1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
use core::fmt;
use core::future::Future;
use core::marker::PhantomData;
use core::mem;
use core::ptr::NonNull;
use core::sync::atomic::Ordering;
use core::task::Waker;

use crate::header::Header;
use crate::raw::RawTask;
use crate::state::*;
use crate::Task;

/// Creates a new task.
///
/// The returned [`Runnable`] is used to poll the `future`, and the [`Task`] is used to await its
/// output.
///
/// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`]
/// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run
/// again.
///
/// When the task is woken, its [`Runnable`] is passed to the `schedule` function.
/// The `schedule` function should not attempt to run the [`Runnable`] nor to drop it. Instead, it
/// should push it into a task queue so that it can be processed later.
///
/// If you need to spawn a future that does not implement [`Send`] or isn't `'static`, consider
/// using [`spawn_local()`] or [`spawn_unchecked()`] instead.
///
/// # Examples
///
/// ```
/// // The future inside the task.
/// let future = async {
///     println!("Hello, world!");
/// };
///
/// // A function that schedules the task when it gets woken up.
/// let (s, r) = flume::unbounded();
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = async_task::spawn(future, schedule);
/// ```
pub fn spawn<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>)
where
    F: Future + Send + 'static,
    F::Output: Send + 'static,
    S: Fn(Runnable) + Send + Sync + 'static,
{
    unsafe { spawn_unchecked(future, schedule) }
}

/// Creates a new thread-local task.
///
/// This function is same as [`spawn()`], except it does not require [`Send`] on `future`. If the
/// [`Runnable`] is used or dropped on another thread, a panic will occur.
///
/// This function is only available when the `std` feature for this crate is enabled.
///
/// # Examples
///
/// ```
/// use async_task::Runnable;
/// use flume::{Receiver, Sender};
/// use std::rc::Rc;
///
/// thread_local! {
///     // A queue that holds scheduled tasks.
///     static QUEUE: (Sender<Runnable>, Receiver<Runnable>) = flume::unbounded();
/// }
///
/// // Make a non-Send future.
/// let msg: Rc<str> = "Hello, world!".into();
/// let future = async move {
///     println!("{}", msg);
/// };
///
/// // A function that schedules the task when it gets woken up.
/// let s = QUEUE.with(|(s, _)| s.clone());
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = async_task::spawn_local(future, schedule);
/// ```
#[cfg(feature = "std")]
pub fn spawn_local<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>)
where
    F: Future + 'static,
    F::Output: 'static,
    S: Fn(Runnable) + Send + Sync + 'static,
{
    use std::mem::ManuallyDrop;
    use std::pin::Pin;
    use std::task::{Context, Poll};
    use std::thread::{self, ThreadId};

    #[inline]
    fn thread_id() -> ThreadId {
        thread_local! {
            static ID: ThreadId = thread::current().id();
        }
        ID.try_with(|id| *id)
            .unwrap_or_else(|_| thread::current().id())
    }

    struct Checked<F> {
        id: ThreadId,
        inner: ManuallyDrop<F>,
    }

    impl<F> Drop for Checked<F> {
        fn drop(&mut self) {
            assert!(
                self.id == thread_id(),
                "local task dropped by a thread that didn't spawn it"
            );
            unsafe {
                ManuallyDrop::drop(&mut self.inner);
            }
        }
    }

    impl<F: Future> Future for Checked<F> {
        type Output = F::Output;

        fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
            assert!(
                self.id == thread_id(),
                "local task polled by a thread that didn't spawn it"
            );
            unsafe { self.map_unchecked_mut(|c| &mut *c.inner).poll(cx) }
        }
    }

