1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
//! Data structures for the whole crate.
use rustc_hash::FxHashMap;
use rustc_hash::FxHashSet;
use smallvec::SmallVec;
use std::cmp::Ordering;
use std::collections::VecDeque;
use std::fmt;
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::Index;
use std::ops::IndexMut;
use std::slice::{Iter, IterMut};
use crate::{Function, RegUsageMapper};
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
//=============================================================================
// Queues
pub type Queue<T> = VecDeque<T>;
//=============================================================================
// Maps
// NOTE: plain HashMap is nondeterministic, even in a single-threaded
// scenario, which can make debugging code that uses it really confusing. So
// we use FxHashMap instead, as it *is* deterministic, and, allegedly, faster
// too.
pub type Map<K, V> = FxHashMap<K, V>;
//=============================================================================
// Sets of things
// Same comment as above for FxHashMap.
#[derive(Clone)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Set<T: Eq + Hash> {
set: FxHashSet<T>,
}
impl<T: Eq + Ord + Hash + Copy + fmt::Debug> Set<T> {
#[inline(never)]
pub fn empty() -> Self {
Self {
set: FxHashSet::<T>::default(),
}
}
#[inline(never)]
pub fn unit(item: T) -> Self {
let mut s = Self::empty();
s.insert(item);
s
}
#[inline(never)]
pub fn two(item1: T, item2: T) -> Self {
let mut s = Self::empty();
s.insert(item1);
s.insert(item2);
s
}
#[inline(never)]
pub fn card(&self) -> usize {
self.set.len()
}
#[inline(never)]
pub fn insert(&mut self, item: T) {
self.set.insert(item);
}
#[inline(never)]
pub fn delete(&mut self, item: T) {
self.set.remove(&item);
}
#[inline(never)]
pub fn is_empty(&self) -> bool {
self.set.is_empty()
}
#[inline(never)]
pub fn contains(&self, item: T) -> bool {
self.set.contains(&item)
}
#[inline(never)]
pub fn intersect(&mut self, other: &Self) {
let mut res = FxHashSet::<T>::default();
for item in self.set.iter() {
if other.set.contains(item) {
res.insert(*item);
}
}
self.set = res;
}
#[inline(never)]
pub fn union(&mut self, other: &Self) {
for item in other.set.iter() {
self.set.insert(*item);
}
}
#[inline(never)]
pub fn remove(&mut self, other: &Self) {
for item in other.set.iter() {
self.set.remove(item);
}
}
#[inline(never)]
pub fn intersects(&self, other: &Self) -> bool {
!self.set.is_disjoint(&other.set)
}
#[inline(never)]
pub fn is_subset_of(&self, other: &Self) -> bool {
self.set.is_subset(&other.set)
}
#[inline(never)]
pub fn to_vec(&self) -> Vec<T> {
let mut res = Vec::<T>::new();
for item in self.set.iter() {
res.push(*item)
}
// Don't delete this. It is important.
res.sort_unstable();
res
}
#[inline(never)]
pub fn from_vec(vec: Vec<T>) -> Self {
let mut res = Set::<T>::empty();
for x in vec {
res.insert(x);
}
res
}
#[inline(never)]
pub fn equals(&self, other: &Self) -> bool {
self.set == other.set
}
#[inline(never)]
pub fn retain<F>(&mut self, f: F)
where
F: FnMut(&T) -> bool,
{
self.set.retain(f)
}
#[inline(never)]
pub fn map<F, U>(&self, f: F) -> Set<U>
where
F: Fn(&T) -> U,
U: Eq + Ord + Hash + Copy + fmt::Debug,
{
Set {
set: self.set.iter().map(f).collect(),
}
}
#[inline(never)]
pub fn filter_map<F, U>(&self, f: F) -> Set<U>
where
F: Fn(&T) -> Option<U>,
U: Eq + Ord + Hash + Copy + fmt::Debug,
{
Set {
set: self.set.iter().filter_map(f).collect(),
}
}
pub fn clear(&mut self) {
self.set.clear();
}
}
impl<T: Eq + Ord + Hash + Copy + fmt::Debug> fmt::Debug for Set<T> {
#[inline(never)]
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
// Print the elements in some way which depends only on what is
// present in the set, and not on any other factor. In particular,
// <Debug for FxHashSet> has been observed to to print the elements
// of a two element set in both orders on different occasions.
let sorted_vec = self.to_vec();
let mut s = "{".to_string();
for i in 0..sorted_vec.len() {
if i > 0 {
s = s + &", ".to_string();
}
s = s + &format!("{:?}", &sorted_vec[i]);
}
s = s + &"}".to_string();
write!(fmt, "{}", s)
}
}
pub struct SetIter<'a, T> {
set_iter: std::collections::hash_set::Iter<'a, T>,
}
impl<T: Eq + Hash> Set<T> {
pub fn iter(&self) -> SetIter<T> {
SetIter {
set_iter: self.set.iter(),
}
}
}
impl<'a, T> Iterator for SetIter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
self.set_iter.next()
}
}
//=============================================================================
// Iteration boilerplate for entities. The only purpose of this is to support
// constructions of the form
//
// for ent in startEnt .dotdot( endPlus1Ent ) {
// }
//
// until such time as `trait Step` is available in stable Rust. At that point
// `fn dotdot` and all of the following can be removed, and the loops
// rewritten using the standard syntax:
//
// for ent in startEnt .. endPlus1Ent {
// }
pub trait Zero {
fn zero() -> Self;
}
pub trait PlusN {
fn plus_n(&self, n: usize) -> Self;
}
#[derive(Clone, Copy)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Range<T> {
first: T,
len: usize,
}
impl<T: Copy + PartialOrd + PlusN> IntoIterator for Range<T> {
type Item = T;
type IntoIter = MyIterator<T>;
fn into_iter(self) -> Self::IntoIter {
MyIterator {
range: self,
next: self.first,
}
}
}
impl<T: Copy + Eq + Ord + PlusN> Range<T> {
/// Create a new range object.
pub fn new(from: T, len: usize) -> Range<T> {
Range { first: from, len }
}
pub fn start(&self) -> T {
self.first
}
pub fn first(&self) -> T {
assert!(self.len() > 0);
self.start()
}
pub fn last(&self) -> T {
assert!(self.len() > 0);
self.start().plus_n(self.len() - 1)
}
pub fn last_plus1(&self) -> T {
self.start().plus_n(self.len())
}
pub fn len(&self) -> usize {
self.len
}
pub fn contains(&self, t: T) -> bool {
t >= self.first && t < self.first.plus_n(self.len)
}
}
pub struct MyIterator<T> {
range: Range<T>,
next: T,
}
impl<T: Copy + PartialOrd + PlusN> Iterator for MyIterator<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
if self.next >= self.range.first.plus_n(self.range.len) {
None
} else {
let res = Some(self.next);
self.next = self.next.plus_n(1);
res
}
}
}
//=============================================================================
// Vectors where both the index and element types can be specified (and at
// most 2^32-1 elems can be stored. What if this overflows?)
pub struct TypedIxVec<TyIx, Ty> {
vek: Vec<Ty>,
ty_ix: PhantomData<TyIx>,
}
impl<TyIx, Ty> TypedIxVec<TyIx, Ty>
where
Ty: Clone,
TyIx: Copy + Eq + Ord + Zero + PlusN + Into<u32>,
{
pub fn new() -> Self {
Self {
vek: Vec::new(),
ty_ix: PhantomData::<TyIx>,
}
}
pub fn from_vec(vek: Vec<Ty>) -> Self {
Self {
vek,
ty_ix: PhantomData::<TyIx>,
}
}
pub fn append(&mut self, other: &mut TypedIxVec<TyIx, Ty>) {
// FIXME what if this overflows?
self.vek.append(&mut other.vek);
}
pub fn iter(&self) -> Iter<Ty> {
self.vek.iter()
}
pub fn iter_mut(&mut self) -> IterMut<Ty> {
self.vek.iter_mut()
}
pub fn len(&self) -> u32 {
// FIXME what if this overflows?
self.vek.len() as u32
}
pub fn push(&mut self, item: Ty) {
// FIXME what if this overflows?
self.vek.push(item);
}
pub fn resize(&mut self, new_len: u32, value: Ty) {
self.vek.resize(new_len as usize, value);
}
pub fn reserve(&mut self, additional: usize) {
self.vek.reserve(additional);
}
pub fn elems(&self) -> &[Ty] {
&self.vek[..]
}
pub fn elems_mut(&mut self) -> &mut [Ty] {
&mut self.vek[..]
