1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
//! Data structures for the whole crate.

use rustc_hash::FxHashMap;
use rustc_hash::FxHashSet;
use smallvec::SmallVec;

use std::cmp::Ordering;
use std::collections::VecDeque;
use std::fmt;
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::Index;
use std::ops::IndexMut;
use std::slice::{Iter, IterMut};

use crate::{Function, RegUsageMapper};

#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};

//=============================================================================
// Queues

pub type Queue<T> = VecDeque<T>;

//=============================================================================
// Maps

// NOTE: plain HashMap is nondeterministic, even in a single-threaded
// scenario, which can make debugging code that uses it really confusing.  So
// we use FxHashMap instead, as it *is* deterministic, and, allegedly, faster
// too.
pub type Map<K, V> = FxHashMap<K, V>;

//=============================================================================
// Sets of things

// Same comment as above for FxHashMap.
#[derive(Clone)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Set<T: Eq + Hash> {
    set: FxHashSet<T>,
}

impl<T: Eq + Ord + Hash + Copy + fmt::Debug> Set<T> {
    #[inline(never)]
    pub fn empty() -> Self {
        Self {
            set: FxHashSet::<T>::default(),
        }
    }

    #[inline(never)]
    pub fn unit(item: T) -> Self {
        let mut s = Self::empty();
        s.insert(item);
        s
    }

    #[inline(never)]
    pub fn two(item1: T, item2: T) -> Self {
        let mut s = Self::empty();
        s.insert(item1);
        s.insert(item2);
        s
    }

    #[inline(never)]
    pub fn card(&self) -> usize {
        self.set.len()
    }

    #[inline(never)]
    pub fn insert(&mut self, item: T) {
        self.set.insert(item);
    }

    #[inline(never)]
    pub fn delete(&mut self, item: T) {
        self.set.remove(&item);
    }

    #[inline(never)]
    pub fn is_empty(&self) -> bool {
        self.set.is_empty()
    }

    #[inline(never)]
    pub fn contains(&self, item: T) -> bool {
        self.set.contains(&item)
    }

    #[inline(never)]
    pub fn intersect(&mut self, other: &Self) {
        let mut res = FxHashSet::<T>::default();
        for item in self.set.iter() {
            if other.set.contains(item) {
                res.insert(*item);
            }
        }
        self.set = res;
    }

    #[inline(never)]
    pub fn union(&mut self, other: &Self) {
        for item in other.set.iter() {
            self.set.insert(*item);
        }
    }

    #[inline(never)]
    pub fn remove(&mut self, other: &Self) {
        for item in other.set.iter() {
            self.set.remove(item);
        }
    }

    #[inline(never)]
    pub fn intersects(&self, other: &Self) -> bool {
        !self.set.is_disjoint(&other.set)
    }

    #[inline(never)]
    pub fn is_subset_of(&self, other: &Self) -> bool {
        self.set.is_subset(&other.set)
    }

    #[inline(never)]
    pub fn to_vec(&self) -> Vec<T> {
        let mut res = Vec::<T>::new();
        for item in self.set.iter() {
            res.push(*item)
        }
        // Don't delete this.  It is important.
        res.sort_unstable();
        res
    }

    #[inline(never)]
    pub fn from_vec(vec: Vec<T>) -> Self {
        let mut res = Set::<T>::empty();
        for x in vec {
            res.insert(x);
        }
        res
    }

    #[inline(never)]
    pub fn equals(&self, other: &Self) -> bool {
        self.set == other.set
    }

    #[inline(never)]
    pub fn retain<F>(&mut self, f: F)
    where
        F: FnMut(&T) -> bool,
    {
        self.set.retain(f)
    }

    #[inline(never)]
    pub fn map<F, U>(&self, f: F) -> Set<U>
    where
        F: Fn(&T) -> U,
        U: Eq + Ord + Hash + Copy + fmt::Debug,
    {
        Set {
            set: self.set.iter().map(f).collect(),
        }
    }

    #[inline(never)]
    pub fn filter_map<F, U>(&self, f: F) -> Set<U>
    where
        F: Fn(&T) -> Option<U>,
        U: Eq + Ord + Hash + Copy + fmt::Debug,
    {
        Set {
            set: self.set.iter().filter_map(f).collect(),
        }
    }

    pub fn clear(&mut self) {
        self.set.clear();
    }
}

impl<T: Eq + Ord + Hash + Copy + fmt::Debug> fmt::Debug for Set<T> {
    #[inline(never)]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        // Print the elements in some way which depends only on what is
        // present in the set, and not on any other factor.  In particular,
        // <Debug for FxHashSet> has been observed to to print the elements
        // of a two element set in both orders on different occasions.
        let sorted_vec = self.to_vec();
        let mut s = "{".to_string();
        for i in 0..sorted_vec.len() {
            if i > 0 {
                s = s + &", ".to_string();
            }
            s = s + &format!("{:?}", &sorted_vec[i]);
        }
        s = s + &"}".to_string();
        write!(fmt, "{}", s)
    }
}

pub struct SetIter<'a, T> {
    set_iter: std::collections::hash_set::Iter<'a, T>,
}
impl<T: Eq + Hash> Set<T> {
    pub fn iter(&self) -> SetIter<T> {
        SetIter {
            set_iter: self.set.iter(),
        }
    }
}
impl<'a, T> Iterator for SetIter<'a, T> {
    type Item = &'a T;
    fn next(&mut self) -> Option<Self::Item> {
        self.set_iter.next()
    }
}

//=============================================================================
// Iteration boilerplate for entities.  The only purpose of this is to support
// constructions of the form
//
//   for ent in startEnt .dotdot( endPlus1Ent ) {
//   }
//
// until such time as `trait Step` is available in stable Rust.  At that point
// `fn dotdot` and all of the following can be removed, and the loops
// rewritten using the standard syntax:
//
//   for ent in startEnt .. endPlus1Ent {
//   }

pub trait Zero {
    fn zero() -> Self;
}

pub trait PlusN {
    fn plus_n(&self, n: usize) -> Self;
}

#[derive(Clone, Copy)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Range<T> {
    first: T,
    len: usize,
}

impl<T: Copy + PartialOrd + PlusN> IntoIterator for Range<T> {
    type Item = T;
    type IntoIter = MyIterator<T>;
    fn into_iter(self) -> Self::IntoIter {
        MyIterator {
            range: self,
            next: self.first,
        }
    }
}

impl<T: Copy + Eq + Ord + PlusN> Range<T> {
    /// Create a new range object.
    pub fn new(from: T, len: usize) -> Range<T> {
        Range { first: from, len }
    }

    pub fn start(&self) -> T {
        self.first
    }

    pub fn first(&self) -> T {
        assert!(self.len() > 0);
        self.start()
    }

    pub fn last(&self) -> T {
        assert!(self.len() > 0);
        self.start().plus_n(self.len() - 1)
    }

    pub fn last_plus1(&self) -> T {
        self.start().plus_n(self.len())
    }

    pub fn len(&self) -> usize {
        self.len
    }

    pub fn contains(&self, t: T) -> bool {
        t >= self.first && t < self.first.plus_n(self.len)
    }
}

pub struct MyIterator<T> {
    range: Range<T>,
    next: T,
}
impl<T: Copy + PartialOrd + PlusN> Iterator for MyIterator<T> {
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        if self.next >= self.range.first.plus_n(self.range.len) {
            None
        } else {
            let res = Some(self.next);
            self.next = self.next.plus_n(1);
            res
        }
    }
}

//=============================================================================
// Vectors where both the index and element types can be specified (and at
// most 2^32-1 elems can be stored.  What if this overflows?)

pub struct TypedIxVec<TyIx, Ty> {
    vek: Vec<Ty>,
    ty_ix: PhantomData<TyIx>,
}

impl<TyIx, Ty> TypedIxVec<TyIx, Ty>
where
    Ty: Clone,
    TyIx: Copy + Eq + Ord + Zero + PlusN + Into<u32>,
{
    pub fn new() -> Self {
        Self {
            vek: Vec::new(),
            ty_ix: PhantomData::<TyIx>,
        }
    }
    pub fn from_vec(vek: Vec<Ty>) -> Self {
        Self {
            vek,
            ty_ix: PhantomData::<TyIx>,
        }
    }
    pub fn append(&mut self, other: &mut TypedIxVec<TyIx, Ty>) {
        // FIXME what if this overflows?
        self.vek.append(&mut other.vek);
    }
    pub fn iter(&self) -> Iter<Ty> {
        self.vek.iter()
    }
    pub fn iter_mut(&mut self) -> IterMut<Ty> {
        self.vek.iter_mut()
    }
    pub fn len(&self) -> u32 {
        // FIXME what if this overflows?
        self.vek.len() as u32
    }
    pub fn push(&mut self, item: Ty) {
        // FIXME what if this overflows?
        self.vek.push(item);
    }
    pub fn resize(&mut self, new_len: u32, value: Ty) {
        self.vek.resize(new_len as usize, value);
    }
    pub fn reserve(&mut self, additional: usize) {
        self.vek.reserve(additional);
    }
    pub fn elems(&self) -> &[Ty] {
        &self.vek[..]
    }
    pub fn elems_mut(&mut self) -> &mut [Ty] {
        &mut self.vek[..]
    }
    pub fn range(&self) -> Range<TyIx> {
        Range::new(TyIx::zero(), self.len() as usize)
    }
    pub fn remove(&mut self, idx: TyIx) -> Ty {
        self.vek.remove(idx.into() as usize)
    }
    pub fn sort_by<F: FnMut(&Ty, &Ty) -> Ordering>(&mut self, compare: F) {
        self.vek.sort_by(compare)
    }
    pub fn sort_unstable_by<F: FnMut(&Ty, &Ty) -> Ordering>(&mut self, compare: F) {
        self.vek.sort_unstable_by(compare)
    }
    pub fn clear(&mut self) {
        self.vek.clear();
    }
}

impl<TyIx, Ty> Index<TyIx> for TypedIxVec<TyIx, Ty>
where
    TyIx: Into<u32>,
{
    type Output = Ty;
    fn index(&self, ix: TyIx) -> &Ty {
        &self.vek[ix.into() as usize]
    }
}

impl<TyIx, Ty> IndexMut<TyIx> for TypedIxVec<TyIx, Ty>
where
    TyIx: Into<u32>,
{
    fn index_mut(&mut self, ix: TyIx) -> &mut Ty {
        &mut self.vek[ix.into() as usize]
    }
}

impl<TyIx, Ty> Clone for TypedIxVec<TyIx, Ty>
where
    Ty: Clone,
{
    // This is only needed for debug printing.
    fn clone(&self) -> Self {
        Self {
            vek: self.vek.clone(),
            ty_ix: PhantomData::<TyIx>,
        }
    }
}