    // Wrap the future into one that checks which thread it's on.
    let future = Checked {
        id: thread_id(),
        inner: ManuallyDrop::new(future),
    };

    unsafe { spawn_unchecked(future, schedule) }
}

/// Creates a new task without [`Send`], [`Sync`], and `'static` bounds.
///
/// This function is same as [`spawn()`], except it does not require [`Send`], [`Sync`], and
/// `'static` on `future` and `schedule`.
///
/// Safety requirements:
///
/// - If `future` is not [`Send`], its [`Runnable`] must be used and dropped on the original
///   thread.
/// - If `future` is not `'static`, borrowed variables must outlive its [`Runnable`].
/// - If `schedule` is not [`Send`] and [`Sync`], the task's [`Waker`] must be used and dropped on
///   the original thread.
/// - If `schedule` is not `'static`, borrowed variables must outlive the task's [`Waker`].
///
/// # Examples
///
/// ```
/// // The future inside the task.
/// let future = async {
///     println!("Hello, world!");
/// };
///
/// // If the task gets woken up, it will be sent into this channel.
/// let (s, r) = flume::unbounded();
/// let schedule = move |runnable| s.send(runnable).unwrap();
///
/// // Create a task with the future and the schedule function.
/// let (runnable, task) = unsafe { async_task::spawn_unchecked(future, schedule) };
/// ```
pub unsafe fn spawn_unchecked<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>)
where
    F: Future,
    S: Fn(Runnable),
{
    // Allocate large futures on the heap.
    let ptr = if mem::size_of::<F>() >= 2048 {
        let future = alloc::boxed::Box::pin(future);
        RawTask::<_, F::Output, S>::allocate(future, schedule)
    } else {
        RawTask::<F, F::Output, S>::allocate(future, schedule)
    };

    let runnable = Runnable { ptr };
    let task = Task {
        ptr,
        _marker: PhantomData,
    };
    (runnable, task)
}

/// A handle to a runnable task.
///
/// Every spawned task has a single [`Runnable`] handle, which only exists when the task is
/// scheduled for running.
///
/// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`]
/// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run
/// again.
///
/// Dropping a [`Runnable`] cancels the task, which means its future won't be polled again, and
/// awaiting the [`Task`] after that will result in a panic.
///
/// # Examples
///
/// ```
/// use async_task::Runnable;
/// use once_cell::sync::Lazy;
/// use std::{panic, thread};
///
/// // A simple executor.
/// static QUEUE: Lazy<flume::Sender<Runnable>> = Lazy::new(|| {
///     let (sender, receiver) = flume::unbounded::<Runnable>();
///     thread::spawn(|| {
///         for runnable in receiver {
///             let _ignore_panic = panic::catch_unwind(|| runnable.run());
///         }
///     });
///     sender
/// });
///
/// // Create a task with a simple future.
/// let schedule = |runnable| QUEUE.send(runnable).unwrap();
/// let (runnable, task) = async_task::spawn(async { 1 + 2 }, schedule);
///
/// // Schedule the task and await its output.
/// runnable.schedule();
/// assert_eq!(smol::future::block_on(task), 3);
/// ```
pub struct Runnable {
    /// A pointer to the heap-allocated task.
    pub(crate) ptr: NonNull<()>,
}

unsafe impl Send for Runnable {}
unsafe impl Sync for Runnable {}

#[cfg(feature = "std")]
impl std::panic::UnwindSafe for Runnable {}
#[cfg(feature = "std")]
impl std::panic::RefUnwindSafe for Runnable {}

impl Runnable {
    /// Schedules the task.
    ///
    /// This is a convenience method that passes the [`Runnable`] to the schedule function.
    ///
    /// # Examples
    ///
    /// ```
    /// // A function that schedules the task when it gets woken up.
    /// let (s, r) = flume::unbounded();
    /// let schedule = move |runnable| s.send(runnable).unwrap();
    ///
    /// // Create a task with a simple future and the schedule function.
    /// let (runnable, task) = async_task::spawn(async {}, schedule);
    ///
    /// // Schedule the task.
    /// assert_eq!(r.len(), 0);
    /// runnable.schedule();
    /// assert_eq!(r.len(), 1);
    /// ```
    pub fn schedule(self) {
        let ptr = self.ptr.as_ptr();
        let header = ptr as *const Header;
        mem::forget(self);

