1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
//! Unwind information for System V ABI (x86-64).

use crate::ir::Function;
use crate::isa::{
    unwind::systemv::{RegisterMappingError, UnwindInfo},
    CallConv, RegUnit, TargetIsa,
};
use crate::result::CodegenResult;
use gimli::{write::CommonInformationEntry, Encoding, Format, Register, X86_64};

/// Creates a new x86-64 common information entry (CIE).
pub fn create_cie() -> CommonInformationEntry {
    use gimli::write::CallFrameInstruction;

    let mut entry = CommonInformationEntry::new(
        Encoding {
            address_size: 8,
            format: Format::Dwarf32,
            version: 1,
        },
        1,  // Code alignment factor
        -8, // Data alignment factor
        X86_64::RA,
    );

    // Every frame will start with the call frame address (CFA) at RSP+8
    // It is +8 to account for the push of the return address by the call instruction
    entry.add_instruction(CallFrameInstruction::Cfa(X86_64::RSP, 8));

    // Every frame will start with the return address at RSP (CFA-8 = RSP+8-8 = RSP)
    entry.add_instruction(CallFrameInstruction::Offset(X86_64::RA, -8));

    entry
}

/// Map Cranelift registers to their corresponding Gimli registers.
pub fn map_reg(isa: &dyn TargetIsa, reg: RegUnit) -> Result<Register, RegisterMappingError> {
    if isa.name() != "x86" || isa.pointer_bits() != 64 {
        return Err(RegisterMappingError::UnsupportedArchitecture);
    }

    // Mapping from https://github.com/bytecodealliance/cranelift/pull/902 by @iximeow
    const X86_GP_REG_MAP: [gimli::Register; 16] = [
        X86_64::RAX,
        X86_64::RCX,
        X86_64::RDX,
        X86_64::RBX,
        X86_64::RSP,
        X86_64::RBP,
        X86_64::RSI,
        X86_64::RDI,
        X86_64::R8,
        X86_64::R9,
        X86_64::R10,
        X86_64::R11,
        X86_64::R12,
        X86_64::R13,
        X86_64::R14,
        X86_64::R15,
    ];
    const X86_XMM_REG_MAP: [gimli::Register; 16] = [
        X86_64::XMM0,
        X86_64::XMM1,
        X86_64::XMM2,
        X86_64::XMM3,
        X86_64::XMM4,
        X86_64::XMM5,
        X86_64::XMM6,
        X86_64::XMM7,
        X86_64::XMM8,
        X86_64::XMM9,
        X86_64::XMM10,
        X86_64::XMM11,
        X86_64::XMM12,
        X86_64::XMM13,
        X86_64::XMM14,
        X86_64::XMM15,
    ];

    let reg_info = isa.register_info();
    let bank = reg_info
        .bank_containing_regunit(reg)
        .ok_or_else(|| RegisterMappingError::MissingBank)?;
    match bank.name {
        "IntRegs" => {
            // x86 GP registers have a weird mapping to DWARF registers, so we use a
            // lookup table.
            Ok(X86_GP_REG_MAP[(reg - bank.first_unit) as usize])
        }
        "FloatRegs" => Ok(X86_XMM_REG_MAP[(reg - bank.first_unit) as usize]),
        _ => Err(RegisterMappingError::UnsupportedRegisterBank(bank.name)),
    }
}

pub(crate) fn create_unwind_info(
    func: &Function,
    isa: &dyn TargetIsa,
) -> CodegenResult<Option<UnwindInfo>> {
    // Only System V-like calling conventions are supported
    match func.signature.call_conv {
        CallConv::Fast | CallConv::Cold | CallConv::SystemV => {}
        _ => return Ok(None),
    }

    if func.prologue_end.is_none() || isa.name() != "x86" || isa.pointer_bits() != 64 {
        return Ok(None);
    }

    let unwind = match super::create_unwind_info(func, isa)? {
        Some(u) => u,
        None => {
            return Ok(None);
        }
    };

    struct RegisterMapper<'a, 'b>(&'a (dyn TargetIsa + 'b));
    impl<'a, 'b> crate::isa::unwind::systemv::RegisterMapper<RegUnit> for RegisterMapper<'a, 'b> {
        fn map(&self, reg: RegUnit) -> Result<u16, RegisterMappingError> {
            Ok(map_reg(self.0, reg)?.0)
        }
        fn sp(&self) -> u16 {
            X86_64::RSP.0
        }
    }
    let map = RegisterMapper(isa);

