1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
use std::cell::UnsafeCell;
use std::fmt;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::process;
use std::sync::atomic::{AtomicUsize, Ordering};

use event_listener::Event;

use crate::{Mutex, MutexGuard};

const WRITER_BIT: usize = 1;
const ONE_READER: usize = 2;

/// An async reader-writer lock.
///
/// This type of lock allows multiple readers or one writer at any point in time.
///
/// The locking strategy is write-preferring, which means writers are never starved.
/// Releasing a write lock wakes the next blocked reader and the next blocked writer.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::RwLock;
///
/// let lock = RwLock::new(5);
///
/// // Multiple read locks can be held at a time.
/// let r1 = lock.read().await;
/// let r2 = lock.read().await;
/// assert_eq!(*r1, 5);
/// assert_eq!(*r2, 5);
/// drop((r1, r2));
///
/// // Only one write lock can be held at a time.
/// let mut w = lock.write().await;
/// *w += 1;
/// assert_eq!(*w, 6);
/// # })
/// ```
pub struct RwLock<T: ?Sized> {
    /// Acquired by the writer.
    mutex: Mutex<()>,

    /// Event triggered when the last reader is dropped.
    no_readers: Event,

    /// Event triggered when the writer is dropped.
    no_writer: Event,

    /// Current state of the lock.
    ///
    /// The least significant bit (`WRITER_BIT`) is set to 1 when a writer is holding the lock or
    /// trying to acquire it.
    ///
    /// The upper bits contain the number of currently active readers. Each active reader
    /// increments the state by `ONE_READER`.
    state: AtomicUsize,

    /// The inner value.
    value: UnsafeCell<T>,
}

unsafe impl<T: Send + ?Sized> Send for RwLock<T> {}
unsafe impl<T: Send + Sync + ?Sized> Sync for RwLock<T> {}

impl<T> RwLock<T> {
    /// Creates a new reader-writer lock.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::RwLock;
    ///
    /// let lock = RwLock::new(0);
    /// ```
    pub const fn new(t: T) -> RwLock<T> {
        RwLock {
            mutex: Mutex::new(()),
            no_readers: Event::new(),
            no_writer: Event::new(),
            state: AtomicUsize::new(0),
            value: UnsafeCell::new(t),
        }
    }

    /// Unwraps the lock and returns the inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::RwLock;
    ///
    /// let lock = RwLock::new(5);
    /// assert_eq!(lock.into_inner(), 5);
    /// ```
    pub fn into_inner(self) -> T {
        self.value.into_inner()
    }
}

impl<T: ?Sized> RwLock<T> {
    /// Attempts to acquire a read lock.
    ///
    /// If a read lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
    /// guard is returned that releases the lock when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::RwLock;
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let reader = lock.read().await;
    /// assert_eq!(*reader, 1);
    ///
    /// assert!(lock.try_read().is_some());
    /// # })
    /// ```
    pub fn try_read(&self) -> Option<RwLockReadGuard<'_, T>> {
        let mut state = self.state.load(Ordering::Acquire);

        loop {
            // If there's a writer holding the lock or attempting to acquire it, we cannot acquire
            // a read lock here.
            if state & WRITER_BIT != 0 {
                return None;
            }

            // Make sure the number of readers doesn't overflow.
            if state > std::isize::MAX as usize {
                process::abort();
            }

            // Increment the number of readers.
            match self.state.compare_exchange(
                state,
                state + ONE_READER,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => return Some(RwLockReadGuard(self)),
                Err(s) => state = s,
            }
        }
    }

    /// Acquires a read lock.
    ///
    /// Returns a guard that releases the lock when dropped.
    ///
    /// Note that attempts to acquire a read lock will block if there are also concurrent attempts
    /// to acquire a write lock.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::RwLock;
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let reader = lock.read().await;
    /// assert_eq!(*reader, 1);
    ///
    /// assert!(lock.try_read().is_some());
    /// # })
    /// ```
    pub async fn read(&self) -> RwLockReadGuard<'_, T> {
        let mut state = self.state.load(Ordering::Acquire);

        loop {
            if state & WRITER_BIT == 0 {
                // Make sure the number of readers doesn't overflow.
                if state > std::isize::MAX as usize {
                    process::abort();
                }