//=============================================================================

macro_rules! generate_boilerplate {
    ($TypeIx:ident, $Type:ident, $PrintingPrefix:expr) => {
        #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
        #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
        // Firstly, the indexing type (TypeIx)
        pub enum $TypeIx {
            $TypeIx(u32),
        }
        impl $TypeIx {
            #[allow(dead_code)]
            #[inline(always)]
            pub fn new(n: u32) -> Self {
                debug_assert!(n != u32::max_value());
                Self::$TypeIx(n)
            }
            #[allow(dead_code)]
            #[inline(always)]
            pub const fn max_value() -> Self {
                Self::$TypeIx(u32::max_value() - 1)
            }
            #[allow(dead_code)]
            #[inline(always)]
            pub const fn min_value() -> Self {
                Self::$TypeIx(u32::min_value())
            }
            #[allow(dead_code)]
            #[inline(always)]
            pub const fn invalid_value() -> Self {
                Self::$TypeIx(u32::max_value())
            }
            #[allow(dead_code)]
            #[inline(always)]
            pub fn is_valid(self) -> bool {
                self != Self::invalid_value()
            }
            #[allow(dead_code)]
            #[inline(always)]
            pub fn is_invalid(self) -> bool {
                self == Self::invalid_value()
            }
            #[allow(dead_code)]
            #[inline(always)]
            pub fn get(self) -> u32 {
                debug_assert!(self.is_valid());
                match self {
                    $TypeIx::$TypeIx(n) => n,
                }
            }
            #[allow(dead_code)]
            #[inline(always)]
            pub fn plus(self, delta: u32) -> $TypeIx {
                debug_assert!(self.is_valid());
                $TypeIx::$TypeIx(self.get() + delta)
            }
            #[allow(dead_code)]
            #[inline(always)]
            pub fn minus(self, delta: u32) -> $TypeIx {
                debug_assert!(self.is_valid());
                $TypeIx::$TypeIx(self.get() - delta)
            }
            #[allow(dead_code)]
            pub fn dotdot(&self, last_plus1: $TypeIx) -> Range<$TypeIx> {
                debug_assert!(self.is_valid());
                let len = (last_plus1.get() - self.get()) as usize;
                Range::new(*self, len)
            }
        }
        impl fmt::Debug for $TypeIx {
            fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
                if self.is_invalid() {
                    write!(fmt, "{}<NONE>", $PrintingPrefix)
                } else {
                    write!(fmt, "{}{}", $PrintingPrefix, &self.get())
                }
            }
        }
        impl PlusN for $TypeIx {
            #[inline(always)]
            fn plus_n(&self, n: usize) -> Self {
                debug_assert!(self.is_valid());
                self.plus(n as u32)
            }
        }
        impl Into<u32> for $TypeIx {
            #[inline(always)]
            fn into(self) -> u32 {
                debug_assert!(self.is_valid());
                self.get()
            }
        }
        impl Zero for $TypeIx {
            #[inline(always)]
            fn zero() -> Self {
                $TypeIx::new(0)
            }
        }
    };
}

generate_boilerplate!(InstIx, Inst, "i");

generate_boilerplate!(BlockIx, Block, "b");

generate_boilerplate!(RangeFragIx, RangeFrag, "f");

generate_boilerplate!(VirtualRangeIx, VirtualRange, "vr");

generate_boilerplate!(RealRangeIx, RealRange, "rr");

impl<TyIx, Ty: fmt::Debug> fmt::Debug for TypedIxVec<TyIx, Ty> {
    // This is something of a hack in the sense that it doesn't show the
    // indices, but oh well ..
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{:?}", self.vek)
    }
}

//=============================================================================
// Definitions of register classes, registers and stack slots, and printing
// thereof. Note that this register class definition is meant to be
// architecture-independent: it simply captures common integer/float/vector
// types that machines are likely to use. TODO: investigate whether we need a
// more flexible register-class definition mechanism.

#[derive(PartialEq, Eq, Debug, Clone, Copy)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum RegClass {
    I32 = 0,
    F32 = 1,
    I64 = 2,
    F64 = 3,
    V128 = 4,
    INVALID = 5,
}

/// The number of register classes that exist.
/// N.B.: must be <= 7 (fit into 3 bits) for 32-bit VReg/RReg packed format!
pub const NUM_REG_CLASSES: usize = 5;

impl RegClass {
    /// Convert a register class to a u32 index.
    #[inline(always)]
    pub fn rc_to_u32(self) -> u32 {
        self as u32
    }
    /// Convert a register class to a usize index.
    #[inline(always)]
    pub fn rc_to_usize(self) -> usize {
        self as usize
    }
    /// Construct a register class from a u32.
    #[inline(always)]
    pub fn rc_from_u32(rc: u32) -> RegClass {
        match rc {
            0 => RegClass::I32,
            1 => RegClass::F32,
            2 => RegClass::I64,
            3 => RegClass::F64,
            4 => RegClass::V128,
            _ => panic!("RegClass::rc_from_u32"),
        }
    }

    pub fn short_name(self) -> &'static str {
        match self {
            RegClass::I32 => "I",
            RegClass::I64 => "J",
            RegClass::F32 => "F",
            RegClass::F64 => "D",
            RegClass::V128 => "V",
            RegClass::INVALID => panic!("RegClass::short_name"),
        }
    }

    pub fn long_name(self) -> &'static str {
        match self {
            RegClass::I32 => "I32",
            RegClass::I64 => "I32",
            RegClass::F32 => "F32",
            RegClass::F64 => "F32",
            RegClass::V128 => "V128",
            RegClass::INVALID => panic!("RegClass::long_name"),
        }
    }
}

// Reg represents both real and virtual registers.  For compactness and speed,
// these fields are packed into a single u32.  The format is:
//
// Virtual Reg:   1  rc:3                index:28
// Real Reg:      0  rc:3  uu:12  enc:8  index:8
//
// `rc` is the register class.  `uu` means "unused".  `enc` is the hardware
// encoding for the reg.  `index` is a zero based index which has the
// following meanings:
//
// * for a Virtual Reg, `index` is just the virtual register number.
// * for a Real Reg, `index` is the entry number in the associated
//   `RealRegUniverse`.
//
// This scheme gives us:
//
// * a compact (32-bit) representation for registers
// * fast equality tests for registers
// * ability to handle up to 2^28 (268.4 million) virtual regs per function
// * ability to handle up to 8 register classes
// * ability to handle targets with up to 256 real registers
// * ability to emit instructions containing real regs without having to
//   look up encodings in any side tables, since a real reg carries its
//   encoding
// * efficient bitsets and arrays of virtual registers, since each has a
//   zero-based index baked in
// * efficient bitsets and arrays of real registers, for the same reason
//
// This scheme makes it impossible to represent overlapping register classes,
// but that doesn't seem important.  AFAIK only ARM32 VFP/Neon has that.

#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Reg {
    bits: u32,
}

static INVALID_REG: u32 = 0xffffffff;

impl Reg {
    #[inline(always)]
    pub fn is_virtual(self) -> bool {
        self.is_valid() && (self.bits & 0x8000_0000) != 0
    }
    #[inline(always)]
    pub fn is_real(self) -> bool {
        self.is_valid() && (self.bits & 0x8000_0000) == 0
    }
    pub fn new_real(rc: RegClass, enc: u8, index: u8) -> Self {
        let n = (0 << 31) | (rc.rc_to_u32() << 28) | ((enc as u32) << 8) | ((index as u32) << 0);
        Reg { bits: n }
    }
    pub fn new_virtual(rc: RegClass, index: u32) -> Self {
        if index >= (1 << 28) {
            panic!("new_virtual(): index too large");
        }
        let n = (1 << 31) | (rc.rc_to_u32() << 28) | (index << 0);
        Reg { bits: n }
    }
    pub fn invalid() -> Reg {
        Reg { bits: INVALID_REG }
    }
    #[inline(always)]
    pub fn is_invalid(self) -> bool {
        self.bits == INVALID_REG
    }
    #[inline(always)]
    pub fn is_valid(self) -> bool {
        !self.is_invalid()
    }
    pub fn is_virtual_or_invalid(self) -> bool {
        self.is_virtual() || self.is_invalid()
    }
    pub fn is_real_or_invalid(self) -> bool {
        self.is_real() || self.is_invalid()
    }
    #[inline(always)]
    pub fn get_class(self) -> RegClass {
        debug_assert!(self.is_valid());
        RegClass::rc_from_u32((self.bits >> 28) & 0x7)
    }
    #[inline(always)]
    pub fn get_index(self) -> usize {
        debug_assert!(self.is_valid());
        // Return type is usize because typically we will want to use the
        // result for indexing into a Vec
        if self.is_virtual() {
            (self.bits & ((1 << 28) - 1)) as usize
        } else {
            (self.bits & ((1 << 8) - 1)) as usize
        }
    }
    #[inline(always)]
    pub fn get_index_u32(self) -> u32 {
        debug_assert!(self.is_valid());
        if self.is_virtual() {
            self.bits & ((1 << 28) - 1)
        } else {
            self.bits & ((1 << 8) - 1)
        }
    }
    pub fn get_hw_encoding(self) -> u8 {
        debug_assert!(self.is_valid());
        if self.is_virtual() {
            panic!("Virtual register does not have a hardware encoding")
        } else {
            ((self.bits >> 8) & ((1 << 8) - 1)) as u8
        }
    }
    pub fn as_virtual_reg(self) -> Option<VirtualReg> {
        // Allow invalid virtual regs as well.
        if self.is_virtual_or_invalid() {
            Some(VirtualReg { reg: self })
        } else {
            None
        }
    }
    pub fn as_real_reg(self) -> Option<RealReg> {
        // Allow invalid real regs as well.
        if self.is_real_or_invalid() {
            Some(RealReg { reg: self })
        } else {
            None
        }
    }
    pub fn show_with_rru(self, univ: &RealRegUniverse) -> String {
        if self.is_real() && self.get_index() < univ.regs.len() {
            univ.regs[self.get_index()].1.clone()
        } else if self.is_valid() {
            format!("{:?}", self)
        } else {
            "rINVALID".to_string()
        }
    }
}