}
pub fn range(&self) -> Range<TyIx> {
Range::new(TyIx::zero(), self.len() as usize)
}
pub fn remove(&mut self, idx: TyIx) -> Ty {
self.vek.remove(idx.into() as usize)
}
pub fn sort_by<F: FnMut(&Ty, &Ty) -> Ordering>(&mut self, compare: F) {
self.vek.sort_by(compare)
}
pub fn sort_unstable_by<F: FnMut(&Ty, &Ty) -> Ordering>(&mut self, compare: F) {
self.vek.sort_unstable_by(compare)
}
pub fn clear(&mut self) {
self.vek.clear();
}
}
impl<TyIx, Ty> Index<TyIx> for TypedIxVec<TyIx, Ty>
where
TyIx: Into<u32>,
{
type Output = Ty;
fn index(&self, ix: TyIx) -> &Ty {
&self.vek[ix.into() as usize]
}
}
impl<TyIx, Ty> IndexMut<TyIx> for TypedIxVec<TyIx, Ty>
where
TyIx: Into<u32>,
{
fn index_mut(&mut self, ix: TyIx) -> &mut Ty {
&mut self.vek[ix.into() as usize]
}
}
impl<TyIx, Ty> Clone for TypedIxVec<TyIx, Ty>
where
Ty: Clone,
{
// This is only needed for debug printing.
fn clone(&self) -> Self {
Self {
vek: self.vek.clone(),
ty_ix: PhantomData::<TyIx>,
}
}
}
//=============================================================================
macro_rules! generate_boilerplate {
($TypeIx:ident, $Type:ident, $PrintingPrefix:expr) => {
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
// Firstly, the indexing type (TypeIx)
pub enum $TypeIx {
$TypeIx(u32),
}
impl $TypeIx {
#[allow(dead_code)]
#[inline(always)]
pub fn new(n: u32) -> Self {
debug_assert!(n != u32::max_value());
Self::$TypeIx(n)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn max_value() -> Self {
Self::$TypeIx(u32::max_value() - 1)
}
#[allow(dead_code)]
#[inline(always)]
pub const fn min_value() -> Self {
Self::$TypeIx(u32::min_value())
}
#[allow(dead_code)]
#[inline(always)]
pub const fn invalid_value() -> Self {
Self::$TypeIx(u32::max_value())
}
#[allow(dead_code)]
#[inline(always)]
pub fn is_valid(self) -> bool {
self != Self::invalid_value()
}
#[allow(dead_code)]
#[inline(always)]
pub fn is_invalid(self) -> bool {
self == Self::invalid_value()
}
#[allow(dead_code)]
#[inline(always)]
pub fn get(self) -> u32 {
debug_assert!(self.is_valid());
match self {
$TypeIx::$TypeIx(n) => n,
}
}
#[allow(dead_code)]
#[inline(always)]
pub fn plus(self, delta: u32) -> $TypeIx {
debug_assert!(self.is_valid());
$TypeIx::$TypeIx(self.get() + delta)
}
#[allow(dead_code)]
#[inline(always)]
pub fn minus(self, delta: u32) -> $TypeIx {
debug_assert!(self.is_valid());
$TypeIx::$TypeIx(self.get() - delta)
}
#[allow(dead_code)]
pub fn dotdot(&self, last_plus1: $TypeIx) -> Range<$TypeIx> {
debug_assert!(self.is_valid());
let len = (last_plus1.get() - self.get()) as usize;
Range::new(*self, len)
}
}
impl fmt::Debug for $TypeIx {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
if self.is_invalid() {
write!(fmt, "{}<NONE>", $PrintingPrefix)
} else {
write!(fmt, "{}{}", $PrintingPrefix, &self.get())
}
}
}
impl PlusN for $TypeIx {
#[inline(always)]
fn plus_n(&self, n: usize) -> Self {
debug_assert!(self.is_valid());
self.plus(n as u32)
}
}
impl Into<u32> for $TypeIx {
#[inline(always)]
fn into(self) -> u32 {
debug_assert!(self.is_valid());
self.get()
}
}
impl Zero for $TypeIx {
#[inline(always)]
fn zero() -> Self {
$TypeIx::new(0)
}
}
};
}
generate_boilerplate!(InstIx, Inst, "i");
generate_boilerplate!(BlockIx, Block, "b");
generate_boilerplate!(RangeFragIx, RangeFrag, "f");
generate_boilerplate!(VirtualRangeIx, VirtualRange, "vr");
generate_boilerplate!(RealRangeIx, RealRange, "rr");
impl<TyIx, Ty: fmt::Debug> fmt::Debug for TypedIxVec<TyIx, Ty> {
// This is something of a hack in the sense that it doesn't show the
// indices, but oh well ..
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{:?}", self.vek)
}
}
//=============================================================================
// Definitions of register classes, registers and stack slots, and printing
// thereof. Note that this register class definition is meant to be
// architecture-independent: it simply captures common integer/float/vector
// types that machines are likely to use. TODO: investigate whether we need a
// more flexible register-class definition mechanism.
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum RegClass {
I32 = 0,
F32 = 1,
I64 = 2,
F64 = 3,
V128 = 4,
INVALID = 5,
}
/// The number of register classes that exist.
/// N.B.: must be <= 7 (fit into 3 bits) for 32-bit VReg/RReg packed format!
pub const NUM_REG_CLASSES: usize = 5;
impl RegClass {
/// Convert a register class to a u32 index.
#[inline(always)]
pub fn rc_to_u32(self) -> u32 {
self as u32
}
/// Convert a register class to a usize index.
#[inline(always)]
pub fn rc_to_usize(self) -> usize {
self as usize
}
/// Construct a register class from a u32.
#[inline(always)]
pub fn rc_from_u32(rc: u32) -> RegClass {
match rc {
0 => RegClass::I32,
1 => RegClass::F32,
2 => RegClass::I64,
3 => RegClass::F64,
4 => RegClass::V128,
_ => panic!("RegClass::rc_from_u32"),
}
}
pub fn short_name(self) -> &'static str {
match self {
RegClass::I32 => "I",
RegClass::I64 => "J",
RegClass::F32 => "F",
RegClass::F64 => "D",
RegClass::V128 => "V",
RegClass::INVALID => panic!("RegClass::short_name"),
}
}
pub fn long_name(self) -> &'static str {
match self {
RegClass::I32 => "I32",
RegClass::I64 => "I32",
RegClass::F32 => "F32",
RegClass::F64 => "F32",
RegClass::V128 => "V128",
RegClass::INVALID => panic!("RegClass::long_name"),
}
}
}
// Reg represents both real and virtual registers. For compactness and speed,
// these fields are packed into a single u32. The format is:
//
// Virtual Reg: 1 rc:3 index:28
// Real Reg: 0 rc:3 uu:12 enc:8 index:8
//
// `rc` is the register class. `uu` means "unused". `enc` is the hardware
// encoding for the reg. `index` is a zero based index which has the
// following meanings:
//
// * for a Virtual Reg, `index` is just the virtual register number.
// * for a Real Reg, `index` is the entry number in the associated
// `RealRegUniverse`.
//
// This scheme gives us:
//
// * a compact (32-bit) representation for registers
// * fast equality tests for registers
// * ability to handle up to 2^28 (268.4 million) virtual regs per function
// * ability to handle up to 8 register classes
// * ability to handle targets with up to 256 real registers
// * ability to emit instructions containing real regs without having to
// look up encodings in any side tables, since a real reg carries its
// encoding
// * efficient bitsets and arrays of virtual registers, since each has a
// zero-based index baked in
// * efficient bitsets and arrays of real registers, for the same reason
//
// This scheme makes it impossible to represent overlapping register classes,
// but that doesn't seem important. AFAIK only ARM32 VFP/Neon has that.
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Reg {
bits: u32,
}
static INVALID_REG: u32 = 0xffffffff;
impl Reg {
#[inline(always)]
pub fn is_virtual(self) -> bool {
self.is_valid() && (self.bits & 0x8000_0000) != 0
}
#[inline(always)]
pub fn is_real(self) -> bool {
self.is_valid() && (self.bits & 0x8000_0000) == 0
}
pub fn new_real(rc: RegClass, enc: u8, index: u8) -> Self {
let n = (0 << 31) | (rc.rc_to_u32() << 28) | ((enc as u32) << 8) | ((index as u32) << 0);
Reg { bits: n }
}
pub fn new_virtual(rc: RegClass, index: u32) -> Self {
if index >= (1 << 28) {
panic!("new_virtual(): index too large");
}
let n = (1 << 31) | (rc.rc_to_u32() << 28) | (index << 0);
Reg { bits: n }
}
pub fn invalid() -> Reg {
Reg { bits: INVALID_REG }
}
#[inline(always)]
pub fn is_invalid(self) -> bool {
self.bits == INVALID_REG
}
#[inline(always)]
pub fn is_valid(self) -> bool {
!self.is_invalid()
}
pub fn is_virtual_or_invalid(self) -> bool {
self.is_virtual() || self.is_invalid()
}
pub fn is_real_or_invalid(self) -> bool {
self.is_real() || self.is_invalid()
}
#[inline(always)]
pub fn get_class(self) -> RegClass {
debug_assert!(self.is_valid());
RegClass::rc_from_u32((self.bits >> 28) & 0x7)
}
#[inline(always)]
pub fn get_index(self) -> usize {
debug_assert!(self.is_valid());
// Return type is usize because typically we will want to use the
// result for indexing into a Vec
if self.is_virtual() {
(self.bits & ((1 << 28) - 1)) as usize
} else {
(self.bits & ((1 << 8) - 1)) as usize
}
}
#[inline(always)]
pub fn get_index_u32(self) -> u32 {
debug_assert!(self.is_valid());
if self.is_virtual() {
self.bits & ((1 << 28) - 1)
} else {
self.bits & ((1 << 8) - 1)
}
}
pub fn get_hw_encoding(self) -> u8 {
debug_assert!(self.is_valid());
if self.is_virtual() {
panic!("Virtual register does not have a hardware encoding")
} else {
((self.bits >> 8) & ((1 << 8) - 1)) as u8
}
}
pub fn as_virtual_reg(self) -> Option<VirtualReg> {
// Allow invalid virtual regs as well.
