
    /// ```
    /// # use wasmtime::*;
    /// # fn main() -> anyhow::Result<()> {
    /// let engine = Engine::default();
    /// let store = Store::new(&engine);
    /// let module = Module::new(&engine, "(module (memory (export \"mem\") 1))")?;
    /// let instance = Instance::new(&store, &module, &[])?;
    /// let memory = instance.get_memory("mem").unwrap();
    /// let ty = memory.ty();
    /// assert_eq!(ty.limits().min(), 1);
    /// # Ok(())
    /// # }
    /// ```
    pub fn ty(&self) -> MemoryType {
        MemoryType::from_wasmtime_memory(&self.wasmtime_export.memory.memory)
    }

    /// Returns this memory as a slice view that can be read natively in Rust.
    ///
    /// # Safety
    ///
    /// This is an unsafe operation because there is no guarantee that the
    /// following operations do not happen concurrently while the slice is in
    /// use:
    ///
    /// * Data could be modified by calling into a wasm module.
    /// * Memory could be relocated through growth by calling into a wasm
    ///   module.
    /// * When threads are supported, non-atomic reads will race with other
    ///   writes.
    ///
    /// Extreme care need be taken when the data of a `Memory` is read. The
    /// above invariants all need to be upheld at a bare minimum, and in
    /// general you'll need to ensure that while you're looking at slice you're
    /// the only one who can possibly look at the slice and read/write it.
    ///
    /// Be sure to keep in mind that `Memory` is reference counted, meaning
    /// that there may be other users of this `Memory` instance elsewhere in
    /// your program. Additionally `Memory` can be shared and used in any number
    /// of wasm instances, so calling any wasm code should be considered
    /// dangerous while you're holding a slice of memory.
    ///
    /// For more information and examples see the documentation on the
    /// [`Memory`] type.
    pub unsafe fn data_unchecked(&self) -> &[u8] {
        self.data_unchecked_mut()
    }

    /// Returns this memory as a slice view that can be read and written
    /// natively in Rust.
    ///
    /// # Safety
    ///
    /// All of the same safety caveats of [`Memory::data_unchecked`] apply
    /// here, doubly so because this is returning a mutable slice! As a
    /// double-extra reminder, remember that `Memory` is reference counted, so
    /// you can very easily acquire two mutable slices by simply calling this
    /// function twice. Extreme caution should be used when using this method,
    /// and in general you probably want to result to unsafe accessors and the
    /// `data` methods below.
    ///
    /// For more information and examples see the documentation on the
    /// [`Memory`] type.
    pub unsafe fn data_unchecked_mut(&self) -> &mut [u8] {
        let definition = &*self.wasmtime_export.definition;
        slice::from_raw_parts_mut(definition.base, definition.current_length)
    }

    /// Returns the base pointer, in the host's address space, that the memory
    /// is located at.
    ///
    /// When reading and manipulating memory be sure to read up on the caveats
    /// of [`Memory::data_unchecked`] to make sure that you can safely
    /// read/write the memory.
    ///
    /// For more information and examples see the documentation on the
    /// [`Memory`] type.
    pub fn data_ptr(&self) -> *mut u8 {
        unsafe { (*self.wasmtime_export.definition).base }
    }

    /// Returns the byte length of this memory.
    ///
    /// The returned value will be a multiple of the wasm page size, 64k.
    ///
    /// For more information and examples see the documentation on the
    /// [`Memory`] type.
    pub fn data_size(&self) -> usize {
        unsafe { (*self.wasmtime_export.definition).current_length }
    }

    /// Returns the size, in pages, of this wasm memory.
    pub fn size(&self) -> u32 {
        (self.data_size() / wasmtime_environ::WASM_PAGE_SIZE as usize) as u32
    }