impl fmt::Debug for Reg {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        if self.is_valid() {
            write!(
                fmt,
                "{}{}{}",
                if self.is_virtual() { "v" } else { "r" },
                self.get_index(),
                self.get_class().short_name(),
            )
        } else {
            write!(fmt, "rINVALID")
        }
    }
}

// RealReg and VirtualReg are merely wrappers around Reg, which try to
// dynamically ensure that they are really wrapping the correct flavour of
// register.

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct RealReg {
    reg: Reg,
}
impl Reg /* !!not RealReg!! */ {
    pub fn to_real_reg(self) -> RealReg {
        if self.is_virtual() {
            panic!("Reg::to_real_reg: this is a virtual register")
        } else {
            RealReg { reg: self }
        }
    }
}
impl RealReg {
    pub fn get_class(self) -> RegClass {
        self.reg.get_class()
    }
    #[inline(always)]
    pub fn get_index(self) -> usize {
        self.reg.get_index()
    }
    pub fn get_hw_encoding(self) -> usize {
        self.reg.get_hw_encoding() as usize
    }
    #[inline(always)]
    pub fn to_reg(self) -> Reg {
        self.reg
    }
    pub fn invalid() -> RealReg {
        RealReg {
            reg: Reg::invalid(),
        }
    }
    pub fn is_valid(self) -> bool {
        self.reg.is_valid()
    }
    pub fn is_invalid(self) -> bool {
        self.reg.is_invalid()
    }
    pub fn maybe_valid(self) -> Option<RealReg> {
        if self == RealReg::invalid() {
            None
        } else {
            Some(self)
        }
    }
}
impl fmt::Debug for RealReg {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{:?}", self.reg)
    }
}

#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct VirtualReg {
    reg: Reg,
}
impl Reg /* !!not VirtualReg!! */ {
    #[inline(always)]
    pub fn to_virtual_reg(self) -> VirtualReg {
        if self.is_virtual() {
            VirtualReg { reg: self }
        } else {
            panic!("Reg::to_virtual_reg: this is a real register")
        }
    }
}
impl VirtualReg {
    pub fn get_class(self) -> RegClass {
        self.reg.get_class()
    }
    #[inline(always)]
    pub fn get_index(self) -> usize {
        self.reg.get_index()
    }
    #[inline(always)]
    pub fn to_reg(self) -> Reg {
        self.reg
    }
    pub fn invalid() -> VirtualReg {
        VirtualReg {
            reg: Reg::invalid(),
        }
    }
    pub fn is_valid(self) -> bool {
        self.reg.is_valid()
    }
    pub fn is_invalid(self) -> bool {
        self.reg.is_invalid()
    }
    pub fn maybe_valid(self) -> Option<VirtualReg> {
        if self == VirtualReg::invalid() {
            None
        } else {
            Some(self)
        }
    }
}
impl fmt::Debug for VirtualReg {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{:?}", self.reg)
    }
}

impl Reg {
    /// Apply a vreg-rreg mapping to a Reg.  This is used for registers used in
    /// a read-role.
    pub fn apply_uses<RUM: RegUsageMapper>(&mut self, mapper: &RUM) {
        self.apply(|vreg| mapper.get_use(vreg));
    }

    /// Apply a vreg-rreg mapping to a Reg.  This is used for registers used in
    /// a write-role.
    pub fn apply_defs<RUM: RegUsageMapper>(&mut self, mapper: &RUM) {
        self.apply(|vreg| mapper.get_def(vreg));
    }

    /// Apply a vreg-rreg mapping to a Reg.  This is used for registers used in
    /// a modify-role.
    pub fn apply_mods<RUM: RegUsageMapper>(&mut self, mapper: &RUM) {
        self.apply(|vreg| mapper.get_mod(vreg));
    }

    fn apply<F: Fn(VirtualReg) -> Option<RealReg>>(&mut self, f: F) {
        if let Some(vreg) = self.as_virtual_reg() {
            if let Some(rreg) = f(vreg) {
                debug_assert!(rreg.get_class() == vreg.get_class());
                *self = rreg.to_reg();
            } else {
                panic!("Reg::apply: no mapping for {:?}", self);
            }
        }
    }
}

/// A "writable register". This is a zero-cost wrapper that can be used to
/// create a distinction, at the Rust type level, between a plain "register"
/// and a "writable register".
///
/// Only structs that implement the `WritableBase` trait can be wrapped with
/// `Writable`. These are the Reg, RealReg and VirtualReg data structures only,
/// since `WritableBase` is not exposed to end users.
///
/// Writable<..> can be used by the client to ensure that, internally, it only
/// generates instructions that write to registers that should be written. The
/// `InstRegUses` below, which must be implemented for every instruction,
/// requires a `Writable<Reg>` (not just `Reg`) in its `defined` and
/// `modified` sets. While we cannot hide the constructor for `Writable<..>`
/// from certain parts of the client while exposing it to others, the client
/// *can* adopt conventions to e.g. only ever call the Writable<..>
/// constructor from its central vreg-management logic, and decide that any
/// invocation of this constructor in a machine backend (for example) is an
/// error.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Writable<R: WritableBase> {
    reg: R,
}

/// Set of requirements for types that can be wrapped in Writable.
pub trait WritableBase:
    Copy + Clone + PartialEq + Eq + Hash + PartialOrd + Ord + fmt::Debug
{
}

impl WritableBase for Reg {}
impl WritableBase for RealReg {}
impl WritableBase for VirtualReg {}

impl<R: WritableBase> Writable<R> {
    /// Create a Writable<R> from an R. The client should carefully audit where
    /// it calls this constructor to ensure correctness (see `Writable<..>`
    /// struct documentation).
    #[inline(always)]
    pub fn from_reg(reg: R) -> Writable<R> {
        Writable { reg }
    }

    /// Get the inner Reg.
    pub fn to_reg(&self) -> R {
        self.reg
    }

    pub fn map<F, U>(&self, f: F) -> Writable<U>
    where
        F: Fn(R) -> U,
        U: WritableBase,
    {
        Writable { reg: f(self.reg) }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct SpillSlot(u32);

impl SpillSlot {
    #[inline(always)]
    pub fn new(n: u32) -> Self {
        Self(n)
    }
    #[inline(always)]
    pub fn get(self) -> u32 {
        self.0
    }
    #[inline(always)]
    pub fn get_usize(self) -> usize {
        self.get() as usize
    }
    pub fn round_up(self, num_slots: u32) -> SpillSlot {
        assert!(num_slots > 0);
        SpillSlot::new((self.get() + num_slots - 1) / num_slots * num_slots)
    }
    pub fn inc(self, num_slots: u32) -> SpillSlot {
        SpillSlot::new(self.get() + num_slots)
    }
}

impl fmt::Debug for SpillSlot {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "S{}", self.get())
    }
}

//=============================================================================
// Register uses: low level interface

// This minimal struct is visible from outside the regalloc.rs interface.  It
// is intended to be a safe wrapper around `RegVecs`, which isn't externally
// visible.  It is used to collect unsanitized reg use info from client
// instructions.
pub struct RegUsageCollector<'a> {
    pub reg_vecs: &'a mut RegVecs,
}

impl<'a> RegUsageCollector<'a> {
    pub fn new(reg_vecs: &'a mut RegVecs) -> Self {
        Self { reg_vecs }
    }
    pub fn add_use(&mut self, r: Reg) {
        self.reg_vecs.uses.push(r);
    }
    pub fn add_uses(&mut self, regs: &[Reg]) {
        self.reg_vecs.uses.extend(regs.iter());
    }
    pub fn add_def(&mut self, r: Writable<Reg>) {
        self.reg_vecs.defs.push(r.to_reg());
    }
    pub fn add_defs(&mut self, regs: &[Writable<Reg>]) {
        self.reg_vecs.defs.reserve(regs.len());
        for r in regs {
            self.reg_vecs.defs.push(r.to_reg());
        }
    }
    pub fn add_mod(&mut self, r: Writable<Reg>) {
        self.reg_vecs.mods.push(r.to_reg());
    }
    pub fn add_mods(&mut self, regs: &[Writable<Reg>]) {
        self.reg_vecs.mods.reserve(regs.len());
        for r in regs {
            self.reg_vecs.mods.push(r.to_reg());
        }
    }

    // The presence of the following two is a hack, needed to support fuzzing
    // in the test framework.  Real clients should not call them.
    pub fn get_use_def_mod_vecs_test_framework_only(&self) -> (Vec<Reg>, Vec<Reg>, Vec<Reg>) {
        (
            self.reg_vecs.uses.clone(),
            self.reg_vecs.defs.clone(),
            self.reg_vecs.mods.clone(),
        )
    }

    pub fn get_empty_reg_vecs_test_framework_only(sanitized: bool) -> RegVecs {
        RegVecs::new(sanitized)
    }
}

// Everything else is not visible outside the regalloc.rs interface.