if self.is_virtual_or_invalid() {
Some(VirtualReg { reg: self })
} else {
None
}
}
pub fn as_real_reg(self) -> Option<RealReg> {
// Allow invalid real regs as well.
if self.is_real_or_invalid() {
Some(RealReg { reg: self })
} else {
None
}
}
pub fn show_with_rru(self, univ: &RealRegUniverse) -> String {
if self.is_real() && self.get_index() < univ.regs.len() {
univ.regs[self.get_index()].1.clone()
} else if self.is_valid() {
format!("{:?}", self)
} else {
"rINVALID".to_string()
}
}
}
impl fmt::Debug for Reg {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
if self.is_valid() {
write!(
fmt,
"{}{}{}",
if self.is_virtual() { "v" } else { "r" },
self.get_index(),
self.get_class().short_name(),
)
} else {
write!(fmt, "rINVALID")
}
}
}
// RealReg and VirtualReg are merely wrappers around Reg, which try to
// dynamically ensure that they are really wrapping the correct flavour of
// register.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct RealReg {
reg: Reg,
}
impl Reg /* !!not RealReg!! */ {
pub fn to_real_reg(self) -> RealReg {
if self.is_virtual() {
panic!("Reg::to_real_reg: this is a virtual register")
} else {
RealReg { reg: self }
}
}
}
impl RealReg {
pub fn get_class(self) -> RegClass {
self.reg.get_class()
}
#[inline(always)]
pub fn get_index(self) -> usize {
self.reg.get_index()
}
pub fn get_hw_encoding(self) -> usize {
self.reg.get_hw_encoding() as usize
}
#[inline(always)]
pub fn to_reg(self) -> Reg {
self.reg
}
pub fn invalid() -> RealReg {
RealReg {
reg: Reg::invalid(),
}
}
pub fn is_valid(self) -> bool {
self.reg.is_valid()
}
pub fn is_invalid(self) -> bool {
self.reg.is_invalid()
}
pub fn maybe_valid(self) -> Option<RealReg> {
if self == RealReg::invalid() {
None
} else {
Some(self)
}
}
}
impl fmt::Debug for RealReg {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{:?}", self.reg)
}
}
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct VirtualReg {
reg: Reg,
}
impl Reg /* !!not VirtualReg!! */ {
#[inline(always)]
pub fn to_virtual_reg(self) -> VirtualReg {
if self.is_virtual() {
VirtualReg { reg: self }
} else {
panic!("Reg::to_virtual_reg: this is a real register")
}
}
}
impl VirtualReg {
pub fn get_class(self) -> RegClass {
self.reg.get_class()
}
#[inline(always)]
pub fn get_index(self) -> usize {
self.reg.get_index()
}
#[inline(always)]
pub fn to_reg(self) -> Reg {
self.reg
}
pub fn invalid() -> VirtualReg {
VirtualReg {
reg: Reg::invalid(),
}
}
pub fn is_valid(self) -> bool {
self.reg.is_valid()
}
pub fn is_invalid(self) -> bool {
self.reg.is_invalid()
}
pub fn maybe_valid(self) -> Option<VirtualReg> {
if self == VirtualReg::invalid() {
None
} else {
Some(self)
}
}
}
impl fmt::Debug for VirtualReg {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{:?}", self.reg)
}
}
impl Reg {
/// Apply a vreg-rreg mapping to a Reg. This is used for registers used in
/// a read-role.
pub fn apply_uses<RUM: RegUsageMapper>(&mut self, mapper: &RUM) {
self.apply(|vreg| mapper.get_use(vreg));
}
/// Apply a vreg-rreg mapping to a Reg. This is used for registers used in
/// a write-role.
pub fn apply_defs<RUM: RegUsageMapper>(&mut self, mapper: &RUM) {
self.apply(|vreg| mapper.get_def(vreg));
}
/// Apply a vreg-rreg mapping to a Reg. This is used for registers used in
/// a modify-role.
pub fn apply_mods<RUM: RegUsageMapper>(&mut self, mapper: &RUM) {
self.apply(|vreg| mapper.get_mod(vreg));
}
fn apply<F: Fn(VirtualReg) -> Option<RealReg>>(&mut self, f: F) {
if let Some(vreg) = self.as_virtual_reg() {
if let Some(rreg) = f(vreg) {
debug_assert!(rreg.get_class() == vreg.get_class());
*self = rreg.to_reg();
} else {
panic!("Reg::apply: no mapping for {:?}", self);
}
}
}
}
/// A "writable register". This is a zero-cost wrapper that can be used to
/// create a distinction, at the Rust type level, between a plain "register"
/// and a "writable register".
///
/// Only structs that implement the `WritableBase` trait can be wrapped with
/// `Writable`. These are the Reg, RealReg and VirtualReg data structures only,
/// since `WritableBase` is not exposed to end users.
///
/// Writable<..> can be used by the client to ensure that, internally, it only
/// generates instructions that write to registers that should be written. The
/// `InstRegUses` below, which must be implemented for every instruction,
/// requires a `Writable<Reg>` (not just `Reg`) in its `defined` and
/// `modified` sets. While we cannot hide the constructor for `Writable<..>`
/// from certain parts of the client while exposing it to others, the client
/// *can* adopt conventions to e.g. only ever call the Writable<..>
/// constructor from its central vreg-management logic, and decide that any
/// invocation of this constructor in a machine backend (for example) is an
/// error.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Writable<R: WritableBase> {
reg: R,
}
/// Set of requirements for types that can be wrapped in Writable.
pub trait WritableBase:
Copy + Clone + PartialEq + Eq + Hash + PartialOrd + Ord + fmt::Debug
{
}
impl WritableBase for Reg {}
impl WritableBase for RealReg {}
impl WritableBase for VirtualReg {}
impl<R: WritableBase> Writable<R> {
/// Create a Writable<R> from an R. The client should carefully audit where
/// it calls this constructor to ensure correctness (see `Writable<..>`
/// struct documentation).
#[inline(always)]
pub fn from_reg(reg: R) -> Writable<R> {
Writable { reg }
}
/// Get the inner Reg.
pub fn to_reg(&self) -> R {
self.reg
}
pub fn map<F, U>(&self, f: F) -> Writable<U>
where
F: Fn(R) -> U,
U: WritableBase,
{
Writable { reg: f(self.reg) }
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct SpillSlot(u32);
impl SpillSlot {
#[inline(always)]
pub fn new(n: u32) -> Self {
Self(n)
}
#[inline(always)]
pub fn get(self) -> u32 {
self.0
}
#[inline(always)]
pub fn get_usize(self) -> usize {
self.get() as usize
}
pub fn round_up(self, num_slots: u32) -> SpillSlot {
assert!(num_slots > 0);
SpillSlot::new((self.get() + num_slots - 1) / num_slots * num_slots)
}
pub fn inc(self, num_slots: u32) -> SpillSlot {
SpillSlot::new(self.get() + num_slots)
}
}
impl fmt::Debug for SpillSlot {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "S{}", self.get())
}
}
//=============================================================================
// Register uses: low level interface
// This minimal struct is visible from outside the regalloc.rs interface. It
// is intended to be a safe wrapper around `RegVecs`, which isn't externally
// visible. It is used to collect unsanitized reg use info from client
// instructions.
pub struct RegUsageCollector<'a> {
pub reg_vecs: &'a mut RegVecs,
}
impl<'a> RegUsageCollector<'a> {
pub fn new(reg_vecs: &'a mut RegVecs) -> Self {
Self { reg_vecs }
}
pub fn add_use(&mut self, r: Reg) {
self.reg_vecs.uses.push(r);
}
pub fn add_uses(&mut self, regs: &[Reg]) {
self.reg_vecs.uses.extend(regs.iter());
}
pub fn add_def(&mut self, r: Writable<Reg>) {
self.reg_vecs.defs.push(r.to_reg());
}
pub fn add_defs(&mut self, regs: &[Writable<Reg>]) {
self.reg_vecs.defs.reserve(regs.len());
for r in regs {
self.reg_vecs.defs.push(r.to_reg());
}
}
pub fn add_mod(&mut self, r: Writable<Reg>) {
self.reg_vecs.mods.push(r.to_reg());
}
pub fn add_mods(&mut self, regs: &[Writable<Reg>]) {
self.reg_vecs.mods.reserve(regs.len());
for r in regs {
self.reg_vecs.mods.push(r.to_reg());
}
}
// The presence of the following two is a hack, needed to support fuzzing
// in the test framework. Real clients should not call them.
pub fn get_use_def_mod_vecs_test_framework_only(&self) -> (Vec<Reg>, Vec<Reg>, Vec<Reg>) {
(
self.reg_vecs.uses.clone(),
self.reg_vecs.defs.clone(),
self.reg_vecs.mods.clone(),
)
}
pub fn get_empty_reg_vecs_test_framework_only(sanitized: bool) -> RegVecs {
RegVecs::new(sanitized)
}
}
// Everything else is not visible outside the regalloc.rs interface.
// There is one of these per function. Note that `defs` and `mods` lose the
// `Writable` constraint at this point. This is for convenience of having all
// three vectors be the same type, but comes at the cost of the loss of being
// able to differentiate readonly vs read/write registers in the Rust type
// system.
