1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
//! Cuckoo filter probabilistic data structure for membership testing and cardinality counting.
//!
//! # Usage
//!
//! This crate is [on crates.io](https://crates.io/crates/cuckoofilter) and can be
//! used by adding `cuckoofilter` to the dependencies in your project's `Cargo.toml`.
//!
//! ```toml
//! [dependencies]
//! cuckoofilter = "0.3"
//! ```
//!
//! And this in your crate root:
//!
//! ```rust
//! extern crate cuckoofilter;
//! ```

#![cfg_attr(feature = "dev", feature(plugin))]
#![cfg_attr(feature = "dev", plugin(clippy))]

mod bucket;
mod util;

use crate::bucket::{Bucket, Fingerprint, BUCKET_SIZE, FINGERPRINT_SIZE};
use crate::util::{get_alt_index, get_fai, FaI};

use std::cmp;
use std::collections::hash_map::DefaultHasher;
use std::error::Error as StdError;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::iter::repeat;
use std::marker::PhantomData;
use std::mem;

use rand::Rng;
#[cfg(feature = "serde_support")]
use serde_derive::{Deserialize, Serialize};

/// If insertion fails, we will retry this many times.
pub const MAX_REBUCKET: u32 = 500;

/// The default number of buckets.
pub const DEFAULT_CAPACITY: usize = (1 << 20) - 1;

#[derive(Debug)]
pub enum CuckooError {
    NotEnoughSpace,
}

impl fmt::Display for CuckooError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str("NotEnoughSpace")
    }
}

impl StdError for CuckooError {
    fn description(&self) -> &str {
        "Not enough space to store this item, rebucketing failed."
    }
}

/// A cuckoo filter class exposes a Bloomier filter interface,
/// providing methods of add, delete, contains.
///
/// # Examples
///
/// ```
/// extern crate cuckoofilter;
///
/// let words = vec!["foo", "bar", "xylophone", "milagro"];
/// let mut cf = cuckoofilter::CuckooFilter::new();
///
/// let mut insertions = 0;
/// for s in &words {
///     if cf.test_and_add(s).unwrap() {
///         insertions += 1;
///     }
/// }
///
/// assert_eq!(insertions, words.len());
/// assert_eq!(cf.len(), words.len());
///
/// // Re-add the first element.
/// cf.add(words[0]);
///
/// assert_eq!(cf.len(), words.len() + 1);
///
/// for s in &words {
///     cf.delete(s);
/// }
///
/// assert_eq!(cf.len(), 1);
/// assert!(!cf.is_empty());
///
/// cf.delete(words[0]);
///
/// assert_eq!(cf.len(), 0);
/// assert!(cf.is_empty());
///
/// ```
pub struct CuckooFilter<H> {
    buckets: Box<[Bucket]>,
    len: usize,
    _hasher: std::marker::PhantomData<H>,
}

impl Default for CuckooFilter<DefaultHasher> {
    fn default() -> Self {
        Self::new()
    }
}

impl CuckooFilter<DefaultHasher> {
    /// Construct a CuckooFilter with default capacity and hasher.
    pub fn new() -> Self {
        Self::with_capacity(DEFAULT_CAPACITY)
    }
}

impl<H> CuckooFilter<H>
where
    H: Hasher + Default,
{
    /// Constructs a Cuckoo Filter with a given max capacity
    pub fn with_capacity(cap: usize) -> Self {
        let capacity = cmp::max(1, cap.next_power_of_two() / BUCKET_SIZE);

        Self {
            buckets: repeat(Bucket::new())
                .take(capacity)
                .collect::<Vec<_>>()
                .into_boxed_slice(),
            len: 0,
            _hasher: PhantomData,
        }
    }

    /// Checks if `data` is in the filter.
    pub fn contains<T: ?Sized + Hash>(&self, data: &T) -> bool {
        let FaI { fp, i1, i2 } = get_fai::<T, H>(data);
        let len = self.buckets.len();
        self.buckets[i1 % len]
            .get_fingerprint_index(fp)
            .or_else(|| self.buckets[i2 % len].get_fingerprint_index(fp))
            .is_some()
    }