                // If nobody is holding a write lock or attempting to acquire it, increment the
                // number of readers.
                match self.state.compare_exchange(
                    state,
                    state + ONE_READER,
                    Ordering::AcqRel,
                    Ordering::Acquire,
                ) {
                    Ok(_) => return RwLockReadGuard(self),
                    Err(s) => state = s,
                }
            } else {
                // Start listening for "no writer" events.
                let listener = self.no_writer.listen();

                // Check again if there's a writer.
                if self.state.load(Ordering::SeqCst) & WRITER_BIT != 0 {
                    // Wait until the writer is dropped.
                    listener.await;
                    // Notify the next reader waiting in line.
                    self.no_writer.notify(1);
                }

                // Reload the state.
                state = self.state.load(Ordering::Acquire);
            }
        }
    }

    /// Attempts to acquire a read lock with the possiblity to upgrade to a write lock.
    ///
    /// If a read lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
    /// guard is returned that releases the lock when dropped.
    ///
    /// Upgradable read lock reserves the right to be upgraded to a write lock, which means there
    /// can be at most one upgradable read lock at a time.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::{RwLock, RwLockUpgradableReadGuard};
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let reader = lock.upgradable_read().await;
    /// assert_eq!(*reader, 1);
    /// assert_eq!(*lock.try_read().unwrap(), 1);
    ///
    /// let mut writer = RwLockUpgradableReadGuard::upgrade(reader).await;
    /// *writer = 2;
    /// # })
    /// ```
    pub fn try_upgradable_read(&self) -> Option<RwLockUpgradableReadGuard<'_, T>> {
        // First try grabbing the mutex.
        let lock = self.mutex.try_lock()?;

        let mut state = self.state.load(Ordering::Acquire);

        // Make sure the number of readers doesn't overflow.
        if state > std::isize::MAX as usize {
            process::abort();
        }

        // Increment the number of readers.
        loop {
            match self.state.compare_exchange(
                state,
                state + ONE_READER,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => {
                    return Some(RwLockUpgradableReadGuard {
                        reader: RwLockReadGuard(self),
                        reserved: lock,
                    })
                }
                Err(s) => state = s,
            }
        }
    }

    /// Attempts to acquire a read lock with the possiblity to upgrade to a write lock.
    ///
    /// Returns a guard that releases the lock when dropped.
    ///
    /// Upgradable read lock reserves the right to be upgraded to a write lock, which means there
    /// can be at most one upgradable read lock at a time.
    ///
    /// Note that attempts to acquire an upgradable read lock will block if there are concurrent
    /// attempts to acquire another upgradable read lock or a write lock.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::{RwLock, RwLockUpgradableReadGuard};
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let reader = lock.upgradable_read().await;
    /// assert_eq!(*reader, 1);
    /// assert_eq!(*lock.try_read().unwrap(), 1);
    ///
    /// let mut writer = RwLockUpgradableReadGuard::upgrade(reader).await;
    /// *writer = 2;
    /// # })
    /// ```
    pub async fn upgradable_read(&self) -> RwLockUpgradableReadGuard<'_, T> {
        // First grab the mutex.
        let lock = self.mutex.lock().await;

        let mut state = self.state.load(Ordering::Acquire);

        // Make sure the number of readers doesn't overflow.
        if state > std::isize::MAX as usize {
            process::abort();
        }

        // Increment the number of readers.
        loop {
            match self.state.compare_exchange(
                state,
                state + ONE_READER,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => {
                    return RwLockUpgradableReadGuard {
                        reader: RwLockReadGuard(self),
                        reserved: lock,
                    }
                }
                Err(s) => state = s,
            }
        }
    }