#[derive(Debug)]
pub struct RegVecs {
pub uses: Vec<Reg>,
pub defs: Vec<Reg>,
pub mods: Vec<Reg>,
sanitized: bool,
}
impl RegVecs {
pub fn new(sanitized: bool) -> Self {
Self {
uses: vec![],
defs: vec![],
mods: vec![],
sanitized,
}
}
pub fn is_sanitized(&self) -> bool {
self.sanitized
}
pub fn set_sanitized(&mut self, sanitized: bool) {
self.sanitized = sanitized;
}
pub fn clear(&mut self) {
self.uses.clear();
self.defs.clear();
self.mods.clear();
}
}
// There is one of these per insn, so try and keep it as compact as possible.
// I think this should fit in 16 bytes.
#[derive(Clone, Debug)]
pub struct RegVecBounds {
// These are the group start indices in RegVecs.{uses, defs, mods}.
pub uses_start: u32,
pub defs_start: u32,
pub mods_start: u32,
// And these are the group lengths. This does limit each instruction to
// mentioning only 256 registers in any group, but that does not seem like a
// problem.
pub uses_len: u8,
pub defs_len: u8,
pub mods_len: u8,
}
impl RegVecBounds {
pub fn new() -> Self {
Self {
uses_start: 0,
defs_start: 0,
mods_start: 0,
uses_len: 0,
defs_len: 0,
mods_len: 0,
}
}
}
// This is the primary structure. We compute just one of these for an entire
// function.
pub struct RegVecsAndBounds {
// The three vectors of registers. These can be arbitrarily long.
pub vecs: RegVecs,
// Admin info which tells us the location, for each insn, of its register
// groups in `vecs`.
pub bounds: TypedIxVec<InstIx, RegVecBounds>,
}
impl RegVecsAndBounds {
pub fn new(vecs: RegVecs, bounds: TypedIxVec<InstIx, RegVecBounds>) -> Self {
Self { vecs, bounds }
}
pub fn is_sanitized(&self) -> bool {
self.vecs.sanitized
}
#[allow(dead_code)] // XXX for some reason, Rustc 1.43.1 thinks this is currently unused.
pub fn num_insns(&self) -> u32 {
self.bounds.len()
}
}
//=============================================================================
// Register uses: convenience interface
// Some call sites want to get reg use information as three Sets. This is a
// "convenience facility" which is easier to use but much slower than working
// with a whole-function `RegVecsAndBounds`. It shouldn't be used on critical
// paths.
#[derive(Debug)]
pub struct RegSets {
pub uses: Set<Reg>, // registers that are read.
pub defs: Set<Reg>, // registers that are written.
pub mods: Set<Reg>, // registers that are modified.
sanitized: bool,
}
impl RegSets {
pub fn new(sanitized: bool) -> Self {
Self {
uses: Set::<Reg>::empty(),
defs: Set::<Reg>::empty(),
mods: Set::<Reg>::empty(),
sanitized,
}
}
pub fn is_sanitized(&self) -> bool {
self.sanitized
}
}
impl RegVecsAndBounds {
/* !!not RegSets!! */
#[inline(never)]
// Convenience function. Try to avoid using this.
pub fn get_reg_sets_for_iix(&self, iix: InstIx) -> RegSets {
let bounds = &self.bounds[iix];
let mut regsets = RegSets::new(self.vecs.sanitized);
for i in bounds.uses_start as usize..bounds.uses_start as usize + bounds.uses_len as usize {
regsets.uses.insert(self.vecs.uses[i]);
}
for i in bounds.defs_start as usize..bounds.defs_start as usize + bounds.defs_len as usize {
regsets.defs.insert(self.vecs.defs[i]);
}
for i in bounds.mods_start as usize..bounds.mods_start as usize + bounds.mods_len as usize {
regsets.mods.insert(self.vecs.mods[i]);
}
regsets
}
}
//=============================================================================
// Definitions of the "real register universe".
// A "Real Register Universe" is a read-only structure that contains all
// information about real registers on a given host. It serves several
// purposes:
//
// * defines the mapping from real register indices to the registers
// themselves
//
// * defines the size of the initial section of that mapping that is available
// to the register allocator for use, so that it can treat the registers
// under its control as a zero based, contiguous array. This is important
// for its efficiency.
//
// * gives meaning to Set<RealReg>, which otherwise would merely be a bunch of
// bits.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct RealRegUniverse {
// The registers themselves. All must be real registers, and all must
// have their index number (.get_index()) equal to the array index here,
// since this is the only place where we map index numbers to actual
// registers.
pub regs: Vec<(RealReg, String)>,
// This is the size of the initial section of `regs` that is available to
// the allocator. It must be <= `regs`.len().
pub allocable: usize,
// Information about groups of allocable registers. Used to quickly address
// only a group of allocable registers belonging to the same register class.
// Indexes into `allocable_by_class` are RegClass values, such as
// RegClass::F32. If the resulting entry is `None` then there are no
// registers in that class. Otherwise the value is a `RegClassInfo`, which
// provides a register range and possibly information about fixed uses.
pub allocable_by_class: [Option<RegClassInfo>; NUM_REG_CLASSES],
}
/// Information about a single register class in the `RealRegUniverse`.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct RegClassInfo {
// Range of allocatable registers in this register class, in terms of
// register indices.
//
// A range (first, last) specifies the range of entries in
// `RealRegUniverse.regs` corresponding to that class. The range includes
// both `first` and `last`.
//
// In all cases, `last` must be < `RealRegUniverse.allocable`. In other
// words, all ranges together in `allocable_by_class` must describe only the
// allocable prefix of `regs`.
//
// For example, let's say
// allocable_by_class[RegClass::F32] ==
// Some(RegClassInfo { first: 10, last: 14, .. })
// Then regs[10], regs[11], regs[12], regs[13], and regs[14] give all
// registers of register class RegClass::F32.
//
// The effect of the above is that registers in `regs` must form
// contiguous groups. This is checked by RealRegUniverse::check_is_sane().
pub first: usize,
pub last: usize,
// A register, if any, that is *guaranteed* not to be used as a fixed use
// in any code, and so that the register allocator can statically reserve
// for its own use as a temporary. Some register allocators may need such
// a register for various maneuvers, for example a spillslot-to-spillslot
// move when no (other) registers are free.
pub suggested_scratch: Option<usize>,
}
impl RealRegUniverse {
/// Show it in a pretty way.
pub fn show(&self) -> Vec<String> {
let mut res = vec![];
// Show the allocables
for class_num in 0..NUM_REG_CLASSES {
let class_info = match &self.allocable_by_class[class_num] {
None => continue,
Some(info) => info,
};
let class = RegClass::rc_from_u32(class_num as u32);
let mut class_str = "class ".to_string()
+ &class.long_name().to_string()
+ &"(".to_string()
+ &class.short_name().to_string()
+ &") at ".to_string();
class_str = class_str + &format!("[{} .. {}]: ", class_info.first, class_info.last);
for ix in class_info.first..=class_info.last {
class_str = class_str + &self.regs[ix].1;
if let Some(suggested_ix) = class_info.suggested_scratch {
if ix == suggested_ix {
class_str = class_str + "*";
}
}
class_str = class_str + " ";
}
res.push(class_str);
}
// And the non-allocables
if self.allocable < self.regs.len() {
let mut stragglers = format!(
"not allocable at [{} .. {}]: ",
self.allocable,
self.regs.len() - 1
);
for ix in self.allocable..self.regs.len() {
stragglers = stragglers + &self.regs[ix].1 + &" ".to_string();
}
res.push(stragglers);
}
res
}
/// Check that the given universe satisfies various invariants, and panic
/// if not. All the invariants are important.
pub fn check_is_sane(&self) {
let regs_len = self.regs.len();
let regs_allocable = self.allocable;
// The universe must contain at most 256 registers. That's because
// `Reg` only has an 8-bit index value field, so if the universe
// contained more than 256 registers, we'd never be able to index into
// entries 256 and above. This is no limitation in practice since all
// targets we're interested in contain (many) fewer than 256 regs in
// total.
let mut ok = regs_len <= 256;
// The number of allocable registers must not exceed the number of
// `regs` presented. In general it will be less, since the universe
// will list some registers (stack pointer, etc) which are not
// available for allocation.
if ok {
ok = regs_allocable <= regs_len;
}
// All registers must have an index value which points back at the
// `regs` slot they are in. Also they really must be real regs.
if ok {
for i in 0..regs_len {
let (reg, _name) = &self.regs[i];
if ok && (reg.to_reg().is_virtual() || reg.get_index() != i) {
ok = false;
}
}
}
// The allocatable regclass groupings defined by `allocable_first` and
// `allocable_last` must be contiguous.
if ok {
let mut regclass_used = [false; NUM_REG_CLASSES];
for rc in 0..NUM_REG_CLASSES {
regclass_used[rc] = false;
}
for i in 0..regs_allocable {
let (reg, _name) = &self.regs[i];
let rc = reg.get_class().rc_to_u32() as usize;
regclass_used[rc] = true;
}
// Scan forward through each grouping, checking that the listed
// registers really are of the claimed class. Also count the
// total number visited. This seems a fairly reliable way to
// ensure that the groupings cover all allocated registers exactly
// once, and that all classes are contiguous groups.
let mut regs_visited = 0;
for rc in 0..NUM_REG_CLASSES {
match &self.allocable_by_class[rc] {
&None => {
if regclass_used[rc] {
ok = false;
}
}
&Some(RegClassInfo {
first,
last,
suggested_scratch,
}) => {
if !regclass_used[rc] {
ok = false;
}
if ok {
for i in first..last + 1 {
let (reg, _name) = &self.regs[i];
if ok && RegClass::rc_from_u32(rc as u32) != reg.get_class() {
ok = false;
}
regs_visited += 1;
}
}
if ok {
if let Some(s) = suggested_scratch {
if s < first || s > last {
ok = false;
}
}
}
}
}
}
if ok && regs_visited != regs_allocable {
ok = false;
}
}
// So finally ..
if !ok {
panic!("RealRegUniverse::check_is_sane: invalid RealRegUniverse");
}
}
}
//=============================================================================
// Representing and printing of live range fragments.