        unsafe {
            ((*header).vtable.schedule)(ptr);
        }
    }

    /// Runs the task by polling its future.
    ///
    /// Returns `true` if the task was woken while running, in which case the [`Runnable`] gets
    /// rescheduled at the end of this method invocation. Otherwise, returns `false` and the
    /// [`Runnable`] vanishes until the task is woken.
    /// The return value is just a hint: `true` usually indicates that the task has yielded, i.e.
    /// it woke itself and then gave the control back to the executor.
    ///
    /// If the [`Task`] handle was dropped or if [`cancel()`][`Task::cancel()`] was called, then
    /// this method simply destroys the task.
    ///
    /// If the polled future panics, this method propagates the panic, and awaiting the [`Task`]
    /// after that will also result in a panic.
    ///
    /// # Examples
    ///
    /// ```
    /// // A function that schedules the task when it gets woken up.
    /// let (s, r) = flume::unbounded();
    /// let schedule = move |runnable| s.send(runnable).unwrap();
    ///
    /// // Create a task with a simple future and the schedule function.
    /// let (runnable, task) = async_task::spawn(async { 1 + 2 }, schedule);
    ///
    /// // Run the task and check its output.
    /// runnable.run();
    /// assert_eq!(smol::future::block_on(task), 3);
    /// ```
    pub fn run(self) -> bool {
        let ptr = self.ptr.as_ptr();
        let header = ptr as *const Header;
        mem::forget(self);

        unsafe { ((*header).vtable.run)(ptr) }
    }

    /// Returns a waker associated with this task.
    ///
    /// # Examples
    ///
    /// ```
    /// use smol::future;
    ///
    /// // A function that schedules the task when it gets woken up.
    /// let (s, r) = flume::unbounded();
    /// let schedule = move |runnable| s.send(runnable).unwrap();
    ///
    /// // Create a task with a simple future and the schedule function.
    /// let (runnable, task) = async_task::spawn(future::pending::<()>(), schedule);
    ///
    /// // Take a waker and run the task.
    /// let waker = runnable.waker();
    /// runnable.run();
    ///
    /// // Reschedule the task by waking it.
    /// assert_eq!(r.len(), 0);
    /// waker.wake();
    /// assert_eq!(r.len(), 1);
    /// ```
    pub fn waker(&self) -> Waker {
        let ptr = self.ptr.as_ptr();
        let header = ptr as *const Header;

        unsafe {
            let raw_waker = ((*header).vtable.clone_waker)(ptr);
            Waker::from_raw(raw_waker)
        }
    }
}

impl Drop for Runnable {
    fn drop(&mut self) {
        let ptr = self.ptr.as_ptr();
        let header = ptr as *const Header;

        unsafe {
            let mut state = (*header).state.load(Ordering::Acquire);

            loop {
                // If the task has been completed or closed, it can't be canceled.
                if state & (COMPLETED | CLOSED) != 0 {
                    break;
                }

                // Mark the task as closed.
                match (*header).state.compare_exchange_weak(
                    state,
                    state | CLOSED,
                    Ordering::AcqRel,
                    Ordering::Acquire,
                ) {
                    Ok(_) => break,
                    Err(s) => state = s,
                }
            }

            // Drop the future.
            ((*header).vtable.drop_future)(ptr);

            // Mark the task as unscheduled.
            let state = (*header).state.fetch_and(!SCHEDULED, Ordering::AcqRel);

            // Notify the awaiter that the future has been dropped.
            if state & AWAITER != 0 {
                (*header).notify(None);
            }

            // Drop the task reference.
            ((*header).vtable.drop_ref)(ptr);
        }
    }
}

impl fmt::Debug for Runnable {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let ptr = self.ptr.as_ptr();
        let header = ptr as *const Header;

        f.debug_struct("Runnable")
            .field("header", unsafe { &(*header) })
            .finish()
    }
}