    /// Attempts to acquire a write lock.
    ///
    /// If a write lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
    /// guard is returned that releases the lock when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::RwLock;
    ///
    /// let lock = RwLock::new(1);
    ///
    /// assert!(lock.try_write().is_some());
    /// let reader = lock.read().await;
    /// assert!(lock.try_write().is_none());
    /// # })
    /// ```
    pub fn try_write(&self) -> Option<RwLockWriteGuard<'_, T>> {
        // First try grabbing the mutex.
        let lock = self.mutex.try_lock()?;

        // If there are no readers, grab the write lock.
        if self
            .state
            .compare_exchange(0, WRITER_BIT, Ordering::AcqRel, Ordering::Acquire)
            .is_ok()
        {
            Some(RwLockWriteGuard {
                writer: RwLockWriteGuardInner(self),
                reserved: lock,
            })
        } else {
            None
        }
    }

    /// Acquires a write lock.
    ///
    /// Returns a guard that releases the lock when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::RwLock;
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let writer = lock.write().await;
    /// assert!(lock.try_read().is_none());
    /// # })
    /// ```
    pub async fn write(&self) -> RwLockWriteGuard<'_, T> {
        // First grab the mutex.
        let lock = self.mutex.lock().await;

        // Set `WRITER_BIT` and create a guard that unsets it in case this future is canceled.
        self.state.fetch_or(WRITER_BIT, Ordering::SeqCst);
        let guard = RwLockWriteGuard {
            writer: RwLockWriteGuardInner(self),
            reserved: lock,
        };

        // If there are readers, we need to wait for them to finish.
        while self.state.load(Ordering::SeqCst) != WRITER_BIT {
            // Start listening for "no readers" events.
            let listener = self.no_readers.listen();

            // Check again if there are readers.
            if self.state.load(Ordering::Acquire) != WRITER_BIT {
                // Wait for the readers to finish.
                listener.await;
            }
        }

        guard
    }

    /// Returns a mutable reference to the inner value.
    ///
    /// Since this call borrows the lock mutably, no actual locking takes place. The mutable borrow
    /// statically guarantees no locks exist.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::RwLock;
    ///
    /// let mut lock = RwLock::new(1);
    ///
    /// *lock.get_mut() = 2;
    /// assert_eq!(*lock.read().await, 2);
    /// # })
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        unsafe { &mut *self.value.get() }
    }
}

impl<T: fmt::Debug + ?Sized> fmt::Debug for RwLock<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Locked;
        impl fmt::Debug for Locked {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<locked>")
            }
        }

        match self.try_read() {
            None => f.debug_struct("RwLock").field("value", &Locked).finish(),
            Some(guard) => f.debug_struct("RwLock").field("value", &&*guard).finish(),
        }
    }
}

impl<T> From<T> for RwLock<T> {
    fn from(val: T) -> RwLock<T> {
        RwLock::new(val)
    }
}

impl<T: Default + ?Sized> Default for RwLock<T> {
    fn default() -> RwLock<T> {
        RwLock::new(Default::default())
    }
}

/// A guard that releases the read lock when dropped.
pub struct RwLockReadGuard<'a, T: ?Sized>(&'a RwLock<T>);

unsafe impl<T: Sync + ?Sized> Send for RwLockReadGuard<'_, T> {}
unsafe impl<T: Sync + ?Sized> Sync for RwLockReadGuard<'_, T> {}

impl<T: ?Sized> Drop for RwLockReadGuard<'_, T> {
    fn drop(&mut self) {
        // Decrement the number of readers.
        if self.0.state.fetch_sub(ONE_READER, Ordering::SeqCst) & !WRITER_BIT == ONE_READER {
            // If this was the last reader, trigger the "no readers" event.
            self.0.no_readers.notify(1);
        }
    }
}

impl<T: fmt::Debug + ?Sized> fmt::Debug for RwLockReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display + ?Sized> fmt::Display for RwLockReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized> Deref for RwLockReadGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.0.value.get() }
    }
}