// There is one of these per function.  Note that `defs` and `mods` lose the
// `Writable` constraint at this point.  This is for convenience of having all
// three vectors be the same type, but comes at the cost of the loss of being
// able to differentiate readonly vs read/write registers in the Rust type
// system.
#[derive(Debug)]
pub struct RegVecs {
    pub uses: Vec<Reg>,
    pub defs: Vec<Reg>,
    pub mods: Vec<Reg>,
    sanitized: bool,
}

impl RegVecs {
    pub fn new(sanitized: bool) -> Self {
        Self {
            uses: vec![],
            defs: vec![],
            mods: vec![],
            sanitized,
        }
    }
    pub fn is_sanitized(&self) -> bool {
        self.sanitized
    }
    pub fn set_sanitized(&mut self, sanitized: bool) {
        self.sanitized = sanitized;
    }
    pub fn clear(&mut self) {
        self.uses.clear();
        self.defs.clear();
        self.mods.clear();
    }
}

// There is one of these per insn, so try and keep it as compact as possible.
// I think this should fit in 16 bytes.
#[derive(Clone, Debug)]
pub struct RegVecBounds {
    // These are the group start indices in RegVecs.{uses, defs, mods}.
    pub uses_start: u32,
    pub defs_start: u32,
    pub mods_start: u32,
    // And these are the group lengths.  This does limit each instruction to
    // mentioning only 256 registers in any group, but that does not seem like a
    // problem.
    pub uses_len: u8,
    pub defs_len: u8,
    pub mods_len: u8,
}

impl RegVecBounds {
    pub fn new() -> Self {
        Self {
            uses_start: 0,
            defs_start: 0,
            mods_start: 0,
            uses_len: 0,
            defs_len: 0,
            mods_len: 0,
        }
    }
}

// This is the primary structure.  We compute just one of these for an entire
// function.
pub struct RegVecsAndBounds {
    // The three vectors of registers.  These can be arbitrarily long.
    pub vecs: RegVecs,
    // Admin info which tells us the location, for each insn, of its register
    // groups in `vecs`.
    pub bounds: TypedIxVec<InstIx, RegVecBounds>,
}

impl RegVecsAndBounds {
    pub fn new(vecs: RegVecs, bounds: TypedIxVec<InstIx, RegVecBounds>) -> Self {
        Self { vecs, bounds }
    }
    pub fn is_sanitized(&self) -> bool {
        self.vecs.sanitized
    }
    #[allow(dead_code)] // XXX for some reason, Rustc 1.43.1 thinks this is currently unused.
    pub fn num_insns(&self) -> u32 {
        self.bounds.len()
    }
}

//=============================================================================
// Register uses: convenience interface

// Some call sites want to get reg use information as three Sets.  This is a
// "convenience facility" which is easier to use but much slower than working
// with a whole-function `RegVecsAndBounds`.  It shouldn't be used on critical
// paths.
#[derive(Debug)]
pub struct RegSets {
    pub uses: Set<Reg>, // registers that are read.
    pub defs: Set<Reg>, // registers that are written.
    pub mods: Set<Reg>, // registers that are modified.
    sanitized: bool,
}

impl RegSets {
    pub fn new(sanitized: bool) -> Self {
        Self {
            uses: Set::<Reg>::empty(),
            defs: Set::<Reg>::empty(),
            mods: Set::<Reg>::empty(),
            sanitized,
        }
    }

    pub fn is_sanitized(&self) -> bool {
        self.sanitized
    }
}

impl RegVecsAndBounds {
    /* !!not RegSets!! */
    #[inline(never)]
    // Convenience function.  Try to avoid using this.
    pub fn get_reg_sets_for_iix(&self, iix: InstIx) -> RegSets {
        let bounds = &self.bounds[iix];
        let mut regsets = RegSets::new(self.vecs.sanitized);
        for i in bounds.uses_start as usize..bounds.uses_start as usize + bounds.uses_len as usize {
            regsets.uses.insert(self.vecs.uses[i]);
        }
        for i in bounds.defs_start as usize..bounds.defs_start as usize + bounds.defs_len as usize {
            regsets.defs.insert(self.vecs.defs[i]);
        }
        for i in bounds.mods_start as usize..bounds.mods_start as usize + bounds.mods_len as usize {
            regsets.mods.insert(self.vecs.mods[i]);
        }
        regsets
    }
}

//=============================================================================
// Definitions of the "real register universe".

// A "Real Register Universe" is a read-only structure that contains all
// information about real registers on a given host.  It serves several
// purposes:
//
// * defines the mapping from real register indices to the registers
//   themselves
//
// * defines the size of the initial section of that mapping that is available
//   to the register allocator for use, so that it can treat the registers
//   under its control as a zero based, contiguous array.  This is important
//   for its efficiency.
//
// * gives meaning to Set<RealReg>, which otherwise would merely be a bunch of
//   bits.

#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct RealRegUniverse {
    // The registers themselves.  All must be real registers, and all must
    // have their index number (.get_index()) equal to the array index here,
    // since this is the only place where we map index numbers to actual
    // registers.
    pub regs: Vec<(RealReg, String)>,

    // This is the size of the initial section of `regs` that is available to
    // the allocator.  It must be <= `regs`.len().
    pub allocable: usize,

    // Information about groups of allocable registers. Used to quickly address
    // only a group of allocable registers belonging to the same register class.
    // Indexes into `allocable_by_class` are RegClass values, such as
    // RegClass::F32. If the resulting entry is `None` then there are no
    // registers in that class.  Otherwise the value is a `RegClassInfo`, which
    // provides a register range and possibly information about fixed uses.
    pub allocable_by_class: [Option<RegClassInfo>; NUM_REG_CLASSES],
}

/// Information about a single register class in the `RealRegUniverse`.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct RegClassInfo {
    // Range of allocatable registers in this register class, in terms of
    // register indices.
    //
    // A range (first, last) specifies the range of entries in
    // `RealRegUniverse.regs` corresponding to that class.  The range includes
    // both `first` and `last`.
    //
    // In all cases, `last` must be < `RealRegUniverse.allocable`.  In other
    // words, all ranges together in `allocable_by_class` must describe only the
    // allocable prefix of `regs`.
    //
    // For example, let's say
    //    allocable_by_class[RegClass::F32] ==
    //      Some(RegClassInfo { first: 10, last: 14, .. })
    // Then regs[10], regs[11], regs[12], regs[13], and regs[14] give all
    // registers of register class RegClass::F32.
    //
    // The effect of the above is that registers in `regs` must form
    // contiguous groups. This is checked by RealRegUniverse::check_is_sane().
    pub first: usize,
    pub last: usize,

    // A register, if any, that is *guaranteed* not to be used as a fixed use
    // in any code, and so that the register allocator can statically reserve
    // for its own use as a temporary. Some register allocators may need such
    // a register for various maneuvers, for example a spillslot-to-spillslot
    // move when no (other) registers are free.
    pub suggested_scratch: Option<usize>,
}

impl RealRegUniverse {
    /// Show it in a pretty way.
    pub fn show(&self) -> Vec<String> {
        let mut res = vec![];
        // Show the allocables
        for class_num in 0..NUM_REG_CLASSES {
            let class_info = match &self.allocable_by_class[class_num] {
                None => continue,
                Some(info) => info,
            };
            let class = RegClass::rc_from_u32(class_num as u32);
            let mut class_str = "class ".to_string()
                + &class.long_name().to_string()
                + &"(".to_string()
                + &class.short_name().to_string()
                + &") at ".to_string();
            class_str = class_str + &format!("[{} .. {}]: ", class_info.first, class_info.last);
            for ix in class_info.first..=class_info.last {
                class_str = class_str + &self.regs[ix].1;
                if let Some(suggested_ix) = class_info.suggested_scratch {
                    if ix == suggested_ix {
                        class_str = class_str + "*";
                    }
                }
                class_str = class_str + " ";
            }
            res.push(class_str);
        }
        // And the non-allocables
        if self.allocable < self.regs.len() {
            let mut stragglers = format!(
                "not allocable at [{} .. {}]: ",
                self.allocable,
                self.regs.len() - 1
            );
            for ix in self.allocable..self.regs.len() {
                stragglers = stragglers + &self.regs[ix].1 + &" ".to_string();
            }
            res.push(stragglers);
        }
        res
    }