    /// Grows this WebAssembly memory by `delta` pages.
    ///
    /// This will attempt to add `delta` more pages of memory on to the end of
    /// this `Memory` instance. If successful this may relocate the memory and
    /// cause [`Memory::data_ptr`] to return a new value. Additionally previous
    /// slices into this memory may no longer be valid.
    ///
    /// On success returns the number of pages this memory previously had
    /// before the growth succeeded.
    ///
    /// # Errors
    ///
    /// Returns an error if memory could not be grown, for example if it exceeds
    /// the maximum limits of this memory.
    ///
    /// # Examples
    ///
    /// ```
    /// # use wasmtime::*;
    /// # fn main() -> anyhow::Result<()> {
    /// let engine = Engine::default();
    /// let store = Store::new(&engine);
    /// let module = Module::new(&engine, "(module (memory (export \"mem\") 1 2))")?;
    /// let instance = Instance::new(&store, &module, &[])?;
    /// let memory = instance.get_memory("mem").unwrap();
    ///
    /// assert_eq!(memory.size(), 1);
    /// assert_eq!(memory.grow(1)?, 1);
    /// assert_eq!(memory.size(), 2);
    /// assert!(memory.grow(1).is_err());
    /// assert_eq!(memory.size(), 2);
    /// assert_eq!(memory.grow(0)?, 2);
    /// # Ok(())
    /// # }
    /// ```
    pub fn grow(&self, delta: u32) -> Result<u32> {
        let index = self
            .instance
            .memory_index(unsafe { &*self.wasmtime_export.definition });
        self.instance
            .memory_grow(index, delta)
            .ok_or_else(|| anyhow!("failed to grow memory"))
    }

    pub(crate) fn from_wasmtime_memory(
        wasmtime_export: wasmtime_runtime::ExportMemory,
        instance: StoreInstanceHandle,
    ) -> Memory {
        Memory {
            instance,
            wasmtime_export,
        }
    }

    pub(crate) fn wasmtime_ty(&self) -> &wasmtime_environ::wasm::Memory {
        &self.wasmtime_export.memory.memory
    }

    pub(crate) fn vmimport(&self) -> wasmtime_runtime::VMMemoryImport {
        wasmtime_runtime::VMMemoryImport {
            from: self.wasmtime_export.definition,
            vmctx: self.wasmtime_export.vmctx,
        }
    }
}

/// A linear memory. This trait provides an interface for raw memory buffers which are used
/// by wasmtime, e.g. inside ['Memory']. Such buffers are in principle not thread safe.
/// By implementing this trait together with MemoryCreator,
/// one can supply wasmtime with custom allocated host managed memory.
///
/// # Safety
/// The memory should be page aligned and a multiple of page size.
/// To prevent possible silent overflows, the memory should be protected by a guard page.
/// Additionally the safety concerns explained in ['Memory'], for accessing the memory
/// apply here as well.
///
/// Note that this is a relatively new and experimental feature and it is recommended
/// to be familiar with wasmtime runtime code to use it.
pub unsafe trait LinearMemory {
    /// Returns the number of allocated wasm pages.
    fn size(&self) -> u32;

    /// Grow memory by the specified amount of wasm pages.
    ///
    /// Returns `None` if memory can't be grown by the specified amount
    /// of wasm pages.
    fn grow(&self, delta: u32) -> Option<u32>;

    /// Return the allocated memory as a mutable pointer to u8.
    fn as_ptr(&self) -> *mut u8;
}