/// A guard that releases the upgradable read lock when dropped.
pub struct RwLockUpgradableReadGuard<'a, T: ?Sized> {
    reader: RwLockReadGuard<'a, T>,
    reserved: MutexGuard<'a, ()>,
}

unsafe impl<T: Send + Sync + ?Sized> Send for RwLockUpgradableReadGuard<'_, T> {}
unsafe impl<T: Sync + ?Sized> Sync for RwLockUpgradableReadGuard<'_, T> {}

impl<'a, T: ?Sized> RwLockUpgradableReadGuard<'a, T> {
    /// Converts this guard into a writer guard.
    fn into_writer(self) -> RwLockWriteGuard<'a, T> {
        let writer = RwLockWriteGuard {
            writer: RwLockWriteGuardInner(self.reader.0),
            reserved: self.reserved,
        };
        mem::forget(self.reader);
        writer
    }

    /// Downgrades into a regular reader guard.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::{RwLock, RwLockUpgradableReadGuard};
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let reader = lock.upgradable_read().await;
    /// assert_eq!(*reader, 1);
    ///
    /// assert!(lock.try_upgradable_read().is_none());
    ///
    /// let reader = RwLockUpgradableReadGuard::downgrade(reader);
    ///
    /// assert!(lock.try_upgradable_read().is_some());
    /// # })
    /// ```
    pub fn downgrade(guard: Self) -> RwLockReadGuard<'a, T> {
        guard.reader
    }

    /// Attempts to upgrade into a write lock.
    ///
    /// If a write lock could not be acquired at this time, then [`None`] is returned. Otherwise,
    /// an upgraded guard is returned that releases the write lock when dropped.
    ///
    /// This function can only fail if there are other active read locks.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::{RwLock, RwLockUpgradableReadGuard};
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let reader = lock.upgradable_read().await;
    /// assert_eq!(*reader, 1);
    ///
    /// let reader2 = lock.read().await;
    /// let reader = RwLockUpgradableReadGuard::try_upgrade(reader).unwrap_err();
    ///
    /// drop(reader2);
    /// let writer = RwLockUpgradableReadGuard::try_upgrade(reader).unwrap();
    /// # })
    /// ```
    pub fn try_upgrade(guard: Self) -> Result<RwLockWriteGuard<'a, T>, Self> {
        // If there are no readers, grab the write lock.
        if guard
            .reader
            .0
            .state
            .compare_exchange(ONE_READER, WRITER_BIT, Ordering::AcqRel, Ordering::Acquire)
            .is_ok()
        {
            Ok(guard.into_writer())
        } else {
            Err(guard)
        }
    }

    /// Upgrades into a write lock.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::{RwLock, RwLockUpgradableReadGuard};
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let reader = lock.upgradable_read().await;
    /// assert_eq!(*reader, 1);
    ///
    /// let mut writer = RwLockUpgradableReadGuard::upgrade(reader).await;
    /// *writer = 2;
    /// # })
    /// ```
    pub async fn upgrade(guard: Self) -> RwLockWriteGuard<'a, T> {
        // Set `WRITER_BIT` and decrement the number of readers at the same time.
        guard
            .reader
            .0
            .state
            .fetch_sub(ONE_READER - WRITER_BIT, Ordering::SeqCst);

        // Convert into a write guard that unsets `WRITER_BIT` in case this future is canceled.
        let guard = guard.into_writer();

        // If there are readers, we need to wait for them to finish.
        while guard.writer.0.state.load(Ordering::SeqCst) != WRITER_BIT {
            // Start listening for "no readers" events.
            let listener = guard.writer.0.no_readers.listen();