    /// Check that the given universe satisfies various invariants, and panic
    /// if not.  All the invariants are important.
    pub fn check_is_sane(&self) {
        let regs_len = self.regs.len();
        let regs_allocable = self.allocable;
        // The universe must contain at most 256 registers.  That's because
        // `Reg` only has an 8-bit index value field, so if the universe
        // contained more than 256 registers, we'd never be able to index into
        // entries 256 and above.  This is no limitation in practice since all
        // targets we're interested in contain (many) fewer than 256 regs in
        // total.
        let mut ok = regs_len <= 256;
        // The number of allocable registers must not exceed the number of
        // `regs` presented.  In general it will be less, since the universe
        // will list some registers (stack pointer, etc) which are not
        // available for allocation.
        if ok {
            ok = regs_allocable <= regs_len;
        }
        // All registers must have an index value which points back at the
        // `regs` slot they are in.  Also they really must be real regs.
        if ok {
            for i in 0..regs_len {
                let (reg, _name) = &self.regs[i];
                if ok && (reg.to_reg().is_virtual() || reg.get_index() != i) {
                    ok = false;
                }
            }
        }
        // The allocatable regclass groupings defined by `allocable_first` and
        // `allocable_last` must be contiguous.
        if ok {
            let mut regclass_used = [false; NUM_REG_CLASSES];
            for rc in 0..NUM_REG_CLASSES {
                regclass_used[rc] = false;
            }
            for i in 0..regs_allocable {
                let (reg, _name) = &self.regs[i];
                let rc = reg.get_class().rc_to_u32() as usize;
                regclass_used[rc] = true;
            }
            // Scan forward through each grouping, checking that the listed
            // registers really are of the claimed class.  Also count the
            // total number visited.  This seems a fairly reliable way to
            // ensure that the groupings cover all allocated registers exactly
            // once, and that all classes are contiguous groups.
            let mut regs_visited = 0;
            for rc in 0..NUM_REG_CLASSES {
                match &self.allocable_by_class[rc] {
                    &None => {
                        if regclass_used[rc] {
                            ok = false;
                        }
                    }
                    &Some(RegClassInfo {
                        first,
                        last,
                        suggested_scratch,
                    }) => {
                        if !regclass_used[rc] {
                            ok = false;
                        }
                        if ok {
                            for i in first..last + 1 {
                                let (reg, _name) = &self.regs[i];
                                if ok && RegClass::rc_from_u32(rc as u32) != reg.get_class() {
                                    ok = false;
                                }
                                regs_visited += 1;
                            }
                        }
                        if ok {
                            if let Some(s) = suggested_scratch {
                                if s < first || s > last {
                                    ok = false;
                                }
                            }
                        }
                    }
                }
            }
            if ok && regs_visited != regs_allocable {
                ok = false;
            }
        }
        // So finally ..
        if !ok {
            panic!("RealRegUniverse::check_is_sane: invalid RealRegUniverse");
        }
    }
}

//=============================================================================
// Representing and printing of live range fragments.

#[derive(Copy, Clone, Hash, PartialEq, Eq, Ord)]
// There are four "points" within an instruction that are of interest, and
// these have a total ordering: R < U < D < S.  They are:
//
// * R(eload): this is where any reload insns for the insn itself are
//   considered to live.
//
// * U(se): this is where the insn is considered to use values from those of
//   its register operands that appear in a Read or Modify role.
//
// * D(ef): this is where the insn is considered to define new values for
//   those of its register operands that appear in a Write or Modify role.
//
// * S(pill): this is where any spill insns for the insn itself are considered
//   to live.
//
// Instructions in the incoming Func may only exist at the U and D points,
// and so their associated live range fragments will only mention the U and D
// points.  However, when adding spill code, we need a way to represent live
// ranges involving the added spill and reload insns, in which case R and S
// come into play:
//
// * A reload for instruction i is considered to be live from i.R to i.U.
//
// * A spill for instruction i is considered to be live from i.D to i.S.

pub enum Point {
    // The values here are important.  Don't change them.
    Reload = 0,
    Use = 1,
    Def = 2,
    Spill = 3,
}

impl Point {
    #[inline(always)]
    pub fn is_reload(self) -> bool {
        match self {
            Point::Reload => true,
            _ => false,
        }
    }
    #[inline(always)]
    pub fn is_use(self) -> bool {
        match self {
            Point::Use => true,
            _ => false,
        }
    }
    #[inline(always)]
    pub fn is_def(self) -> bool {
        match self {
            Point::Def => true,
            _ => false,
        }
    }
    #[inline(always)]
    pub fn is_spill(self) -> bool {
        match self {
            Point::Spill => true,
            _ => false,
        }
    }
    #[inline(always)]
    pub fn is_use_or_def(self) -> bool {
        self.is_use() || self.is_def()
    }
}

impl PartialOrd for Point {
    // In short .. R < U < D < S.  This is probably what would be #derive'd
    // anyway, but we need to be sure.
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        (*self as u32).partial_cmp(&(*other as u32))
    }
}

// See comments below on `RangeFrag` for the meaning of `InstPoint`.
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct InstPoint {
    /// This is conceptually:
    ///   pub iix: InstIx,
    ///   pub pt: Point,
    ///
    /// but packed into a single 32 bit word, so as
    /// (1) to ensure it is only 32 bits (and hence to guarantee that `RangeFrag`
    ///     is 64 bits), and
    /// (2) to make it possible to implement `PartialOrd` using `PartialOrd`
    ///     directly on 32 bit words (and hence we let it be derived).
    ///
    /// This has the format:
    ///    InstIx as bits 31:2,  Point as bits 1:0.
    ///
    /// It does give the slight limitation that all InstIxs must be < 2^30, but
    /// that's hardly a big deal: the analysis module rejects any input with 2^24
    /// or more Insns.
    ///
    /// Do not access this directly:
    bits: u32,
}

impl InstPoint {
    #[inline(always)]
    pub fn new(iix: InstIx, pt: Point) -> Self {
        let iix_n = iix.get();
        assert!(iix_n < 0x4000_0000u32);
        let pt_n = pt as u32;
        InstPoint {
            bits: (iix_n << 2) | pt_n,
        }
    }
    #[inline(always)]
    pub fn iix(self) -> InstIx {
        InstIx::new(self.bits >> 2)
    }
    #[inline(always)]
    pub fn pt(self) -> Point {
        match self.bits & 3 {
            0 => Point::Reload,
            1 => Point::Use,
            2 => Point::Def,
            3 => Point::Spill,
            // This can never happen, but rustc doesn't seem to know that.
            _ => panic!("InstPt::pt: unreachable case"),
        }
    }
    #[inline(always)]
    pub fn set_iix(&mut self, iix: InstIx) {
        let iix_n = iix.get();
        assert!(iix_n < 0x4000_0000u32);
        self.bits = (iix_n << 2) | (self.bits & 3);
    }
    #[inline(always)]
    pub fn set_pt(&mut self, pt: Point) {
        self.bits = (self.bits & 0xFFFF_FFFCu32) | pt as u32;
    }
    #[inline(always)]
    pub fn new_reload(iix: InstIx) -> Self {
        InstPoint::new(iix, Point::Reload)
    }
    #[inline(always)]
    pub fn new_use(iix: InstIx) -> Self {
        InstPoint::new(iix, Point::Use)
    }
    #[inline(always)]
    pub fn new_def(iix: InstIx) -> Self {
        InstPoint::new(iix, Point::Def)
    }
    #[inline(always)]
    pub fn new_spill(iix: InstIx) -> Self {
        InstPoint::new(iix, Point::Spill)
    }
    #[inline(always)]
    pub fn invalid_value() -> Self {
        Self {
            bits: 0xFFFF_FFFFu32,
        }
    }
    #[inline(always)]
    pub fn max_value() -> Self {
        Self {
            bits: 0xFFFF_FFFFu32,
        }
    }
    #[inline(always)]
    pub fn min_value() -> Self {
        Self { bits: 0u32 }
    }
}

impl fmt::Debug for InstPoint {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "{:?}{}",
            self.iix(),
            match self.pt() {
                Point::Reload => ".r",
                Point::Use => ".u",
                Point::Def => ".d",
                Point::Spill => ".s",
            }
        )
    }
}

//=============================================================================
// Live Range Fragments, and their metrics

// A Live Range Fragment (RangeFrag) describes a consecutive sequence of one or
// more instructions, in which a Reg is "live".  The sequence must exist
// entirely inside only one basic block.
//
// However, merely indicating the start and end instruction numbers isn't
// enough: we must also include a "Use or Def" indication.  These indicate two
// different "points" within each instruction: the Use position, where
// incoming registers are read, and the Def position, where outgoing registers
// are written.  The Use position is considered to come before the Def
// position, as described for `Point` above.
//
// When we come to generate spill/restore live ranges, Point::S and Point::R
// also come into play.  Live ranges (and hence, RangeFrags) that do not perform
// spills or restores should not use either of Point::S or Point::R.
//
// The set of positions denoted by
//
//    {0 .. #insns-1} x {Reload point, Use point, Def point, Spill point}
//
// is exactly the set of positions that we need to keep track of when mapping
// live ranges to registers.  This the reason for the type InstPoint.  Note
// that InstPoint values have a total ordering, at least within a single basic
// block: the insn number is used as the primary key, and the Point part is
// the secondary key, with Reload < Use < Def < Spill.
#[derive(Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct RangeFrag {
    pub first: InstPoint,
    pub last: InstPoint,
}

impl fmt::Debug for RangeFrag {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "(RF: {:?}-{:?})", self.first, self.last)
    }
}

impl RangeFrag {
    #[allow(dead_code)] // XXX for some reason, Rustc 1.43.1 thinks this is unused.
    pub fn new(first: InstPoint, last: InstPoint) -> Self {
        debug_assert!(first <= last);
        RangeFrag { first, last }
    }

    pub fn invalid_value() -> Self {
        Self {
            first: InstPoint::invalid_value(),
            last: InstPoint::invalid_value(),
        }
    }

    pub fn new_with_metrics<F: Function>(
        f: &F,
        bix: BlockIx,
        first: InstPoint,
        last: InstPoint,
        count: u16,
    ) -> (Self, RangeFragMetrics) {
        debug_assert!(f.block_insns(bix).len() >= 1);
        debug_assert!(f.block_insns(bix).contains(first.iix()));
        debug_assert!(f.block_insns(bix).contains(last.iix()));
        debug_assert!(first <= last);
        if first == last {
            debug_assert!(count == 1);
        }
        let first_iix_in_block = f.block_insns(bix).first();
        let last_iix_in_block = f.block_insns(bix).last();
        let first_pt_in_block = InstPoint::new_use(first_iix_in_block);
        let last_pt_in_block = InstPoint::new_def(last_iix_in_block);
        let kind = match (first == first_pt_in_block, last == last_pt_in_block) {
            (false, false) => RangeFragKind::Local,
            (false, true) => RangeFragKind::LiveOut,
            (true, false) => RangeFragKind::LiveIn,
            (true, true) => RangeFragKind::Thru,
        };
        (
            RangeFrag { first, last },
            RangeFragMetrics { bix, kind, count },
        )
    }
}

