1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
//! Common helper code for ABI lowering.
//!
//! This module provides functions and data structures that are useful for implementing the
//! `TargetIsa::legalize_signature()` method.
use crate::ir::{AbiParam, ArgumentExtension, ArgumentLoc, Type};
use alloc::borrow::Cow;
use alloc::vec::Vec;
use core::cmp::Ordering;
/// Legalization action to perform on a single argument or return value when converting a
/// signature.
///
/// An argument may go through a sequence of legalization steps before it reaches the final
/// `Assign` action.
#[derive(Clone, Copy, Debug)]
pub enum ArgAction {
/// Assign the argument to the given location.
Assign(ArgumentLoc),
/// Assign the argument to the given location and change the type to the specified type.
/// This is used by [`ArgumentPurpose::StructArgument`].
AssignAndChangeType(ArgumentLoc, Type),
/// Convert the argument, then call again.
///
/// This action can split an integer type into two smaller integer arguments, or it can split a
/// SIMD vector into halves.
Convert(ValueConversion),
}
impl From<ArgumentLoc> for ArgAction {
fn from(x: ArgumentLoc) -> Self {
Self::Assign(x)
}
}
impl From<ValueConversion> for ArgAction {
fn from(x: ValueConversion) -> Self {
Self::Convert(x)
}
}
/// Legalization action to be applied to a value that is being passed to or from a legalized ABI.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ValueConversion {
/// Split an integer types into low and high parts, using `isplit`.
IntSplit,
/// Split a vector type into halves with identical lane types, using `vsplit`.
VectorSplit,
/// Bit-cast to an integer type of the same size.
IntBits,
/// Sign-extend integer value to the required type.
Sext(Type),
/// Unsigned zero-extend value to the required type.
Uext(Type),
/// Pass value by pointer of given integer type.
Pointer(Type),
}
impl ValueConversion {
/// Apply this conversion to a type, return the converted type.
pub fn apply(self, ty: Type) -> Type {
match self {
Self::IntSplit => ty.half_width().expect("Integer type too small to split"),
Self::VectorSplit => ty.half_vector().expect("Not a vector"),
Self::IntBits => Type::int(ty.bits()).expect("Bad integer size"),
Self::Sext(nty) | Self::Uext(nty) | Self::Pointer(nty) => nty,
}
}
/// Is this a split conversion that results in two arguments?
pub fn is_split(self) -> bool {
match self {
Self::IntSplit | Self::VectorSplit => true,
_ => false,
}
}
/// Is this a conversion to pointer?
pub fn is_pointer(self) -> bool {
match self {
Self::Pointer(_) => true,
_ => false,
}
}
}
/// Common trait for assigning arguments to registers or stack locations.
///
/// This will be implemented by individual ISAs.
pub trait ArgAssigner {
/// Pick an assignment action for function argument (or return value) `arg`.
fn assign(&mut self, arg: &AbiParam) -> ArgAction;
}
/// Legalize the arguments in `args` using the given argument assigner.
///
/// This function can be used for both arguments and return values.
pub fn legalize_args<AA: ArgAssigner>(args: &[AbiParam], aa: &mut AA) -> Option<Vec<AbiParam>> {
let mut args = Cow::Borrowed(args);
// Iterate over the arguments.
// We may need to mutate the vector in place, so don't use a normal iterator, and clone the
// argument to avoid holding a reference.
let mut argno = 0;
while let Some(arg) = args.get(argno).cloned() {
// Leave the pre-assigned arguments alone.
// We'll assume that they don't interfere with our assignments.
if arg.location.is_assigned() {
argno += 1;
continue;
}
match aa.assign(&arg) {
// Assign argument to a location and move on to the next one.
ArgAction::Assign(loc) => {
args.to_mut()[argno].location = loc;
argno += 1;
}
// Assign argument to a location, change type to the requested one and move on to the
// next one.
ArgAction::AssignAndChangeType(loc, ty) => {
let arg = &mut args.to_mut()[argno];
arg.location = loc;
arg.value_type = ty;
argno += 1;
}
// Split this argument into two smaller ones. Then revisit both.