#[derive(Copy, Clone, Hash, PartialEq, Eq, Ord)]
// There are four "points" within an instruction that are of interest, and
// these have a total ordering: R < U < D < S. They are:
//
// * R(eload): this is where any reload insns for the insn itself are
// considered to live.
//
// * U(se): this is where the insn is considered to use values from those of
// its register operands that appear in a Read or Modify role.
//
// * D(ef): this is where the insn is considered to define new values for
// those of its register operands that appear in a Write or Modify role.
//
// * S(pill): this is where any spill insns for the insn itself are considered
// to live.
//
// Instructions in the incoming Func may only exist at the U and D points,
// and so their associated live range fragments will only mention the U and D
// points. However, when adding spill code, we need a way to represent live
// ranges involving the added spill and reload insns, in which case R and S
// come into play:
//
// * A reload for instruction i is considered to be live from i.R to i.U.
//
// * A spill for instruction i is considered to be live from i.D to i.S.
pub enum Point {
// The values here are important. Don't change them.
Reload = 0,
Use = 1,
Def = 2,
Spill = 3,
}
impl Point {
#[inline(always)]
pub fn is_reload(self) -> bool {
match self {
Point::Reload => true,
_ => false,
}
}
#[inline(always)]
pub fn is_use(self) -> bool {
match self {
Point::Use => true,
_ => false,
}
}
#[inline(always)]
pub fn is_def(self) -> bool {
match self {
Point::Def => true,
_ => false,
}
}
#[inline(always)]
pub fn is_spill(self) -> bool {
match self {
Point::Spill => true,
_ => false,
}
}
#[inline(always)]
pub fn is_use_or_def(self) -> bool {
self.is_use() || self.is_def()
}
}
impl PartialOrd for Point {
// In short .. R < U < D < S. This is probably what would be #derive'd
// anyway, but we need to be sure.
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
(*self as u32).partial_cmp(&(*other as u32))
}
}
// See comments below on `RangeFrag` for the meaning of `InstPoint`.
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct InstPoint {
/// This is conceptually:
/// pub iix: InstIx,
/// pub pt: Point,
///
/// but packed into a single 32 bit word, so as
/// (1) to ensure it is only 32 bits (and hence to guarantee that `RangeFrag`
/// is 64 bits), and
/// (2) to make it possible to implement `PartialOrd` using `PartialOrd`
/// directly on 32 bit words (and hence we let it be derived).
///
/// This has the format:
/// InstIx as bits 31:2, Point as bits 1:0.
///
/// It does give the slight limitation that all InstIxs must be < 2^30, but
/// that's hardly a big deal: the analysis module rejects any input with 2^24
/// or more Insns.
///
/// Do not access this directly:
bits: u32,
}
impl InstPoint {
#[inline(always)]
pub fn new(iix: InstIx, pt: Point) -> Self {
let iix_n = iix.get();
assert!(iix_n < 0x4000_0000u32);
let pt_n = pt as u32;
InstPoint {
bits: (iix_n << 2) | pt_n,
}
}
#[inline(always)]
pub fn iix(self) -> InstIx {
InstIx::new(self.bits >> 2)
}
#[inline(always)]
pub fn pt(self) -> Point {
match self.bits & 3 {
0 => Point::Reload,
1 => Point::Use,
2 => Point::Def,
3 => Point::Spill,
// This can never happen, but rustc doesn't seem to know that.
_ => panic!("InstPt::pt: unreachable case"),
}
}
#[inline(always)]
pub fn set_iix(&mut self, iix: InstIx) {
let iix_n = iix.get();
assert!(iix_n < 0x4000_0000u32);
self.bits = (iix_n << 2) | (self.bits & 3);
}
#[inline(always)]
pub fn set_pt(&mut self, pt: Point) {
self.bits = (self.bits & 0xFFFF_FFFCu32) | pt as u32;
}
#[inline(always)]
pub fn new_reload(iix: InstIx) -> Self {
InstPoint::new(iix, Point::Reload)
}
#[inline(always)]
pub fn new_use(iix: InstIx) -> Self {
InstPoint::new(iix, Point::Use)
}
#[inline(always)]
pub fn new_def(iix: InstIx) -> Self {
InstPoint::new(iix, Point::Def)
}
#[inline(always)]
pub fn new_spill(iix: InstIx) -> Self {
InstPoint::new(iix, Point::Spill)
}
#[inline(always)]
pub fn invalid_value() -> Self {
Self {
bits: 0xFFFF_FFFFu32,
}
}
#[inline(always)]
pub fn max_value() -> Self {
Self {
bits: 0xFFFF_FFFFu32,
}
}
#[inline(always)]
pub fn min_value() -> Self {
Self { bits: 0u32 }
}
}
impl fmt::Debug for InstPoint {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"{:?}{}",
self.iix(),
match self.pt() {
Point::Reload => ".r",
Point::Use => ".u",
Point::Def => ".d",
Point::Spill => ".s",
}
)
}
}
//=============================================================================
// Live Range Fragments, and their metrics
// A Live Range Fragment (RangeFrag) describes a consecutive sequence of one or
// more instructions, in which a Reg is "live". The sequence must exist
// entirely inside only one basic block.
//
// However, merely indicating the start and end instruction numbers isn't
// enough: we must also include a "Use or Def" indication. These indicate two
// different "points" within each instruction: the Use position, where
// incoming registers are read, and the Def position, where outgoing registers
// are written. The Use position is considered to come before the Def
// position, as described for `Point` above.
//
// When we come to generate spill/restore live ranges, Point::S and Point::R
// also come into play. Live ranges (and hence, RangeFrags) that do not perform
// spills or restores should not use either of Point::S or Point::R.
//
// The set of positions denoted by
//
// {0 .. #insns-1} x {Reload point, Use point, Def point, Spill point}
//
// is exactly the set of positions that we need to keep track of when mapping
// live ranges to registers. This the reason for the type InstPoint. Note
// that InstPoint values have a total ordering, at least within a single basic
// block: the insn number is used as the primary key, and the Point part is
// the secondary key, with Reload < Use < Def < Spill.
#[derive(Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct RangeFrag {
pub first: InstPoint,
pub last: InstPoint,
}
impl fmt::Debug for RangeFrag {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "(RF: {:?}-{:?})", self.first, self.last)
}
}
impl RangeFrag {
#[allow(dead_code)] // XXX for some reason, Rustc 1.43.1 thinks this is unused.
pub fn new(first: InstPoint, last: InstPoint) -> Self {
debug_assert!(first <= last);
RangeFrag { first, last }
}
pub fn invalid_value() -> Self {
Self {
first: InstPoint::invalid_value(),
last: InstPoint::invalid_value(),
}
}
pub fn new_with_metrics<F: Function>(
f: &F,
bix: BlockIx,
first: InstPoint,
last: InstPoint,
count: u16,
) -> (Self, RangeFragMetrics) {
debug_assert!(f.block_insns(bix).len() >= 1);
debug_assert!(f.block_insns(bix).contains(first.iix()));
debug_assert!(f.block_insns(bix).contains(last.iix()));
debug_assert!(first <= last);
if first == last {
debug_assert!(count == 1);
}
let first_iix_in_block = f.block_insns(bix).first();
let last_iix_in_block = f.block_insns(bix).last();
let first_pt_in_block = InstPoint::new_use(first_iix_in_block);
let last_pt_in_block = InstPoint::new_def(last_iix_in_block);
let kind = match (first == first_pt_in_block, last == last_pt_in_block) {
(false, false) => RangeFragKind::Local,
(false, true) => RangeFragKind::LiveOut,
(true, false) => RangeFragKind::LiveIn,
(true, true) => RangeFragKind::Thru,
};
(
RangeFrag { first, last },
RangeFragMetrics { bix, kind, count },
)
}
}
// Comparison of RangeFrags. They form a partial order.
pub fn cmp_range_frags(f1: &RangeFrag, f2: &RangeFrag) -> Option<Ordering> {
if f1.last < f2.first {
return Some(Ordering::Less);
}
if f1.first > f2.last {
return Some(Ordering::Greater);
}
if f1.first == f2.first && f1.last == f2.last {
return Some(Ordering::Equal);
}
None
}
impl RangeFrag {
pub fn contains(&self, ipt: &InstPoint) -> bool {
self.first <= *ipt && *ipt <= self.last
}
}
// A handy summary hint for a RangeFrag. Note that none of these are correct
// if the RangeFrag has been extended so as to cover multiple basic blocks.