// Comparison of RangeFrags.  They form a partial order.

pub fn cmp_range_frags(f1: &RangeFrag, f2: &RangeFrag) -> Option<Ordering> {
    if f1.last < f2.first {
        return Some(Ordering::Less);
    }
    if f1.first > f2.last {
        return Some(Ordering::Greater);
    }
    if f1.first == f2.first && f1.last == f2.last {
        return Some(Ordering::Equal);
    }
    None
}

impl RangeFrag {
    pub fn contains(&self, ipt: &InstPoint) -> bool {
        self.first <= *ipt && *ipt <= self.last
    }
}

// A handy summary hint for a RangeFrag.  Note that none of these are correct
// if the RangeFrag has been extended so as to cover multiple basic blocks.
// But that ("RangeFrag compression") is something done locally within each
// algorithm (BT and LSRA).  The analysis-phase output will not include any
// such compressed RangeFrags.
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum RangeFragKind {
    Local,   // Fragment exists entirely inside one block
    LiveIn,  // Fragment is live in to a block, but ends inside it
    LiveOut, // Fragment is live out of a block, but starts inside it
    Thru,    // Fragment is live through the block (starts and ends outside it)
}

impl fmt::Debug for RangeFragKind {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match self {
            RangeFragKind::Local => write!(fmt, "Local"),
            RangeFragKind::LiveIn => write!(fmt, "LiveIn"),
            RangeFragKind::LiveOut => write!(fmt, "LiveOut"),
            RangeFragKind::Thru => write!(fmt, "Thru"),
        }
    }
}

// `RangeFrags` resulting from the initial analysis phase (analysis_data_flow.rs)
// exist only within single basic blocks, and therefore have some associated
// metrics, held by `RangeFragMetrics`:
//
// * a `count` field, which is a u16 indicating how often the associated storage
//   unit (Reg) is mentioned inside the RangeFrag.  It is assumed that the RangeFrag
//   is associated with some Reg.  If not, the `count` field is meaningless.  This
//   field has no effect on the correctness of the resulting allocation.  It is used
//   however in the estimation of `VirtualRange` spill costs, which are important
//   for prioritising which `VirtualRange`s get assigned a register vs which have
//   to be spilled.
//
// * `bix` field, which indicates which `Block` the fragment exists in.  This
//   field is actually redundant, since the containing `Block` can be inferred,
//   laboriously, from the associated `RangeFrag`s `first` and `last` fields,
//   providing you have an `InstIxToBlockIx` mapping table to hand.  It is included
//   here for convenience.
//
// * `kind` is another convenience field, indicating how the range is included
//   within its owning block.
//
// The analysis phase (fn `deref_and_compress_sorted_range_frag_ixs`)
// compresses ranges and as a result breaks the invariant that a `RangeFrag`
// exists only within a single `Block`.  For a `RangeFrag` spanning multiple
// `Block`s, all three `RangeFragMetric` fields are meaningless.  This is the
// reason for separating `RangeFrag` and `RangeFragMetrics` -- so that it is
// possible to merge `RangeFrag`s without being forced to create fake values
// for the metrics fields.
#[derive(Clone, PartialEq)]
pub struct RangeFragMetrics {
    pub bix: BlockIx,
    pub kind: RangeFragKind,
    pub count: u16,
}

impl fmt::Debug for RangeFragMetrics {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "(RFM: {:?}, count={}, {:?})",
            self.kind, self.count, self.bix
        )
    }
}

//=============================================================================
// Vectors of RangeFragIxs, sorted so that the associated RangeFrags are in
// ascending order, per their InstPoint fields.  The associated RangeFrags may
// not overlap.
//
// The "fragment environment" (usually called "frag_env"), to which the
// RangeFragIxs refer, is not stored here.

#[derive(Clone)]
pub struct SortedRangeFragIxs {
    pub frag_ixs: SmallVec<[RangeFragIx; 4]>,
}

impl fmt::Debug for SortedRangeFragIxs {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        self.frag_ixs.fmt(fmt)
    }
}

impl SortedRangeFragIxs {
    pub(crate) fn check(&self, fenv: &TypedIxVec<RangeFragIx, RangeFrag>) {
        for i in 1..self.frag_ixs.len() {
            let prev_frag = &fenv[self.frag_ixs[i - 1]];
            let this_frag = &fenv[self.frag_ixs[i]];
            if cmp_range_frags(prev_frag, this_frag) != Some(Ordering::Less) {
                panic!("SortedRangeFragIxs::check: vector not ok");
            }
        }
    }

    pub fn sort(&mut self, fenv: &TypedIxVec<RangeFragIx, RangeFrag>) {
        self.frag_ixs.sort_unstable_by(|fix_a, fix_b| {
            match cmp_range_frags(&fenv[*fix_a], &fenv[*fix_b]) {
                Some(Ordering::Less) => Ordering::Less,
                Some(Ordering::Greater) => Ordering::Greater,
                Some(Ordering::Equal) | None => {
                    panic!("SortedRangeFragIxs::sort: overlapping Frags!")
                }
            }
        });
    }

    pub fn new(
        frag_ixs: SmallVec<[RangeFragIx; 4]>,
        fenv: &TypedIxVec<RangeFragIx, RangeFrag>,
    ) -> Self {
        let mut res = SortedRangeFragIxs { frag_ixs };
        // check the source is ordered, and clone (or sort it)
        res.sort(fenv);
        res.check(fenv);
        res
    }

    pub fn unit(fix: RangeFragIx, fenv: &TypedIxVec<RangeFragIx, RangeFrag>) -> Self {
        let mut res = SortedRangeFragIxs {
            frag_ixs: SmallVec::<[RangeFragIx; 4]>::new(),
        };
        res.frag_ixs.push(fix);
        res.check(fenv);
        res
    }

    /// Does this sorted list of range fragments contain the given instruction point?
    pub fn contains_pt(&self, fenv: &TypedIxVec<RangeFragIx, RangeFrag>, pt: InstPoint) -> bool {
        self.frag_ixs
            .binary_search_by(|&ix| {
                let frag = &fenv[ix];
                if pt < frag.first {
                    Ordering::Greater
                } else if pt >= frag.first && pt <= frag.last {
                    Ordering::Equal
                } else {
                    Ordering::Less
                }
            })
            .is_ok()
    }
}

//=============================================================================
// Vectors of RangeFrags, sorted so that they are in ascending order, per
// their InstPoint fields.  The RangeFrags may not overlap.

#[derive(Clone)]
pub struct SortedRangeFrags {
    pub frags: SmallVec<[RangeFrag; 4]>,
}

impl fmt::Debug for SortedRangeFrags {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        self.frags.fmt(fmt)
    }
}

impl SortedRangeFrags {
    pub fn unit(frag: RangeFrag) -> Self {
        let mut res = SortedRangeFrags {
            frags: SmallVec::<[RangeFrag; 4]>::new(),
        };
        res.frags.push(frag);
        res
    }

    pub fn empty() -> Self {
        Self {
            frags: SmallVec::<[RangeFrag; 4]>::new(),
        }
    }

    pub fn overlaps(&self, other: &Self) -> bool {
        // Since both vectors are sorted and individually non-overlapping, we
        // can establish that they are mutually non-overlapping by walking
        // them simultaneously and checking, at each step, that there is a
        // unique "next lowest" frag available.
        let frags1 = &self.frags;
        let frags2 = &other.frags;
        let n1 = frags1.len();
        let n2 = frags2.len();
        let mut c1 = 0;
        let mut c2 = 0;
        loop {
            if c1 >= n1 || c2 >= n2 {
                // We made it to the end of one (or both) vectors without
                // finding any conflicts.
                return false; // "no overlaps"
            }
            let f1 = &frags1[c1];
            let f2 = &frags2[c2];
            match cmp_range_frags(f1, f2) {
                Some(Ordering::Less) => c1 += 1,
                Some(Ordering::Greater) => c2 += 1,
                _ => {
                    // There's no unique "next frag" -- either they are
                    // identical, or they overlap.  So we're done.
                    return true; // "there's an overlap"
                }
            }
        }
    }

    /// Does this sorted list of range fragments contain the given instruction point?
    pub fn contains_pt(&self, pt: InstPoint) -> bool {
        self.frags
            .binary_search_by(|frag| {
                if pt < frag.first {
                    Ordering::Greater
                } else if pt >= frag.first && pt <= frag.last {
                    Ordering::Equal
                } else {
                    Ordering::Less
                }
            })
            .is_ok()
    }
}

//=============================================================================
// Representing spill costs.  A spill cost can either be infinite, in which
// case the associated VirtualRange may not be spilled, because it's already a
// spill/reload range.  Or it can be finite, in which case it must be a 32-bit
// floating point number, which is (in the IEEE754 meaning of the terms)
// non-infinite, non-NaN and it must be non negative.  In fact it's
// meaningless for a VLR to have a zero spill cost (how could that really be
// the case?) but we allow it here for convenience.

