1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//! Common helper code for ABI lowering.
//!
//! This module provides functions and data structures that are useful for implementing the
//! `TargetIsa::legalize_signature()` method.

use crate::ir::{AbiParam, ArgumentExtension, ArgumentLoc, Type};
use alloc::borrow::Cow;
use alloc::vec::Vec;
use core::cmp::Ordering;

/// Legalization action to perform on a single argument or return value when converting a
/// signature.
///
/// An argument may go through a sequence of legalization steps before it reaches the final
/// `Assign` action.
#[derive(Clone, Copy, Debug)]
pub enum ArgAction {
    /// Assign the argument to the given location.
    Assign(ArgumentLoc),

    /// Assign the argument to the given location and change the type to the specified type.
    /// This is used by [`ArgumentPurpose::StructArgument`].
    AssignAndChangeType(ArgumentLoc, Type),

    /// Convert the argument, then call again.
    ///
    /// This action can split an integer type into two smaller integer arguments, or it can split a
    /// SIMD vector into halves.
    Convert(ValueConversion),
}

impl From<ArgumentLoc> for ArgAction {
    fn from(x: ArgumentLoc) -> Self {
        Self::Assign(x)
    }
}

impl From<ValueConversion> for ArgAction {
    fn from(x: ValueConversion) -> Self {
        Self::Convert(x)
    }
}

/// Legalization action to be applied to a value that is being passed to or from a legalized ABI.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ValueConversion {
    /// Split an integer types into low and high parts, using `isplit`.
    IntSplit,

    /// Split a vector type into halves with identical lane types, using `vsplit`.
    VectorSplit,

    /// Bit-cast to an integer type of the same size.
    IntBits,

    /// Sign-extend integer value to the required type.
    Sext(Type),

    /// Unsigned zero-extend value to the required type.
    Uext(Type),

    /// Pass value by pointer of given integer type.
    Pointer(Type),
}

impl ValueConversion {
    /// Apply this conversion to a type, return the converted type.
    pub fn apply(self, ty: Type) -> Type {
        match self {
            Self::IntSplit => ty.half_width().expect("Integer type too small to split"),
            Self::VectorSplit => ty.half_vector().expect("Not a vector"),
            Self::IntBits => Type::int(ty.bits()).expect("Bad integer size"),
            Self::Sext(nty) | Self::Uext(nty) | Self::Pointer(nty) => nty,
        }
    }

    /// Is this a split conversion that results in two arguments?
    pub fn is_split(self) -> bool {
        match self {
            Self::IntSplit | Self::VectorSplit => true,
            _ => false,
        }
    }

    /// Is this a conversion to pointer?
    pub fn is_pointer(self) -> bool {
        match self {
            Self::Pointer(_) => true,
            _ => false,
        }
    }
}

/// Common trait for assigning arguments to registers or stack locations.
///
/// This will be implemented by individual ISAs.
pub trait ArgAssigner {
    /// Pick an assignment action for function argument (or return value) `arg`.
    fn assign(&mut self, arg: &AbiParam) -> ArgAction;
}

/// Legalize the arguments in `args` using the given argument assigner.
///
/// This function can be used for both arguments and return values.
pub fn legalize_args<AA: ArgAssigner>(args: &[AbiParam], aa: &mut AA) -> Option<Vec<AbiParam>> {
    let mut args = Cow::Borrowed(args);

    // Iterate over the arguments.
    // We may need to mutate the vector in place, so don't use a normal iterator, and clone the
    // argument to avoid holding a reference.
    let mut argno = 0;
    while let Some(arg) = args.get(argno).cloned() {
        // Leave the pre-assigned arguments alone.
        // We'll assume that they don't interfere with our assignments.
        if arg.location.is_assigned() {
            argno += 1;
            continue;
        }

        match aa.assign(&arg) {
            // Assign argument to a location and move on to the next one.
            ArgAction::Assign(loc) => {
                args.to_mut()[argno].location = loc;
                argno += 1;
            }
            // Assign argument to a location, change type to the requested one and move on to the
            // next one.
            ArgAction::AssignAndChangeType(loc, ty) => {
                let arg = &mut args.to_mut()[argno];
                arg.location = loc;
                arg.value_type = ty;
                argno += 1;
            }
            // Split this argument into two smaller ones. Then revisit both.
            ArgAction::Convert(conv) => {
                debug_assert!(
                    !arg.legalized_to_pointer,
                    "No more conversions allowed after conversion to pointer"
                );
                let value_type = conv.apply(arg.value_type);
                args.to_mut()[argno].value_type = value_type;
                if conv.is_pointer() {
                    args.to_mut()[argno].legalized_to_pointer = true;
                } else if conv.is_split() {
                    let new_arg = AbiParam { value_type, ..arg };
                    args.to_mut().insert(argno + 1, new_arg);
                }
            }
        }
    }