// But that ("RangeFrag compression") is something done locally within each
// algorithm (BT and LSRA). The analysis-phase output will not include any
// such compressed RangeFrags.
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum RangeFragKind {
Local, // Fragment exists entirely inside one block
LiveIn, // Fragment is live in to a block, but ends inside it
LiveOut, // Fragment is live out of a block, but starts inside it
Thru, // Fragment is live through the block (starts and ends outside it)
}
impl fmt::Debug for RangeFragKind {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self {
RangeFragKind::Local => write!(fmt, "Local"),
RangeFragKind::LiveIn => write!(fmt, "LiveIn"),
RangeFragKind::LiveOut => write!(fmt, "LiveOut"),
RangeFragKind::Thru => write!(fmt, "Thru"),
}
}
}
// `RangeFrags` resulting from the initial analysis phase (analysis_data_flow.rs)
// exist only within single basic blocks, and therefore have some associated
// metrics, held by `RangeFragMetrics`:
//
// * a `count` field, which is a u16 indicating how often the associated storage
// unit (Reg) is mentioned inside the RangeFrag. It is assumed that the RangeFrag
// is associated with some Reg. If not, the `count` field is meaningless. This
// field has no effect on the correctness of the resulting allocation. It is used
// however in the estimation of `VirtualRange` spill costs, which are important
// for prioritising which `VirtualRange`s get assigned a register vs which have
// to be spilled.
//
// * `bix` field, which indicates which `Block` the fragment exists in. This
// field is actually redundant, since the containing `Block` can be inferred,
// laboriously, from the associated `RangeFrag`s `first` and `last` fields,
// providing you have an `InstIxToBlockIx` mapping table to hand. It is included
// here for convenience.
//
// * `kind` is another convenience field, indicating how the range is included
// within its owning block.
//
// The analysis phase (fn `deref_and_compress_sorted_range_frag_ixs`)
// compresses ranges and as a result breaks the invariant that a `RangeFrag`
// exists only within a single `Block`. For a `RangeFrag` spanning multiple
// `Block`s, all three `RangeFragMetric` fields are meaningless. This is the
// reason for separating `RangeFrag` and `RangeFragMetrics` -- so that it is
// possible to merge `RangeFrag`s without being forced to create fake values
// for the metrics fields.
#[derive(Clone, PartialEq)]
pub struct RangeFragMetrics {
pub bix: BlockIx,
pub kind: RangeFragKind,
pub count: u16,
}
impl fmt::Debug for RangeFragMetrics {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"(RFM: {:?}, count={}, {:?})",
self.kind, self.count, self.bix
)
}
}
//=============================================================================
// Vectors of RangeFragIxs, sorted so that the associated RangeFrags are in
// ascending order, per their InstPoint fields. The associated RangeFrags may
// not overlap.
//
// The "fragment environment" (usually called "frag_env"), to which the
// RangeFragIxs refer, is not stored here.
#[derive(Clone)]
pub struct SortedRangeFragIxs {
pub frag_ixs: SmallVec<[RangeFragIx; 4]>,
}
impl fmt::Debug for SortedRangeFragIxs {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
self.frag_ixs.fmt(fmt)
}
}
impl SortedRangeFragIxs {
pub(crate) fn check(&self, fenv: &TypedIxVec<RangeFragIx, RangeFrag>) {
for i in 1..self.frag_ixs.len() {
let prev_frag = &fenv[self.frag_ixs[i - 1]];
let this_frag = &fenv[self.frag_ixs[i]];
if cmp_range_frags(prev_frag, this_frag) != Some(Ordering::Less) {
panic!("SortedRangeFragIxs::check: vector not ok");
}
}
}
pub fn sort(&mut self, fenv: &TypedIxVec<RangeFragIx, RangeFrag>) {
self.frag_ixs.sort_unstable_by(|fix_a, fix_b| {
match cmp_range_frags(&fenv[*fix_a], &fenv[*fix_b]) {
Some(Ordering::Less) => Ordering::Less,
Some(Ordering::Greater) => Ordering::Greater,
Some(Ordering::Equal) | None => {
panic!("SortedRangeFragIxs::sort: overlapping Frags!")
}
}
});
}
pub fn new(
frag_ixs: SmallVec<[RangeFragIx; 4]>,
fenv: &TypedIxVec<RangeFragIx, RangeFrag>,
) -> Self {
let mut res = SortedRangeFragIxs { frag_ixs };
// check the source is ordered, and clone (or sort it)
res.sort(fenv);
res.check(fenv);
res
}
pub fn unit(fix: RangeFragIx, fenv: &TypedIxVec<RangeFragIx, RangeFrag>) -> Self {
let mut res = SortedRangeFragIxs {
frag_ixs: SmallVec::<[RangeFragIx; 4]>::new(),
};
res.frag_ixs.push(fix);
res.check(fenv);
res
}
/// Does this sorted list of range fragments contain the given instruction point?
pub fn contains_pt(&self, fenv: &TypedIxVec<RangeFragIx, RangeFrag>, pt: InstPoint) -> bool {
self.frag_ixs
.binary_search_by(|&ix| {
let frag = &fenv[ix];
if pt < frag.first {
Ordering::Greater
} else if pt >= frag.first && pt <= frag.last {
Ordering::Equal
} else {
Ordering::Less
}
})
.is_ok()
}
}
//=============================================================================
// Vectors of RangeFrags, sorted so that they are in ascending order, per
// their InstPoint fields. The RangeFrags may not overlap.
#[derive(Clone)]
pub struct SortedRangeFrags {
pub frags: SmallVec<[RangeFrag; 4]>,
}
impl fmt::Debug for SortedRangeFrags {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
self.frags.fmt(fmt)
}
}
impl SortedRangeFrags {
pub fn unit(frag: RangeFrag) -> Self {
let mut res = SortedRangeFrags {
frags: SmallVec::<[RangeFrag; 4]>::new(),
};
res.frags.push(frag);
res
}
pub fn empty() -> Self {
Self {
frags: SmallVec::<[RangeFrag; 4]>::new(),
}
}
pub fn overlaps(&self, other: &Self) -> bool {
// Since both vectors are sorted and individually non-overlapping, we
// can establish that they are mutually non-overlapping by walking
// them simultaneously and checking, at each step, that there is a
// unique "next lowest" frag available.
let frags1 = &self.frags;
let frags2 = &other.frags;
let n1 = frags1.len();
let n2 = frags2.len();
let mut c1 = 0;
let mut c2 = 0;
loop {
if c1 >= n1 || c2 >= n2 {
// We made it to the end of one (or both) vectors without
// finding any conflicts.
return false; // "no overlaps"
}
let f1 = &frags1[c1];
let f2 = &frags2[c2];
match cmp_range_frags(f1, f2) {
Some(Ordering::Less) => c1 += 1,
Some(Ordering::Greater) => c2 += 1,
_ => {
// There's no unique "next frag" -- either they are
// identical, or they overlap. So we're done.
return true; // "there's an overlap"
}
}
}
}
/// Does this sorted list of range fragments contain the given instruction point?
pub fn contains_pt(&self, pt: InstPoint) -> bool {
self.frags
.binary_search_by(|frag| {
if pt < frag.first {
Ordering::Greater
} else if pt >= frag.first && pt <= frag.last {
Ordering::Equal
} else {
Ordering::Less
}
})
.is_ok()
}
}
//=============================================================================
// Representing spill costs. A spill cost can either be infinite, in which
// case the associated VirtualRange may not be spilled, because it's already a
// spill/reload range. Or it can be finite, in which case it must be a 32-bit
// floating point number, which is (in the IEEE754 meaning of the terms)
// non-infinite, non-NaN and it must be non negative. In fact it's
// meaningless for a VLR to have a zero spill cost (how could that really be
// the case?) but we allow it here for convenience.
#[derive(Copy, Clone)]
pub enum SpillCost {
Infinite, // Infinite, positive
Finite(f32), // Finite, non-negative
}
impl fmt::Debug for SpillCost {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self {
SpillCost::Infinite => write!(fmt, "INFINITY"),
SpillCost::Finite(c) => write!(fmt, "{:<.3}", c),
}
}
}
impl SpillCost {
#[inline(always)]
pub fn zero() -> Self {
SpillCost::Finite(0.0)
}
#[inline(always)]
pub fn infinite() -> Self {
SpillCost::Infinite
}
#[inline(always)]
pub fn finite(cost: f32) -> Self {
// "`is_normal` returns true if the number is neither zero, infinite,
// subnormal, or NaN."
assert!(cost.is_normal() || cost == 0.0);
// And also it can't be negative.
assert!(cost >= 0.0);
// Somewhat arbitrarily ..
assert!(cost < 1e18);
SpillCost::Finite(cost)
}
#[inline(always)]
pub fn is_zero(&self) -> bool {
match self {
SpillCost::Infinite => false,
SpillCost::Finite(c) => *c == 0.0,
}
}
#[inline(always)]
pub fn is_infinite(&self) -> bool {
match self {
SpillCost::Infinite => true,
SpillCost::Finite(_) => false,
}
}
#[inline(always)]
pub fn is_finite(&self) -> bool {
!self.is_infinite()
}
#[inline(always)]
pub fn is_less_than(&self, other: &Self) -> bool {
match (self, other) {
// Dubious .. both are infinity
(SpillCost::Infinite, SpillCost::Infinite) => false,
// finite < inf
(SpillCost::Finite(_), SpillCost::Infinite) => true,
// inf is not < finite
(SpillCost::Infinite, SpillCost::Finite(_)) => false,
// straightforward
(SpillCost::Finite(c1), SpillCost::Finite(c2)) => c1 < c2,
}
}
#[inline(always)]
pub fn add(&mut self, other: &Self) {
match (*self, other) {
(SpillCost::Finite(c1), SpillCost::Finite(c2)) => {
// The 10^18 limit above gives us a lot of headroom here, since max
// f32 is around 10^37.