#[derive(Copy, Clone)]
pub enum SpillCost {
    Infinite,    // Infinite, positive
    Finite(f32), // Finite, non-negative
}

impl fmt::Debug for SpillCost {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match self {
            SpillCost::Infinite => write!(fmt, "INFINITY"),
            SpillCost::Finite(c) => write!(fmt, "{:<.3}", c),
        }
    }
}

impl SpillCost {
    #[inline(always)]
    pub fn zero() -> Self {
        SpillCost::Finite(0.0)
    }
    #[inline(always)]
    pub fn infinite() -> Self {
        SpillCost::Infinite
    }
    #[inline(always)]
    pub fn finite(cost: f32) -> Self {
        // "`is_normal` returns true if the number is neither zero, infinite,
        // subnormal, or NaN."
        assert!(cost.is_normal() || cost == 0.0);
        // And also it can't be negative.
        assert!(cost >= 0.0);
        // Somewhat arbitrarily ..
        assert!(cost < 1e18);
        SpillCost::Finite(cost)
    }
    #[inline(always)]
    pub fn is_zero(&self) -> bool {
        match self {
            SpillCost::Infinite => false,
            SpillCost::Finite(c) => *c == 0.0,
        }
    }
    #[inline(always)]
    pub fn is_infinite(&self) -> bool {
        match self {
            SpillCost::Infinite => true,
            SpillCost::Finite(_) => false,
        }
    }
    #[inline(always)]
    pub fn is_finite(&self) -> bool {
        !self.is_infinite()
    }
    #[inline(always)]
    pub fn is_less_than(&self, other: &Self) -> bool {
        match (self, other) {
            // Dubious .. both are infinity
            (SpillCost::Infinite, SpillCost::Infinite) => false,
            // finite < inf
            (SpillCost::Finite(_), SpillCost::Infinite) => true,
            // inf is not < finite
            (SpillCost::Infinite, SpillCost::Finite(_)) => false,
            // straightforward
            (SpillCost::Finite(c1), SpillCost::Finite(c2)) => c1 < c2,
        }
    }
    #[inline(always)]
    pub fn add(&mut self, other: &Self) {
        match (*self, other) {
            (SpillCost::Finite(c1), SpillCost::Finite(c2)) => {
                // The 10^18 limit above gives us a lot of headroom here, since max
                // f32 is around 10^37.
                *self = SpillCost::Finite(c1 + c2);
            }
            (_, _) => {
                // All other cases produce an infinity.
                *self = SpillCost::Infinite;
            }
        }
    }
}

//=============================================================================
// Representing and printing live ranges.  These are represented by two
// different but closely related types, RealRange and VirtualRange.

// RealRanges are live ranges for real regs (RealRegs).  VirtualRanges are
// live ranges for virtual regs (VirtualRegs).  VirtualRanges are the
// fundamental unit of allocation.
//
// A RealRange pairs a RealReg with a vector of RangeFragIxs in which it is
// live.  The RangeFragIxs are indices into some vector of RangeFrags (a
// "fragment environment", 'fenv'), which is not specified here.  They are
// sorted so as to give ascending order to the RangeFrags which they refer to.
//
// A VirtualRange pairs a VirtualReg with a vector of RangeFrags in which it
// is live.  Same scheme as for a RealRange, except it avoids the overhead of
// having to indirect into the fragment environment.
//
// VirtualRanges also contain metrics:
//
// * `size` is the number of instructions in total spanned by the LR.  It must
//   not be zero.
//
// * `total cost` is an abstractified measure of the cost of the LR.  Each
//   basic block in which the range exists gives a contribution to the `total
//   cost`, which is the number of times the register is mentioned in this
//   block, multiplied by the estimated execution frequency for the block.
//
// * `spill_cost` is an abstractified measure of the cost of spilling the LR,
//   and is the `total cost` divided by the `size`. The only constraint
//   (w.r.t. correctness) is that normal LRs have a `Some` value, whilst
//   `None` is reserved for live ranges created for spills and reloads and
//   interpreted to mean "infinity".  This is needed to guarantee that
//   allocation can always succeed in the worst case, in which all of the
//   original live ranges of the program are spilled.
//
// RealRanges don't carry any metrics info since we are not trying to allocate
// them.  We merely need to work around them.
//
// I find it helpful to think of a live range, both RealRange and
// VirtualRange, as a "renaming equivalence class".  That is, if you rename
// `reg` at some point inside `sorted_frags`, then you must rename *all*
// occurrences of `reg` inside `sorted_frags`, since otherwise the program will
// no longer work.

#[derive(Clone)]
pub struct RealRange {
    pub rreg: RealReg,
    pub sorted_frags: SortedRangeFragIxs,
    pub is_ref: bool,
}

impl fmt::Debug for RealRange {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "(RR: {:?}{}, {:?})",
            self.rreg,
            if self.is_ref { " REF" } else { "" },
            self.sorted_frags
        )
    }
}

impl RealRange {
    pub fn show_with_rru(&self, univ: &RealRegUniverse) -> String {
        format!(
            "(RR: {}{}, {:?})",
            self.rreg.to_reg().show_with_rru(univ),
            if self.is_ref { " REF" } else { "" },
            self.sorted_frags
        )
    }
}

// VirtualRanges are live ranges for virtual regs (VirtualRegs).  This does
// carry metrics info and also the identity of the RealReg to which it
// eventually got allocated.  (Or in the backtracking allocator, the identity
// of the RealReg to which it is *currently* assigned; that may be undone at
// some later point.)

#[derive(Clone)]
pub struct VirtualRange {
    pub vreg: VirtualReg,
    pub rreg: Option<RealReg>,
    pub sorted_frags: SortedRangeFrags,
    pub is_ref: bool,
    pub size: u16,
    pub total_cost: u32,
    pub spill_cost: SpillCost, // == total_cost / size
}

impl VirtualRange {
    pub fn overlaps(&self, other: &Self) -> bool {
        self.sorted_frags.overlaps(&other.sorted_frags)
    }
}

impl fmt::Debug for VirtualRange {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "(VR: {:?}{},",
            self.vreg,
            if self.is_ref { " REF" } else { "" }
        )?;
        if self.rreg.is_some() {
            write!(fmt, " -> {:?}", self.rreg.unwrap())?;
        }
        write!(
            fmt,
            " sz={}, tc={}, sc={:?}, {:?})",
            self.size, self.total_cost, self.spill_cost, self.sorted_frags
        )
    }
}

//=============================================================================
// Some auxiliary/miscellaneous data structures that are useful: RegToRangesMaps

// Mappings from RealRegs and VirtualRegs to the sets of RealRanges and VirtualRanges that
// belong to them.  These are needed for BT's coalescing analysis and for the dataflow analysis
// that supports reftype handling.

pub struct RegToRangesMaps {
    // This maps RealReg indices to the set of RealRangeIxs for that RealReg.  Valid indices are
    // real register indices for all non-sanitised real regs; that is,
    // 0 .. RealRegUniverse::allocable, for ".." having the Rust meaning.  The Vecs of
    // RealRangeIxs are duplicate-free.  The SmallVec capacity of 6 was chosen after quite
    // some profiling, of CL/x64/newBE compiling ZenGarden.wasm -- a huge input, with many
    // relatively small functions.  Profiling was performed in August 2020, using Valgrind/DHAT.
    pub rreg_to_rlrs_map: Vec</*real reg ix, */ SmallVec<[RealRangeIx; 6]>>,

    // This maps VirtualReg indices to the set of VirtualRangeIxs for that VirtualReg.  Valid
    // indices are 0 .. Function::get_num_vregs().  For functions mostly translated from SSA,
    // most VirtualRegs will have just one VirtualRange, and there are a lot of VirtualRegs in
    // general.  So SmallVec is a definite benefit here.
    pub vreg_to_vlrs_map: Vec</*virtual reg ix, */ SmallVec<[VirtualRangeIx; 3]>>,

    // As an optimisation heuristic for BT's coalescing analysis, these indicate which
    // real/virtual registers have "many" `RangeFrag`s in their live ranges.  For some
    // definition of "many", perhaps "200 or more".  This is not important for overall
    // allocation result or correctness: it merely allows the coalescing analysis to switch
    // between two search strategies, one of which is fast for regs with few `RangeFrag`s (the
    // vast majority) and the other of which has better asymptotic behaviour for regs with many
    // `RangeFrag`s (in order to keep out of trouble on some pathological inputs).  These
    // vectors are duplicate-free but the elements may be in an arbitrary order.
    pub rregs_with_many_frags: Vec<u32 /*RealReg index*/>,
    pub vregs_with_many_frags: Vec<u32 /*VirtualReg index*/>,

    // And this indicates what the thresh is actually set to.  A frag will be in
    // `r/vregs_with_many_frags` if it has `many_frags_thresh` or more RangeFrags.
    pub many_frags_thresh: usize,
}

//=============================================================================
// Some auxiliary/miscellaneous data structures that are useful: MoveInfo

// `MoveInfoElem` holds info about the two registers connected a move: the source and destination
// of the move, the insn performing the move, and the estimated execution frequency of the
// containing block.  In `MoveInfo`, the moves are not presented in any particular order, but
// they are duplicate-free in that each such instruction will be listed only once.

pub struct MoveInfoElem {
    pub dst: Reg,
    pub src: Reg,
    pub iix: InstIx,
    pub est_freq: u32,
}

pub struct MoveInfo {
    pub moves: Vec<MoveInfoElem>,
}

// Something that can be either a VirtualRangeIx or a RealRangeIx, whilst still being 32 bits
// (by stealing one bit from those spaces).  Note that the resulting thing no longer denotes a
// contiguous index space, and so it has a name that indicates it is an identifier rather than
// an index.

#[derive(PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Copy)]
pub struct RangeId {
    // 1 X--(31)--X is a RealRangeIx with value X--(31)--X
    // 0 X--(31)--X is a VirtualRangeIx with value X--(31)--X
    bits: u32,
}

impl RangeId {
    #[inline(always)]
    pub fn new_real(rlrix: RealRangeIx) -> Self {
        let n = rlrix.get();
        assert!(n <= 0x7FFF_FFFF);
        Self {
            bits: n | 0x8000_0000,
        }
    }
    #[inline(always)]
    pub fn new_virtual(vlrix: VirtualRangeIx) -> Self {
        let n = vlrix.get();
        assert!(n <= 0x7FFF_FFFF);
        Self { bits: n }
    }
    #[inline(always)]
    pub fn is_real(self) -> bool {
        self.bits & 0x8000_0000 != 0
    }
    #[allow(dead_code)]
    #[inline(always)]
    pub fn is_virtual(self) -> bool {
        self.bits & 0x8000_0000 == 0
    }
    #[inline(always)]
    pub fn to_real(self) -> RealRangeIx {
        assert!(self.bits & 0x8000_0000 != 0);
        RealRangeIx::new(self.bits & 0x7FFF_FFFF)
    }
    #[inline(always)]
    pub fn to_virtual(self) -> VirtualRangeIx {
        assert!(self.bits & 0x8000_0000 == 0);
        VirtualRangeIx::new(self.bits)
    }
    #[inline(always)]
    pub fn invalid_value() -> Self {
        // Real, and inplausibly huge
        Self { bits: 0xFFFF_FFFF }
    }
}

impl fmt::Debug for RangeId {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        if self.is_real() {
            self.to_real().fmt(fmt)
        } else {
            self.to_virtual().fmt(fmt)
        }
    }
}

//=============================================================================
// Test cases

// sewardj 2020Mar04: these are commented out for now, as they no longer
// compile.  They may be useful later though, once BT acquires an interval
// tree implementation for its CommitmentMap.