    Ok(Some(UnwindInfo::build(unwind, &map)?))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::cursor::{Cursor, FuncCursor};
    use crate::ir::{
        types, AbiParam, ExternalName, InstBuilder, Signature, StackSlotData, StackSlotKind,
    };
    use crate::isa::{lookup_variant, BackendVariant, CallConv};
    use crate::settings::{builder, Flags};
    use crate::Context;
    use gimli::write::Address;
    use std::str::FromStr;
    use target_lexicon::triple;

    #[test]
    fn test_simple_func() {
        let isa = lookup_variant(triple!("x86_64"), BackendVariant::Legacy)
            .expect("expect x86 ISA")
            .finish(Flags::new(builder()));

        let mut context = Context::for_function(create_function(
            CallConv::SystemV,
            Some(StackSlotData::new(StackSlotKind::ExplicitSlot, 64)),
        ));

        context.compile(&*isa).expect("expected compilation");

        let fde = match isa
            .create_unwind_info(&context.func)
            .expect("can create unwind info")
        {
            Some(crate::isa::unwind::UnwindInfo::SystemV(info)) => {
                info.to_fde(Address::Constant(1234))
            }
            _ => panic!("expected unwind information"),
        };

        assert_eq!(format!("{:?}", fde), "FrameDescriptionEntry { address: Constant(1234), length: 16, lsda: None, instructions: [(2, CfaOffset(16)), (2, Offset(Register(6), -16)), (5, CfaRegister(Register(6))), (15, SameValue(Register(6))), (15, Cfa(Register(7), 8))] }");
    }

    fn create_function(call_conv: CallConv, stack_slot: Option<StackSlotData>) -> Function {
        let mut func =
            Function::with_name_signature(ExternalName::user(0, 0), Signature::new(call_conv));

        let block0 = func.dfg.make_block();
        let mut pos = FuncCursor::new(&mut func);
        pos.insert_block(block0);
        pos.ins().return_(&[]);

        if let Some(stack_slot) = stack_slot {
            func.stack_slots.push(stack_slot);
        }

        func
    }

    #[test]
    fn test_multi_return_func() {
        let isa = lookup_variant(triple!("x86_64"), BackendVariant::Legacy)
            .expect("expect x86 ISA")
            .finish(Flags::new(builder()));

        let mut context = Context::for_function(create_multi_return_function(CallConv::SystemV));

        context.compile(&*isa).expect("expected compilation");

        let fde = match isa
            .create_unwind_info(&context.func)
            .expect("can create unwind info")
        {
            Some(crate::isa::unwind::UnwindInfo::SystemV(info)) => {
                info.to_fde(Address::Constant(4321))
            }
            _ => panic!("expected unwind information"),
        };

        assert_eq!(format!("{:?}", fde), "FrameDescriptionEntry { address: Constant(4321), length: 16, lsda: None, instructions: [(2, CfaOffset(16)), (2, Offset(Register(6), -16)), (5, CfaRegister(Register(6))), (12, RememberState), (12, SameValue(Register(6))), (12, Cfa(Register(7), 8)), (13, RestoreState), (15, SameValue(Register(6))), (15, Cfa(Register(7), 8))] }");
    }

    fn create_multi_return_function(call_conv: CallConv) -> Function {
        let mut sig = Signature::new(call_conv);
        sig.params.push(AbiParam::new(types::I32));
        let mut func = Function::with_name_signature(ExternalName::user(0, 0), sig);

        let block0 = func.dfg.make_block();
        let v0 = func.dfg.append_block_param(block0, types::I32);
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();

        let mut pos = FuncCursor::new(&mut func);
        pos.insert_block(block0);
        pos.ins().brnz(v0, block2, &[]);
        pos.ins().jump(block1, &[]);

        pos.insert_block(block1);
        pos.ins().return_(&[]);

        pos.insert_block(block2);
        pos.ins().return_(&[]);

        func
    }
}