1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
// This file is part of Substrate.
// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Provides the [`PassBy`](PassBy) trait to simplify the implementation of the
//! runtime interface traits for custom types.
//!
//! [`Codec`], [`Inner`] and [`Enum`] are the provided strategy implementations.
use crate::{RIType, util::{unpack_ptr_and_len, pack_ptr_and_len}};
#[cfg(feature = "std")]
use crate::host::*;
#[cfg(not(feature = "std"))]
use crate::wasm::*;
#[cfg(feature = "std")]
use sp_wasm_interface::{FunctionContext, Pointer, Result};
use sp_std::{marker::PhantomData, convert::TryFrom};
#[cfg(not(feature = "std"))]
use sp_std::vec::Vec;
/// Derive macro for implementing [`PassBy`] with the [`Codec`] strategy.
///
/// This requires that the type implements [`Encode`](codec::Encode) and [`Decode`](codec::Decode)
/// from `parity-scale-codec`.
///
/// # Example
///
/// ```
/// # use sp_runtime_interface::pass_by::PassByCodec;
/// # use codec::{Encode, Decode};
/// #[derive(PassByCodec, Encode, Decode)]
/// struct EncodableType {
/// name: Vec<u8>,
/// param: u32,
/// }
/// ```
pub use sp_runtime_interface_proc_macro::PassByCodec;
/// Derive macro for implementing [`PassBy`] with the [`Inner`] strategy.
///
/// Besides implementing [`PassBy`], this derive also implements the helper trait [`PassByInner`].
///
/// The type is required to be a struct with just one field. The field type needs to implement
/// the required traits to pass it between the wasm and the native side. (See the runtime interface
/// crate for more information about these traits.)
///
/// # Example
///
/// ```
/// # use sp_runtime_interface::pass_by::PassByInner;
/// #[derive(PassByInner)]
/// struct Data([u8; 32]);
/// ```
///
/// ```
/// # use sp_runtime_interface::pass_by::PassByInner;
/// #[derive(PassByInner)]
/// struct Data {
/// data: [u8; 32],
/// }
/// ```
pub use sp_runtime_interface_proc_macro::PassByInner;
/// Derive macro for implementing [`PassBy`] with the [`Enum`] strategy.
///
/// Besides implementing [`PassBy`], this derive also implements `TryFrom<u8>` and
/// `From<Self> for u8` for the type.
///
/// The type is required to be an enum with only unit variants and at maximum `256` variants. Also
/// it is required that the type implements `Copy`.
///
/// # Example
///
/// ```
/// # use sp_runtime_interface::pass_by::PassByEnum;
/// #[derive(PassByEnum, Copy, Clone)]
/// enum Data {
/// Okay,
/// NotOkay,
/// // This will not work with the derive.
/// //Why(u32),
/// }
/// ```
pub use sp_runtime_interface_proc_macro::PassByEnum;
/// Something that should be passed between wasm and the host using the given strategy.
///
/// See [`Codec`], [`Inner`] or [`Enum`] for more information about the provided strategies.
pub trait PassBy: Sized {
/// The strategy that should be used to pass the type.
type PassBy: PassByImpl<Self>;
}
/// Something that provides a strategy for passing a type between wasm and the host.
///
/// This trait exposes the same functionality as [`crate::host::IntoFFIValue`] and
/// [`crate::host::FromFFIValue`] to delegate the implementation for a type to a different type.
///
/// This trait is used for the host implementation.
#[cfg(feature = "std")]
pub trait PassByImpl<T>: RIType {
/// Convert the given instance to the ffi value.
///
/// For more information see: [`crate::host::IntoFFIValue::into_ffi_value`]
fn into_ffi_value(
instance: T,
context: &mut dyn FunctionContext,
) -> Result<Self::FFIType>;
/// Create `T` from the given ffi value.
///
/// For more information see: [`crate::host::FromFFIValue::from_ffi_value`]
fn from_ffi_value(
context: &mut dyn FunctionContext,
arg: Self::FFIType,
) -> Result<T>;
}
/// Something that provides a strategy for passing a type between wasm and the host.
///
/// This trait exposes the same functionality as [`crate::wasm::IntoFFIValue`] and
/// [`crate::wasm::FromFFIValue`] to delegate the implementation for a type to a different type.
///
/// This trait is used for the wasm implementation.
#[cfg(not(feature = "std"))]
pub trait PassByImpl<T>: RIType {
/// The owned rust type that is stored with the ffi value in [`crate::wasm::WrappedFFIValue`].
type Owned;
/// Convert the given `instance` into [`crate::wasm::WrappedFFIValue`].