    /// Adds `data` to the filter. Returns `Ok` if the insertion was successful,
    /// but could fail with a `NotEnoughSpace` error, especially when the filter
    /// is nearing its capacity.
    /// Note that while you can put any hashable type in the same filter, beware
    /// for side effects like that the same number can have diferent hashes
    /// depending on the type.
    /// So for the filter, 4711i64 isn't the same as 4711u64.
    ///
    /// **Note:** When this returns `NotEnoughSpace`, the element given was
    /// actually added to the filter, but some random *other* element was
    /// removed. This might improve in the future.
    pub fn add<T: ?Sized + Hash>(&mut self, data: &T) -> Result<(), CuckooError> {
        let fai = get_fai::<T, H>(data);
        if self.put(fai.fp, fai.i1) || self.put(fai.fp, fai.i2) {
            return Ok(());
        }
        let len = self.buckets.len();
        let mut rng = rand::thread_rng();
        let mut i = fai.random_index(&mut rng);
        let mut fp = fai.fp;
        for _ in 0..MAX_REBUCKET {
            let other_fp;
            {
                let loc = &mut self.buckets[i % len].buffer[rng.gen_range(0, BUCKET_SIZE)];
                other_fp = *loc;
                *loc = fp;
                i = get_alt_index::<H>(other_fp, i);
            }
            if self.put(other_fp, i) {
                return Ok(());
            }
            fp = other_fp;
        }
        // fp is dropped here, which means that the last item that was
        // rebucketed gets removed from the filter.
        // TODO: One could introduce a single-item cache for this element,
        // check this cache in all methods additionally to the actual filter,
        // and return NotEnoughSpace if that cache is already in use.
        // This would complicate the code, but stop random elements from
        // getting removed and result in nicer behaviour for the user.
        Err(CuckooError::NotEnoughSpace)
    }

    /// Adds `data` to the filter if it does not exist in the filter yet.
    /// Returns `Ok(true)` if `data` was not yet present in the filter and added
    /// successfully.
    pub fn test_and_add<T: ?Sized + Hash>(&mut self, data: &T) -> Result<bool, CuckooError> {
        if self.contains(data) {
            Ok(false)
        } else {
            self.add(data).map(|_| true)
        }
    }

    /// Number of items in the filter.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Exports fingerprints in all buckets, along with the filter's length for storage.
    /// The filter can be recovered by passing the `ExportedCuckooFilter` struct to the
    /// `from` method of `CuckooFilter`.
    pub fn export(&self) -> ExportedCuckooFilter {
        self.into()
    }

    /// Number of bytes the filter occupies in memory
    pub fn memory_usage(&self) -> usize {
        mem::size_of_val(self) + self.buckets.len() * mem::size_of::<Bucket>()
    }

    /// Check if filter is empty
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Deletes `data` from the filter. Returns true if `data` existed in the
    /// filter before.
    pub fn delete<T: ?Sized + Hash>(&mut self, data: &T) -> bool {
        let FaI { fp, i1, i2 } = get_fai::<T, H>(data);
        self.remove(fp, i1) || self.remove(fp, i2)
    }

    /// Extracts fingerprint values from all buckets, used for exporting the filters data.
    fn values(&self) -> Vec<u8> {
        self.buckets
            .iter()
            .flat_map(|b| b.get_fingerprint_data().into_iter())
            .collect()
    }

    /// Removes the item with the given fingerprint from the bucket indexed by i.
    fn remove(&mut self, fp: Fingerprint, i: usize) -> bool {
        let len = self.buckets.len();
        if self.buckets[i % len].delete(fp) {
            self.len -= 1;
            true
        } else {
            false
        }
    }

    fn put(&mut self, fp: Fingerprint, i: usize) -> bool {
        let len = self.buckets.len();
        if self.buckets[i % len].insert(fp) {
            self.len += 1;
            true
        } else {
            false
        }
    }
}

/// A minimal representation of the CuckooFilter which can be transfered or stored, then recovered at a later stage.
#[derive(Debug)]
#[cfg_attr(feature = "serde_support", derive(Deserialize, Serialize))]
pub struct ExportedCuckooFilter {
    #[cfg_attr(feature = "serde_support", serde(with = "serde_bytes"))]
    pub values: Vec<u8>,
    pub length: usize,
}

impl<H> From<ExportedCuckooFilter> for CuckooFilter<H> {
    /// Converts a simplified representation of a filter used for export to a
    /// fully functioning version.
    ///
    /// # Contents
    ///
    /// * `values` - A serialized version of the `CuckooFilter`'s memory, where the
    /// fingerprints in each bucket are chained one after another, then in turn all
    /// buckets are chained together.
    /// * `length` - The number of valid fingerprints inside the `CuckooFilter`.
    /// This value is used as a time saving method, otherwise all fingerprints
    /// would need to be checked for equivalence against the null pattern.
    fn from(exported: ExportedCuckooFilter) -> Self {
        // Assumes that the `BUCKET_SIZE` and `FINGERPRINT_SIZE` constants do not change.
        Self {
            buckets: exported
                .values
                .chunks(BUCKET_SIZE * FINGERPRINT_SIZE)
                .map(Bucket::from)
                .collect::<Vec<_>>()
                .into_boxed_slice(),
            len: exported.length,
            _hasher: PhantomData,
        }
    }
}

impl<H> From<&CuckooFilter<H>> for ExportedCuckooFilter
where
    H: Hasher + Default,
{
    /// Converts a `CuckooFilter` into a simplified version which can be serialized and stored
    /// for later use.
    fn from(cuckoo: &CuckooFilter<H>) -> Self {
        Self {
            values: cuckoo.values(),
            length: cuckoo.len(),
        }
    }
}