    match args {
        Cow::Borrowed(_) => None,
        Cow::Owned(a) => Some(a),
    }
}

/// Determine the right action to take when passing a `have` value type to a call signature where
/// the next argument is `arg` which has a different value type.
///
/// The signature legalization process in `legalize_args` above can replace a single argument value
/// with multiple arguments of smaller types. It can also change the type of an integer argument to
/// a larger integer type, requiring the smaller value to be sign- or zero-extended.
///
/// The legalizer needs to repair the values at all ABI boundaries:
///
/// - Incoming function arguments to the entry block.
/// - Function arguments passed to a call.
/// - Return values from a call.
/// - Return values passed to a return instruction.
///
/// The `legalize_abi_value` function helps the legalizer with the process. When the legalizer
/// needs to pass a pre-legalized `have` argument, but the ABI argument `arg` has a different value
/// type, `legalize_abi_value(have, arg)` tells the legalizer how to create the needed value type
/// for the argument.
///
/// It may be necessary to call `legalize_abi_value` more than once for a given argument before the
/// desired argument type appears. This will happen when a vector or integer type needs to be split
/// more than once, for example.
pub fn legalize_abi_value(have: Type, arg: &AbiParam) -> ValueConversion {
    let have_bits = have.bits();
    let arg_bits = arg.value_type.bits();

    if arg.legalized_to_pointer {
        return ValueConversion::Pointer(arg.value_type);
    }

    match have_bits.cmp(&arg_bits) {
        // We have fewer bits than the ABI argument.
        Ordering::Less => {
            debug_assert!(
                have.is_int() && arg.value_type.is_int(),
                "Can only extend integer values"
            );
            match arg.extension {
                ArgumentExtension::Uext => ValueConversion::Uext(arg.value_type),
                ArgumentExtension::Sext => ValueConversion::Sext(arg.value_type),
                _ => panic!("No argument extension specified"),
            }
        }
        // We have the same number of bits as the argument.
        Ordering::Equal => {
            // This must be an integer vector that is split and then extended.
            debug_assert!(arg.value_type.is_int());
            debug_assert!(have.is_vector(), "expected vector type, got {}", have);
            ValueConversion::VectorSplit
        }
        // We have more bits than the argument.
        Ordering::Greater => {
            if have.is_vector() {
                ValueConversion::VectorSplit
            } else if have.is_float() {
                // Convert a float to int so it can be split the next time.
                // ARM would do this to pass an `f64` in two registers.
                ValueConversion::IntBits
            } else {
                ValueConversion::IntSplit
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ir::types;
    use crate::ir::AbiParam;

    #[test]
    fn legalize() {
        let mut arg = AbiParam::new(types::I32);

        assert_eq!(
            legalize_abi_value(types::I64X2, &arg),
            ValueConversion::VectorSplit
        );
        assert_eq!(
            legalize_abi_value(types::I64, &arg),
            ValueConversion::IntSplit
        );

        // Vector of integers is broken down, then sign-extended.
        arg.extension = ArgumentExtension::Sext;
        assert_eq!(
            legalize_abi_value(types::I16X4, &arg),
            ValueConversion::VectorSplit
        );
        assert_eq!(
            legalize_abi_value(types::I16.by(2).unwrap(), &arg),
            ValueConversion::VectorSplit
        );
        assert_eq!(
            legalize_abi_value(types::I16, &arg),
            ValueConversion::Sext(types::I32)
        );

        // 64-bit float is split as an integer.
        assert_eq!(
            legalize_abi_value(types::F64, &arg),
            ValueConversion::IntBits
        );

        // Value is passed by reference
        arg.legalized_to_pointer = true;
        assert_eq!(
            legalize_abi_value(types::F64, &arg),
            ValueConversion::Pointer(types::I32)
        );
    }
}