///
/// For more information see: [`crate::wasm::IntoFFIValue::into_ffi_value`]
fn into_ffi_value(instance: &T) -> WrappedFFIValue<Self::FFIType, Self::Owned>;
/// Create `T` from the given ffi value.
///
/// For more information see: [`crate::wasm::FromFFIValue::from_ffi_value`]
fn from_ffi_value(arg: Self::FFIType) -> T;
}
impl<T: PassBy> RIType for T {
type FFIType = <T::PassBy as RIType>::FFIType;
}
#[cfg(feature = "std")]
impl<T: PassBy> IntoFFIValue for T {
fn into_ffi_value(
self,
context: &mut dyn FunctionContext,
) -> Result<<T::PassBy as RIType>::FFIType> {
T::PassBy::into_ffi_value(self, context)
}
}
#[cfg(feature = "std")]
impl<T: PassBy> FromFFIValue for T {
type SelfInstance = Self;
fn from_ffi_value(
context: &mut dyn FunctionContext,
arg: <T::PassBy as RIType>::FFIType,
) -> Result<Self> {
T::PassBy::from_ffi_value(context, arg)
}
}
#[cfg(not(feature = "std"))]
impl<T: PassBy> IntoFFIValue for T {
type Owned = <T::PassBy as PassByImpl<T>>::Owned;
fn into_ffi_value(&self) -> WrappedFFIValue<<T::PassBy as RIType>::FFIType, Self::Owned> {
T::PassBy::into_ffi_value(self)
}
}
#[cfg(not(feature = "std"))]
impl<T: PassBy> FromFFIValue for T {
fn from_ffi_value(arg: <T::PassBy as RIType>::FFIType) -> Self {
T::PassBy::from_ffi_value(arg)
}
}
/// The implementation of the pass by codec strategy. This strategy uses a SCALE encoded
/// representation of the type between wasm and the host.
///
/// Use this type as associated type for [`PassBy`] to implement this strategy for a type.
///
/// This type expects the type that wants to implement this strategy as generic parameter.
///
/// [`PassByCodec`](derive.PassByCodec.html) is a derive macro to implement this strategy.
///
/// # Example
/// ```
/// # use sp_runtime_interface::pass_by::{PassBy, Codec};
/// #[derive(codec::Encode, codec::Decode)]
/// struct Test;
///
/// impl PassBy for Test {
/// type PassBy = Codec<Self>;
/// }
/// ```
pub struct Codec<T: codec::Codec>(PhantomData<T>);
#[cfg(feature = "std")]
impl<T: codec::Codec> PassByImpl<T> for Codec<T> {
fn into_ffi_value(
instance: T,
context: &mut dyn FunctionContext,
) -> Result<Self::FFIType> {
let vec = instance.encode();
let ptr = context.allocate_memory(vec.len() as u32)?;
context.write_memory(ptr, &vec)?;
Ok(pack_ptr_and_len(ptr.into(), vec.len() as u32))
}
fn from_ffi_value(
context: &mut dyn FunctionContext,
arg: Self::FFIType,
) -> Result<T> {
let (ptr, len) = unpack_ptr_and_len(arg);
let vec = context.read_memory(Pointer::new(ptr), len)?;
T::decode(&mut &vec[..])
.map_err(|e| format!("Could not decode value from wasm: {}", e))
}
}
#[cfg(not(feature = "std"))]
impl<T: codec::Codec> PassByImpl<T> for Codec<T> {
type Owned = Vec<u8>;
fn into_ffi_value(instance: &T) -> WrappedFFIValue<Self::FFIType, Self::Owned> {
let data = instance.encode();
let ffi_value = pack_ptr_and_len(data.as_ptr() as u32, data.len() as u32);
(ffi_value, data).into()
}
fn from_ffi_value(arg: Self::FFIType) -> T {
let (ptr, len) = unpack_ptr_and_len(arg);
let len = len as usize;
let encoded = if len == 0 {
Vec::new()
} else {
unsafe { Vec::from_raw_parts(ptr as *mut u8, len, len) }
};
T::decode(&mut &encoded[..]).expect("Host to wasm values are encoded correctly; qed")
}
}
/// The type is passed as `u64`.
///
/// The `u64` value is build by `length 32bit << 32 | pointer 32bit`
///
/// `Self` is encoded and the length and the pointer are taken from the encoded vector.
impl<T: codec::Codec> RIType for Codec<T> {
type FFIType = u64;
}
/// Trait that needs to be implemented by a type that should be passed between wasm and the host,
/// by using the inner type. See [`Inner`] for more information.
pub trait PassByInner: Sized {
/// The inner type that is wrapped by `Self`.
type Inner: RIType;
/// Consumes `self` and returns the inner type.
fn into_inner(self) -> Self::Inner;
/// Returns the reference to the inner type.
fn inner(&self) -> &Self::Inner;
/// Construct `Self` from the given `inner`.
fn from_inner(inner: Self::Inner) -> Self;
}
/// The implementation of the pass by inner type strategy. The type that uses this strategy will be
/// passed between wasm and the host by using the wrapped inner type. So, this strategy is only
/// usable by newtype structs.