            // Check again if there are readers.
            if guard.writer.0.state.load(Ordering::Acquire) != WRITER_BIT {
                // Wait for the readers to finish.
                listener.await;
            }
        }

        guard
    }
}

impl<T: fmt::Debug + ?Sized> fmt::Debug for RwLockUpgradableReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display + ?Sized> fmt::Display for RwLockUpgradableReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized> Deref for RwLockUpgradableReadGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.reader.0.value.get() }
    }
}

struct RwLockWriteGuardInner<'a, T: ?Sized>(&'a RwLock<T>);

impl<T: ?Sized> Drop for RwLockWriteGuardInner<'_, T> {
    fn drop(&mut self) {
        // Unset `WRITER_BIT`.
        self.0.state.fetch_and(!WRITER_BIT, Ordering::SeqCst);
        // Trigger the "no writer" event.
        self.0.no_writer.notify(1);
    }
}

/// A guard that releases the write lock when dropped.
pub struct RwLockWriteGuard<'a, T: ?Sized> {
    writer: RwLockWriteGuardInner<'a, T>,
    reserved: MutexGuard<'a, ()>,
}

unsafe impl<T: Send + ?Sized> Send for RwLockWriteGuard<'_, T> {}
unsafe impl<T: Sync + ?Sized> Sync for RwLockWriteGuard<'_, T> {}

impl<'a, T: ?Sized> RwLockWriteGuard<'a, T> {
    /// Downgrades into a regular reader guard.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::{RwLock, RwLockWriteGuard};
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let mut writer = lock.write().await;
    /// *writer += 1;
    ///
    /// assert!(lock.try_read().is_none());
    ///
    /// let reader = RwLockWriteGuard::downgrade(writer);
    /// assert_eq!(*reader, 2);
    ///
    /// assert!(lock.try_read().is_some());
    /// # })
    /// ```
    pub fn downgrade(guard: Self) -> RwLockReadGuard<'a, T> {
        // Atomically downgrade state.
        guard
            .writer
            .0
            .state
            .fetch_add(ONE_READER - WRITER_BIT, Ordering::SeqCst);

        // Trigger the "no writer" event.
        guard.writer.0.no_writer.notify(1);

        // Convert into a read guard and return.
        let new_guard = RwLockReadGuard(guard.writer.0);
        mem::forget(guard.writer); // `RwLockWriteGuardInner::drop()` should not be called!
        new_guard
    }

    /// Downgrades into an upgradable reader guard.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard};
    ///
    /// let lock = RwLock::new(1);
    ///
    /// let mut writer = lock.write().await;
    /// *writer += 1;
    ///
    /// assert!(lock.try_read().is_none());
    ///
    /// let reader = RwLockWriteGuard::downgrade_to_upgradable(writer);
    /// assert_eq!(*reader, 2);
    ///
    /// assert!(lock.try_write().is_none());
    /// assert!(lock.try_read().is_some());
    ///
    /// assert!(RwLockUpgradableReadGuard::try_upgrade(reader).is_ok())
    /// # })
    /// ```
    pub fn downgrade_to_upgradable(guard: Self) -> RwLockUpgradableReadGuard<'a, T> {
        // Atomically downgrade state.
        guard
            .writer
            .0
            .state
            .fetch_add(ONE_READER - WRITER_BIT, Ordering::SeqCst);

        // Convert into an upgradable read guard and return.
        let new_guard = RwLockUpgradableReadGuard {
            reader: RwLockReadGuard(guard.writer.0),
            reserved: guard.reserved,
        };
        mem::forget(guard.writer); // `RwLockWriteGuardInner::drop()` should not be called!
        new_guard
    }
}

impl<T: fmt::Debug + ?Sized> fmt::Debug for RwLockWriteGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display + ?Sized> fmt::Display for RwLockWriteGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized> Deref for RwLockWriteGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.writer.0.value.get() }
    }
}

impl<T: ?Sized> DerefMut for RwLockWriteGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.writer.0.value.get() }
    }
}