*self = SpillCost::Finite(c1 + c2);
}
(_, _) => {
// All other cases produce an infinity.
*self = SpillCost::Infinite;
}
}
}
}
//=============================================================================
// Representing and printing live ranges. These are represented by two
// different but closely related types, RealRange and VirtualRange.
// RealRanges are live ranges for real regs (RealRegs). VirtualRanges are
// live ranges for virtual regs (VirtualRegs). VirtualRanges are the
// fundamental unit of allocation.
//
// A RealRange pairs a RealReg with a vector of RangeFragIxs in which it is
// live. The RangeFragIxs are indices into some vector of RangeFrags (a
// "fragment environment", 'fenv'), which is not specified here. They are
// sorted so as to give ascending order to the RangeFrags which they refer to.
//
// A VirtualRange pairs a VirtualReg with a vector of RangeFrags in which it
// is live. Same scheme as for a RealRange, except it avoids the overhead of
// having to indirect into the fragment environment.
//
// VirtualRanges also contain metrics:
//
// * `size` is the number of instructions in total spanned by the LR. It must
// not be zero.
//
// * `total cost` is an abstractified measure of the cost of the LR. Each
// basic block in which the range exists gives a contribution to the `total
// cost`, which is the number of times the register is mentioned in this
// block, multiplied by the estimated execution frequency for the block.
//
// * `spill_cost` is an abstractified measure of the cost of spilling the LR,
// and is the `total cost` divided by the `size`. The only constraint
// (w.r.t. correctness) is that normal LRs have a `Some` value, whilst
// `None` is reserved for live ranges created for spills and reloads and
// interpreted to mean "infinity". This is needed to guarantee that
// allocation can always succeed in the worst case, in which all of the
// original live ranges of the program are spilled.
//
// RealRanges don't carry any metrics info since we are not trying to allocate
// them. We merely need to work around them.
//
// I find it helpful to think of a live range, both RealRange and
// VirtualRange, as a "renaming equivalence class". That is, if you rename
// `reg` at some point inside `sorted_frags`, then you must rename *all*
// occurrences of `reg` inside `sorted_frags`, since otherwise the program will
// no longer work.
#[derive(Clone)]
pub struct RealRange {
pub rreg: RealReg,
pub sorted_frags: SortedRangeFragIxs,
pub is_ref: bool,
}
impl fmt::Debug for RealRange {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"(RR: {:?}{}, {:?})",
self.rreg,
if self.is_ref { " REF" } else { "" },
self.sorted_frags
)
}
}
impl RealRange {
pub fn show_with_rru(&self, univ: &RealRegUniverse) -> String {
format!(
"(RR: {}{}, {:?})",
self.rreg.to_reg().show_with_rru(univ),
if self.is_ref { " REF" } else { "" },
self.sorted_frags
)
}
}
// VirtualRanges are live ranges for virtual regs (VirtualRegs). This does
// carry metrics info and also the identity of the RealReg to which it
// eventually got allocated. (Or in the backtracking allocator, the identity
// of the RealReg to which it is *currently* assigned; that may be undone at
// some later point.)
#[derive(Clone)]
pub struct VirtualRange {
pub vreg: VirtualReg,
pub rreg: Option<RealReg>,
pub sorted_frags: SortedRangeFrags,
pub is_ref: bool,
pub size: u16,
pub total_cost: u32,
pub spill_cost: SpillCost, // == total_cost / size
}
impl VirtualRange {
pub fn overlaps(&self, other: &Self) -> bool {
self.sorted_frags.overlaps(&other.sorted_frags)
}
}
impl fmt::Debug for VirtualRange {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"(VR: {:?}{},",
self.vreg,
if self.is_ref { " REF" } else { "" }
)?;
if self.rreg.is_some() {
write!(fmt, " -> {:?}", self.rreg.unwrap())?;
}
write!(
fmt,
" sz={}, tc={}, sc={:?}, {:?})",
self.size, self.total_cost, self.spill_cost, self.sorted_frags
)
}
}
//=============================================================================
// Some auxiliary/miscellaneous data structures that are useful: RegToRangesMaps
// Mappings from RealRegs and VirtualRegs to the sets of RealRanges and VirtualRanges that
// belong to them. These are needed for BT's coalescing analysis and for the dataflow analysis
// that supports reftype handling.
pub struct RegToRangesMaps {
// This maps RealReg indices to the set of RealRangeIxs for that RealReg. Valid indices are
// real register indices for all non-sanitised real regs; that is,
// 0 .. RealRegUniverse::allocable, for ".." having the Rust meaning. The Vecs of
// RealRangeIxs are duplicate-free. The SmallVec capacity of 6 was chosen after quite
// some profiling, of CL/x64/newBE compiling ZenGarden.wasm -- a huge input, with many
// relatively small functions. Profiling was performed in August 2020, using Valgrind/DHAT.
pub rreg_to_rlrs_map: Vec</*real reg ix, */ SmallVec<[RealRangeIx; 6]>>,
// This maps VirtualReg indices to the set of VirtualRangeIxs for that VirtualReg. Valid
// indices are 0 .. Function::get_num_vregs(). For functions mostly translated from SSA,
// most VirtualRegs will have just one VirtualRange, and there are a lot of VirtualRegs in
// general. So SmallVec is a definite benefit here.
pub vreg_to_vlrs_map: Vec</*virtual reg ix, */ SmallVec<[VirtualRangeIx; 3]>>,
// As an optimisation heuristic for BT's coalescing analysis, these indicate which
// real/virtual registers have "many" `RangeFrag`s in their live ranges. For some
// definition of "many", perhaps "200 or more". This is not important for overall
// allocation result or correctness: it merely allows the coalescing analysis to switch
// between two search strategies, one of which is fast for regs with few `RangeFrag`s (the
// vast majority) and the other of which has better asymptotic behaviour for regs with many
// `RangeFrag`s (in order to keep out of trouble on some pathological inputs). These
// vectors are duplicate-free but the elements may be in an arbitrary order.
pub rregs_with_many_frags: Vec<u32 /*RealReg index*/>,
pub vregs_with_many_frags: Vec<u32 /*VirtualReg index*/>,
// And this indicates what the thresh is actually set to. A frag will be in
// `r/vregs_with_many_frags` if it has `many_frags_thresh` or more RangeFrags.
pub many_frags_thresh: usize,
}
//=============================================================================
// Some auxiliary/miscellaneous data structures that are useful: MoveInfo
// `MoveInfoElem` holds info about the two registers connected a move: the source and destination
// of the move, the insn performing the move, and the estimated execution frequency of the
// containing block. In `MoveInfo`, the moves are not presented in any particular order, but
// they are duplicate-free in that each such instruction will be listed only once.
pub struct MoveInfoElem {
pub dst: Reg,
pub src: Reg,
pub iix: InstIx,
pub est_freq: u32,
}
pub struct MoveInfo {
pub moves: Vec<MoveInfoElem>,
}
// Something that can be either a VirtualRangeIx or a RealRangeIx, whilst still being 32 bits
// (by stealing one bit from those spaces). Note that the resulting thing no longer denotes a
// contiguous index space, and so it has a name that indicates it is an identifier rather than
// an index.
#[derive(PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Copy)]
pub struct RangeId {
// 1 X--(31)--X is a RealRangeIx with value X--(31)--X
// 0 X--(31)--X is a VirtualRangeIx with value X--(31)--X
bits: u32,
}
impl RangeId {
#[inline(always)]
pub fn new_real(rlrix: RealRangeIx) -> Self {
let n = rlrix.get();
assert!(n <= 0x7FFF_FFFF);
Self {
bits: n | 0x8000_0000,
}
}
#[inline(always)]
pub fn new_virtual(vlrix: VirtualRangeIx) -> Self {
let n = vlrix.get();
assert!(n <= 0x7FFF_FFFF);
Self { bits: n }
}
#[inline(always)]
pub fn is_real(self) -> bool {
self.bits & 0x8000_0000 != 0
}
#[allow(dead_code)]
#[inline(always)]
pub fn is_virtual(self) -> bool {
self.bits & 0x8000_0000 == 0
}
#[inline(always)]
pub fn to_real(self) -> RealRangeIx {
assert!(self.bits & 0x8000_0000 != 0);
RealRangeIx::new(self.bits & 0x7FFF_FFFF)
}
#[inline(always)]
pub fn to_virtual(self) -> VirtualRangeIx {
assert!(self.bits & 0x8000_0000 == 0);
VirtualRangeIx::new(self.bits)
}
#[inline(always)]
pub fn invalid_value() -> Self {
// Real, and inplausibly huge
Self { bits: 0xFFFF_FFFF }
}
}
impl fmt::Debug for RangeId {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
if self.is_real() {
self.to_real().fmt(fmt)
} else {
self.to_virtual().fmt(fmt)
}
}
}
//=============================================================================
// Test cases
// sewardj 2020Mar04: these are commented out for now, as they no longer
// compile. They may be useful later though, once BT acquires an interval
// tree implementation for its CommitmentMap.