/// A memory creator. Can be used to provide a memory creator
/// to wasmtime which supplies host managed memory.
///
/// # Safety
/// This trait is unsafe, as the memory safety depends on proper implementation of
/// memory management. Memories created by the MemoryCreator should always be treated
/// as owned by wasmtime instance, and any modification of them outside of wasmtime
/// invoked routines is unsafe and may lead to corruption.
///
/// Note that this is a relatively new and experimental feature and it is recommended
/// to be familiar with wasmtime runtime code to use it.
pub unsafe trait MemoryCreator: Send + Sync {
    /// Create a new `LinearMemory` object from the specified parameters.
    ///
    /// The type of memory being created is specified by `ty` which indicates
    /// both the minimum and maximum size, in wasm pages.
    ///
    /// The `reserved_size_in_bytes` value indicates the expected size of the
    /// reservation that is to be made for this memory. If this value is `None`
    /// than the implementation is free to allocate memory as it sees fit. If
    /// the value is `Some`, however, then the implementation is expected to
    /// reserve that many bytes for the memory's allocation, plus the guard
    /// size at the end. Note that this reservation need only be a virtual
    /// memory reservation, physical memory does not need to be allocated
    /// immediately. In this case `grow` should never move the base pointer and
    /// the maximum size of `ty` is guaranteed to fit within `reserved_size_in_bytes`.
    ///
    /// The `guard_size_in_bytes` parameter indicates how many bytes of space, after the
    /// memory allocation, is expected to be unmapped. JIT code will elide
    /// bounds checks based on the `guard_size_in_bytes` provided, so for JIT code to
    /// work correctly the memory returned will need to be properly guarded with
    /// `guard_size_in_bytes` bytes left unmapped after the base allocation.
    ///
    /// Note that the `reserved_size_in_bytes` and `guard_size_in_bytes` options are tuned from
    /// the various [`Config`](crate::Config) methods about memory
    /// sizes/guards. Additionally these two values are guaranteed to be
    /// multiples of the system page size.
    fn new_memory(
        &self,
        ty: MemoryType,
        reserved_size_in_bytes: Option<u64>,
        guard_size_in_bytes: u64,
    ) -> Result<Box<dyn LinearMemory>, String>;
}

#[cfg(test)]
mod tests {
    use crate::*;

    // Assert that creating a memory via `Memory::new` respects the limits/tunables
    // in `Config`.
    #[test]
    fn respect_tunables() {
        let mut cfg = Config::new();
        cfg.static_memory_maximum_size(0)
            .dynamic_memory_guard_size(0);
        let store = Store::new(&Engine::new(&cfg));
        let ty = MemoryType::new(Limits::new(1, None));
        let mem = Memory::new(&store, ty);
        assert_eq!(mem.wasmtime_export.memory.offset_guard_size, 0);
        match mem.wasmtime_export.memory.style {
            wasmtime_environ::MemoryStyle::Dynamic => {}
            other => panic!("unexpected style {:?}", other),
        }
    }
}

// Exports

/// An exported WebAssembly value.
///
/// This type is primarily accessed from the
/// [`Instance::exports`](crate::Instance::exports) accessor and describes what
/// names and items are exported from a wasm instance.
#[derive(Clone)]
pub struct Export<'instance> {
    /// The name of the export.
    name: &'instance str,

    /// The definition of the export.
    definition: Extern,
}

impl<'instance> Export<'instance> {
    /// Creates a new export which is exported with the given `name` and has the
    /// given `definition`.
    pub(crate) fn new(name: &'instance str, definition: Extern) -> Export<'instance> {
        Export { name, definition }
    }

    /// Returns the name by which this export is known.
    pub fn name(&self) -> &'instance str {
        self.name
    }

    /// Return the `ExternType` of this export.
    pub fn ty(&self) -> ExternType {
        self.definition.ty()
    }

    /// Consume this `Export` and return the contained `Extern`.
    pub fn into_extern(self) -> Extern {
        self.definition
    }

    /// Consume this `Export` and return the contained `Func`, if it's a function,
    /// or `None` otherwise.
    pub fn into_func(self) -> Option<Func> {
        self.definition.into_func()
    }

    /// Consume this `Export` and return the contained `Table`, if it's a table,
    /// or `None` otherwise.
    pub fn into_table(self) -> Option<Table> {
        self.definition.into_table()
    }

    /// Consume this `Export` and return the contained `Memory`, if it's a memory,
    /// or `None` otherwise.
    pub fn into_memory(self) -> Option<Memory> {
        self.definition.into_memory()
    }

    /// Consume this `Export` and return the contained `Global`, if it's a global,
    /// or `None` otherwise.
    pub fn into_global(self) -> Option<Global> {
        self.definition.into_global()
    }
}