ArgAction::Convert(conv) => {
debug_assert!(
!arg.legalized_to_pointer,
"No more conversions allowed after conversion to pointer"
);
let value_type = conv.apply(arg.value_type);
args.to_mut()[argno].value_type = value_type;
if conv.is_pointer() {
args.to_mut()[argno].legalized_to_pointer = true;
} else if conv.is_split() {
let new_arg = AbiParam { value_type, ..arg };
args.to_mut().insert(argno + 1, new_arg);
}
}
}
}
match args {
Cow::Borrowed(_) => None,
Cow::Owned(a) => Some(a),
}
}
/// Determine the right action to take when passing a `have` value type to a call signature where
/// the next argument is `arg` which has a different value type.
///
/// The signature legalization process in `legalize_args` above can replace a single argument value
/// with multiple arguments of smaller types. It can also change the type of an integer argument to
/// a larger integer type, requiring the smaller value to be sign- or zero-extended.
///
/// The legalizer needs to repair the values at all ABI boundaries:
///
/// - Incoming function arguments to the entry block.
/// - Function arguments passed to a call.
/// - Return values from a call.
/// - Return values passed to a return instruction.
///
/// The `legalize_abi_value` function helps the legalizer with the process. When the legalizer
/// needs to pass a pre-legalized `have` argument, but the ABI argument `arg` has a different value
/// type, `legalize_abi_value(have, arg)` tells the legalizer how to create the needed value type
/// for the argument.
///
/// It may be necessary to call `legalize_abi_value` more than once for a given argument before the
/// desired argument type appears. This will happen when a vector or integer type needs to be split
/// more than once, for example.
pub fn legalize_abi_value(have: Type, arg: &AbiParam) -> ValueConversion {
let have_bits = have.bits();
let arg_bits = arg.value_type.bits();
if arg.legalized_to_pointer {
return ValueConversion::Pointer(arg.value_type);
}
match have_bits.cmp(&arg_bits) {
// We have fewer bits than the ABI argument.
Ordering::Less => {
debug_assert!(
have.is_int() && arg.value_type.is_int(),
"Can only extend integer values"
);
match arg.extension {
ArgumentExtension::Uext => ValueConversion::Uext(arg.value_type),
ArgumentExtension::Sext => ValueConversion::Sext(arg.value_type),
_ => panic!("No argument extension specified"),
}
}
// We have the same number of bits as the argument.
Ordering::Equal => {
// This must be an integer vector that is split and then extended.
debug_assert!(arg.value_type.is_int());
debug_assert!(have.is_vector(), "expected vector type, got {}", have);
ValueConversion::VectorSplit
}
// We have more bits than the argument.
Ordering::Greater => {
if have.is_vector() {
ValueConversion::VectorSplit
} else if have.is_float() {
// Convert a float to int so it can be split the next time.
// ARM would do this to pass an `f64` in two registers.
ValueConversion::IntBits
} else {
ValueConversion::IntSplit
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ir::types;
use crate::ir::AbiParam;
#[test]
fn legalize() {
let mut arg = AbiParam::new(types::I32);
assert_eq!(
legalize_abi_value(types::I64X2, &arg),
ValueConversion::VectorSplit
);
assert_eq!(
legalize_abi_value(types::I64, &arg),
ValueConversion::IntSplit
);
// Vector of integers is broken down, then sign-extended.
arg.extension = ArgumentExtension::Sext;
assert_eq!(
legalize_abi_value(types::I16X4, &arg),
ValueConversion::VectorSplit
);
assert_eq!(
legalize_abi_value(types::I16.by(2).unwrap(), &arg),
ValueConversion::VectorSplit
);
assert_eq!(
legalize_abi_value(types::I16, &arg),
ValueConversion::Sext(types::I32)
);
// 64-bit float is split as an integer.
assert_eq!(
legalize_abi_value(types::F64, &arg),
ValueConversion::IntBits
);
// Value is passed by reference
arg.legalized_to_pointer = true;
assert_eq!(
legalize_abi_value(types::F64, &arg),
ValueConversion::Pointer(types::I32)
);
}
}