/*
#[test]
fn test_sorted_frag_ranges() {
// Create a RangeFrag and RangeFragIx from two InstPoints.
fn gen_fix(
fenv: &mut TypedIxVec<RangeFragIx, RangeFrag>, first: InstPoint,
last: InstPoint,
) -> RangeFragIx {
assert!(first <= last);
let res = RangeFragIx::new(fenv.len() as u32);
let frag = RangeFrag {
bix: BlockIx::new(123),
kind: RangeFragKind::Local,
first,
last,
count: 0,
};
fenv.push(frag);
res
}
fn get_range_frag(
fenv: &TypedIxVec<RangeFragIx, RangeFrag>, fix: RangeFragIx,
) -> &RangeFrag {
&fenv[fix]
}
// Structural equality, at least. Not equality in the sense of
// deferencing the contained RangeFragIxes.
fn sorted_range_eq(
fixs1: &SortedRangeFragIxs, fixs2: &SortedRangeFragIxs,
) -> bool {
if fixs1.frag_ixs.len() != fixs2.frag_ixs.len() {
return false;
}
for (mf1, mf2) in fixs1.frag_ixs.iter().zip(&fixs2.frag_ixs) {
if mf1 != mf2 {
return false;
}
}
true
}
let iix3 = InstIx::new(3);
let iix4 = InstIx::new(4);
let iix5 = InstIx::new(5);
let iix6 = InstIx::new(6);
let iix7 = InstIx::new(7);
let iix10 = InstIx::new(10);
let iix12 = InstIx::new(12);
let fp_3u = InstPoint::new_use(iix3);
let fp_3d = InstPoint::new_def(iix3);
let fp_4u = InstPoint::new_use(iix4);
let fp_5u = InstPoint::new_use(iix5);
let fp_5d = InstPoint::new_def(iix5);
let fp_6u = InstPoint::new_use(iix6);
let fp_6d = InstPoint::new_def(iix6);
let fp_7u = InstPoint::new_use(iix7);
let fp_7d = InstPoint::new_def(iix7);
let fp_10u = InstPoint::new_use(iix10);
let fp_12u = InstPoint::new_use(iix12);
let mut fenv = TypedIxVec::<RangeFragIx, RangeFrag>::new();
let fix_3u = gen_fix(&mut fenv, fp_3u, fp_3u);
let fix_3d = gen_fix(&mut fenv, fp_3d, fp_3d);
let fix_4u = gen_fix(&mut fenv, fp_4u, fp_4u);
let fix_3u_5u = gen_fix(&mut fenv, fp_3u, fp_5u);
let fix_3d_5d = gen_fix(&mut fenv, fp_3d, fp_5d);
let fix_3d_5u = gen_fix(&mut fenv, fp_3d, fp_5u);
let fix_3u_5d = gen_fix(&mut fenv, fp_3u, fp_5d);
let fix_6u_6d = gen_fix(&mut fenv, fp_6u, fp_6d);
let fix_7u_7d = gen_fix(&mut fenv, fp_7u, fp_7d);
let fix_10u = gen_fix(&mut fenv, fp_10u, fp_10u);
let fix_12u = gen_fix(&mut fenv, fp_12u, fp_12u);
// Boundary checks for point ranges, 3u vs 3d
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_3u),
get_range_frag(&fenv, fix_3u)
) == Some(Ordering::Equal)
);
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_3u),
get_range_frag(&fenv, fix_3d)
) == Some(Ordering::Less)
);
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_3d),
get_range_frag(&fenv, fix_3u)
) == Some(Ordering::Greater)
);
// Boundary checks for point ranges, 3d vs 4u
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_3d),
get_range_frag(&fenv, fix_3d)
) == Some(Ordering::Equal)
);
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_3d),
get_range_frag(&fenv, fix_4u)
) == Some(Ordering::Less)
);
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_4u),
get_range_frag(&fenv, fix_3d)
) == Some(Ordering::Greater)
);
// Partially overlapping
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_3d_5d),
get_range_frag(&fenv, fix_3u_5u)
) == None
);
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_3u_5u),
get_range_frag(&fenv, fix_3d_5d)
) == None
);
// Completely overlapping: one contained within the other
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_3d_5u),
get_range_frag(&fenv, fix_3u_5d)
) == None
);
assert!(
cmp_range_frags(
get_range_frag(&fenv, fix_3u_5d),
get_range_frag(&fenv, fix_3d_5u)
) == None
);
// Create a SortedRangeFragIxs from a bunch of RangeFrag indices
fn new_sorted_frag_ranges(
fenv: &TypedIxVec<RangeFragIx, RangeFrag>, frags: &Vec<RangeFragIx>,
) -> SortedRangeFragIxs {
SortedRangeFragIxs::new(&frags, fenv)
}
// Construction tests
// These fail due to overlap
//let _ = new_sorted_frag_ranges(&fenv, &vec![fix_3u_3u, fix_3u_3u]);
//let _ = new_sorted_frag_ranges(&fenv, &vec![fix_3u_5u, fix_3d_5d]);
// These fail due to not being in order
//let _ = new_sorted_frag_ranges(&fenv, &vec![fix_4u_4u, fix_3u_3u]);
// Simple non-overlap tests for add()
let smf_empty = new_sorted_frag_ranges(&fenv, &vec![]);
let smf_6_7_10 =
new_sorted_frag_ranges(&fenv, &vec![fix_6u_6d, fix_7u_7d, fix_10u]);
let smf_3_12 = new_sorted_frag_ranges(&fenv, &vec![fix_3u, fix_12u]);
let smf_3_6_7_10_12 = new_sorted_frag_ranges(
&fenv,
&vec![fix_3u, fix_6u_6d, fix_7u_7d, fix_10u, fix_12u],
);
let mut tmp;
tmp = smf_empty.clone();
tmp.add(&smf_empty, &fenv);
assert!(sorted_range_eq(&tmp, &smf_empty));
tmp = smf_3_12.clone();
tmp.add(&smf_empty, &fenv);
assert!(sorted_range_eq(&tmp, &smf_3_12));
tmp = smf_empty.clone();
tmp.add(&smf_3_12, &fenv);
assert!(sorted_range_eq(&tmp, &smf_3_12));
tmp = smf_6_7_10.clone();
tmp.add(&smf_3_12, &fenv);
assert!(sorted_range_eq(&tmp, &smf_3_6_7_10_12));
tmp = smf_3_12.clone();
tmp.add(&smf_6_7_10, &fenv);
assert!(sorted_range_eq(&tmp, &smf_3_6_7_10_12));
// Tests for can_add()
assert!(true == smf_empty.can_add(&smf_empty, &fenv));
assert!(true == smf_empty.can_add(&smf_3_12, &fenv));
assert!(true == smf_3_12.can_add(&smf_empty, &fenv));
assert!(false == smf_3_12.can_add(&smf_3_12, &fenv));
assert!(true == smf_6_7_10.can_add(&smf_3_12, &fenv));
assert!(true == smf_3_12.can_add(&smf_6_7_10, &fenv));
// Tests for del()
let smf_6_7 = new_sorted_frag_ranges(&fenv, &vec![fix_6u_6d, fix_7u_7d]);
let smf_6_10 = new_sorted_frag_ranges(&fenv, &vec![fix_6u_6d, fix_10u]);
let smf_7 = new_sorted_frag_ranges(&fenv, &vec![fix_7u_7d]);
let smf_10 = new_sorted_frag_ranges(&fenv, &vec![fix_10u]);
tmp = smf_empty.clone();
tmp.del(&smf_empty, &fenv);
assert!(sorted_range_eq(&tmp, &smf_empty));
tmp = smf_3_12.clone();
tmp.del(&smf_empty, &fenv);
assert!(sorted_range_eq(&tmp, &smf_3_12));
tmp = smf_empty.clone();
tmp.del(&smf_3_12, &fenv);
assert!(sorted_range_eq(&tmp, &smf_empty));
tmp = smf_6_7_10.clone();
tmp.del(&smf_3_12, &fenv);
assert!(sorted_range_eq(&tmp, &smf_6_7_10));
tmp = smf_3_12.clone();
tmp.del(&smf_6_7_10, &fenv);
assert!(sorted_range_eq(&tmp, &smf_3_12));
tmp = smf_6_7_10.clone();
tmp.del(&smf_6_7, &fenv);
assert!(sorted_range_eq(&tmp, &smf_10));
tmp = smf_6_7_10.clone();
tmp.del(&smf_10, &fenv);
assert!(sorted_range_eq(&tmp, &smf_6_7));
tmp = smf_6_7_10.clone();
tmp.del(&smf_7, &fenv);
assert!(sorted_range_eq(&tmp, &smf_6_10));
// Tests for can_add_if_we_first_del()
let smf_10_12 = new_sorted_frag_ranges(&fenv, &vec![fix_10u, fix_12u]);
assert!(
true
== smf_6_7_10
.can_add_if_we_first_del(/*d=*/ &smf_10_12, /*a=*/ &smf_3_12, &fenv)
);
assert!(
false
== smf_6_7_10
.can_add_if_we_first_del(/*d=*/ &smf_10_12, /*a=*/ &smf_7, &fenv)
);
}
*/