/*
#[test]
fn test_sorted_frag_ranges() {
  // Create a RangeFrag and RangeFragIx from two InstPoints.
  fn gen_fix(
    fenv: &mut TypedIxVec<RangeFragIx, RangeFrag>, first: InstPoint,
    last: InstPoint,
  ) -> RangeFragIx {
    assert!(first <= last);
    let res = RangeFragIx::new(fenv.len() as u32);
    let frag = RangeFrag {
      bix: BlockIx::new(123),
      kind: RangeFragKind::Local,
      first,
      last,
      count: 0,
    };
    fenv.push(frag);
    res
  }

  fn get_range_frag(
    fenv: &TypedIxVec<RangeFragIx, RangeFrag>, fix: RangeFragIx,
  ) -> &RangeFrag {
    &fenv[fix]
  }

  // Structural equality, at least.  Not equality in the sense of
  // deferencing the contained RangeFragIxes.
  fn sorted_range_eq(
    fixs1: &SortedRangeFragIxs, fixs2: &SortedRangeFragIxs,
  ) -> bool {
    if fixs1.frag_ixs.len() != fixs2.frag_ixs.len() {
      return false;
    }
    for (mf1, mf2) in fixs1.frag_ixs.iter().zip(&fixs2.frag_ixs) {
      if mf1 != mf2 {
        return false;
      }
    }
    true
  }

  let iix3 = InstIx::new(3);
  let iix4 = InstIx::new(4);
  let iix5 = InstIx::new(5);
  let iix6 = InstIx::new(6);
  let iix7 = InstIx::new(7);
  let iix10 = InstIx::new(10);
  let iix12 = InstIx::new(12);

  let fp_3u = InstPoint::new_use(iix3);
  let fp_3d = InstPoint::new_def(iix3);

  let fp_4u = InstPoint::new_use(iix4);

  let fp_5u = InstPoint::new_use(iix5);
  let fp_5d = InstPoint::new_def(iix5);

  let fp_6u = InstPoint::new_use(iix6);
  let fp_6d = InstPoint::new_def(iix6);

  let fp_7u = InstPoint::new_use(iix7);
  let fp_7d = InstPoint::new_def(iix7);

  let fp_10u = InstPoint::new_use(iix10);
  let fp_12u = InstPoint::new_use(iix12);

  let mut fenv = TypedIxVec::<RangeFragIx, RangeFrag>::new();

  let fix_3u = gen_fix(&mut fenv, fp_3u, fp_3u);
  let fix_3d = gen_fix(&mut fenv, fp_3d, fp_3d);
  let fix_4u = gen_fix(&mut fenv, fp_4u, fp_4u);
  let fix_3u_5u = gen_fix(&mut fenv, fp_3u, fp_5u);
  let fix_3d_5d = gen_fix(&mut fenv, fp_3d, fp_5d);
  let fix_3d_5u = gen_fix(&mut fenv, fp_3d, fp_5u);
  let fix_3u_5d = gen_fix(&mut fenv, fp_3u, fp_5d);
  let fix_6u_6d = gen_fix(&mut fenv, fp_6u, fp_6d);
  let fix_7u_7d = gen_fix(&mut fenv, fp_7u, fp_7d);
  let fix_10u = gen_fix(&mut fenv, fp_10u, fp_10u);
  let fix_12u = gen_fix(&mut fenv, fp_12u, fp_12u);

  // Boundary checks for point ranges, 3u vs 3d
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_3u),
      get_range_frag(&fenv, fix_3u)
    ) == Some(Ordering::Equal)
  );
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_3u),
      get_range_frag(&fenv, fix_3d)
    ) == Some(Ordering::Less)
  );
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_3d),
      get_range_frag(&fenv, fix_3u)
    ) == Some(Ordering::Greater)
  );

  // Boundary checks for point ranges, 3d vs 4u
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_3d),
      get_range_frag(&fenv, fix_3d)
    ) == Some(Ordering::Equal)
  );
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_3d),
      get_range_frag(&fenv, fix_4u)
    ) == Some(Ordering::Less)
  );
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_4u),
      get_range_frag(&fenv, fix_3d)
    ) == Some(Ordering::Greater)
  );

  // Partially overlapping
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_3d_5d),
      get_range_frag(&fenv, fix_3u_5u)
    ) == None
  );
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_3u_5u),
      get_range_frag(&fenv, fix_3d_5d)
    ) == None
  );

  // Completely overlapping: one contained within the other
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_3d_5u),
      get_range_frag(&fenv, fix_3u_5d)
    ) == None
  );
  assert!(
    cmp_range_frags(
      get_range_frag(&fenv, fix_3u_5d),
      get_range_frag(&fenv, fix_3d_5u)
    ) == None
  );

  // Create a SortedRangeFragIxs from a bunch of RangeFrag indices
  fn new_sorted_frag_ranges(
    fenv: &TypedIxVec<RangeFragIx, RangeFrag>, frags: &Vec<RangeFragIx>,
  ) -> SortedRangeFragIxs {
    SortedRangeFragIxs::new(&frags, fenv)
  }

  // Construction tests
  // These fail due to overlap
  //let _ = new_sorted_frag_ranges(&fenv, &vec![fix_3u_3u, fix_3u_3u]);
  //let _ = new_sorted_frag_ranges(&fenv, &vec![fix_3u_5u, fix_3d_5d]);

  // These fail due to not being in order
  //let _ = new_sorted_frag_ranges(&fenv, &vec![fix_4u_4u, fix_3u_3u]);

  // Simple non-overlap tests for add()

  let smf_empty = new_sorted_frag_ranges(&fenv, &vec![]);
  let smf_6_7_10 =
    new_sorted_frag_ranges(&fenv, &vec![fix_6u_6d, fix_7u_7d, fix_10u]);
  let smf_3_12 = new_sorted_frag_ranges(&fenv, &vec![fix_3u, fix_12u]);
  let smf_3_6_7_10_12 = new_sorted_frag_ranges(
    &fenv,
    &vec![fix_3u, fix_6u_6d, fix_7u_7d, fix_10u, fix_12u],
  );
  let mut tmp;

  tmp = smf_empty.clone();
  tmp.add(&smf_empty, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_empty));

  tmp = smf_3_12.clone();
  tmp.add(&smf_empty, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_3_12));

  tmp = smf_empty.clone();
  tmp.add(&smf_3_12, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_3_12));

  tmp = smf_6_7_10.clone();
  tmp.add(&smf_3_12, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_3_6_7_10_12));

  tmp = smf_3_12.clone();
  tmp.add(&smf_6_7_10, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_3_6_7_10_12));

  // Tests for can_add()
  assert!(true == smf_empty.can_add(&smf_empty, &fenv));
  assert!(true == smf_empty.can_add(&smf_3_12, &fenv));
  assert!(true == smf_3_12.can_add(&smf_empty, &fenv));
  assert!(false == smf_3_12.can_add(&smf_3_12, &fenv));

  assert!(true == smf_6_7_10.can_add(&smf_3_12, &fenv));

  assert!(true == smf_3_12.can_add(&smf_6_7_10, &fenv));

  // Tests for del()
  let smf_6_7 = new_sorted_frag_ranges(&fenv, &vec![fix_6u_6d, fix_7u_7d]);
  let smf_6_10 = new_sorted_frag_ranges(&fenv, &vec![fix_6u_6d, fix_10u]);
  let smf_7 = new_sorted_frag_ranges(&fenv, &vec![fix_7u_7d]);
  let smf_10 = new_sorted_frag_ranges(&fenv, &vec![fix_10u]);

  tmp = smf_empty.clone();
  tmp.del(&smf_empty, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_empty));

  tmp = smf_3_12.clone();
  tmp.del(&smf_empty, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_3_12));

  tmp = smf_empty.clone();
  tmp.del(&smf_3_12, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_empty));

  tmp = smf_6_7_10.clone();
  tmp.del(&smf_3_12, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_6_7_10));

  tmp = smf_3_12.clone();
  tmp.del(&smf_6_7_10, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_3_12));

  tmp = smf_6_7_10.clone();
  tmp.del(&smf_6_7, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_10));

  tmp = smf_6_7_10.clone();
  tmp.del(&smf_10, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_6_7));

  tmp = smf_6_7_10.clone();
  tmp.del(&smf_7, &fenv);
  assert!(sorted_range_eq(&tmp, &smf_6_10));

  // Tests for can_add_if_we_first_del()
  let smf_10_12 = new_sorted_frag_ranges(&fenv, &vec![fix_10u, fix_12u]);

  assert!(
    true
      == smf_6_7_10
        .can_add_if_we_first_del(/*d=*/ &smf_10_12, /*a=*/ &smf_3_12, &fenv)
  );

  assert!(
    false
      == smf_6_7_10
        .can_add_if_we_first_del(/*d=*/ &smf_10_12, /*a=*/ &smf_7, &fenv)
  );
}
*/