///
/// Use this type as associated type for [`PassBy`] to implement this strategy for a type. Besides
/// that the `PassByInner` trait need to be implemented as well.
///
/// This type expects the type that wants to use this strategy as generic parameter `T` and the
/// inner type as generic parameter `I`.
///
/// [`PassByInner`](derive.PassByInner.html) is a derive macro to implement this strategy.
///
/// # Example
/// ```
/// # use sp_runtime_interface::pass_by::{PassBy, Inner, PassByInner};
/// struct Test([u8; 32]);
///
/// impl PassBy for Test {
/// type PassBy = Inner<Self, [u8; 32]>;
/// }
///
/// impl PassByInner for Test {
/// type Inner = [u8; 32];
///
/// fn into_inner(self) -> [u8; 32] {
/// self.0
/// }
/// fn inner(&self) -> &[u8; 32] {
/// &self.0
/// }
/// fn from_inner(inner: [u8; 32]) -> Self {
/// Self(inner)
/// }
/// }
/// ```
pub struct Inner<T: PassByInner<Inner = I>, I: RIType>(PhantomData<(T, I)>);
#[cfg(feature = "std")]
impl<T: PassByInner<Inner = I>, I: RIType> PassByImpl<T> for Inner<T, I>
where I: IntoFFIValue + FromFFIValue<SelfInstance=I>
{
fn into_ffi_value(
instance: T,
context: &mut dyn FunctionContext,
) -> Result<Self::FFIType> {
instance.into_inner().into_ffi_value(context)
}
fn from_ffi_value(
context: &mut dyn FunctionContext,
arg: Self::FFIType,
) -> Result<T> {
I::from_ffi_value(context, arg).map(T::from_inner)
}
}
#[cfg(not(feature = "std"))]
impl<T: PassByInner<Inner = I>, I: RIType> PassByImpl<T> for Inner<T, I>
where I: IntoFFIValue + FromFFIValue
{
type Owned = I::Owned;
fn into_ffi_value(instance: &T) -> WrappedFFIValue<Self::FFIType, Self::Owned> {
instance.inner().into_ffi_value()
}
fn from_ffi_value(arg: Self::FFIType) -> T {
T::from_inner(I::from_ffi_value(arg))
}
}
/// The type is passed as the inner type.
impl<T: PassByInner<Inner = I>, I: RIType> RIType for Inner<T, I> {
type FFIType = I::FFIType;
}
/// The implementation of the pass by enum strategy. This strategy uses an `u8` internally to pass
/// the enum between wasm and the host. So, this strategy only supports enums with unit variants.
///
/// Use this type as associated type for [`PassBy`] to implement this strategy for a type.
///
/// This type expects the type that wants to implement this strategy as generic parameter. Besides
/// that the type needs to implement `TryFrom<u8>` and `From<Self> for u8`.
///
/// [`PassByEnum`](derive.PassByEnum.html) is a derive macro to implement this strategy.
///
/// # Example
/// ```
/// # use sp_runtime_interface::pass_by::{PassBy, Enum};
/// #[derive(Clone, Copy)]
/// enum Test {
/// Test1,
/// Test2,
/// }
///
/// impl From<Test> for u8 {
/// fn from(val: Test) -> u8 {
/// match val {
/// Test::Test1 => 0,
/// Test::Test2 => 1,
/// }
/// }
/// }
///
/// impl std::convert::TryFrom<u8> for Test {
/// type Error = ();
///
/// fn try_from(val: u8) -> Result<Test, ()> {
/// match val {
/// 0 => Ok(Test::Test1),
/// 1 => Ok(Test::Test2),
/// _ => Err(()),
/// }
/// }
/// }
///
/// impl PassBy for Test {
/// type PassBy = Enum<Self>;
/// }
/// ```
pub struct Enum<T: Copy + Into<u8> + TryFrom<u8>>(PhantomData<T>);
#[cfg(feature = "std")]
impl<T: Copy + Into<u8> + TryFrom<u8>> PassByImpl<T> for Enum<T> {
fn into_ffi_value(
instance: T,
_: &mut dyn FunctionContext,
) -> Result<Self::FFIType> {
Ok(instance.into())
}
fn from_ffi_value(
_: &mut dyn FunctionContext,
arg: Self::FFIType,
) -> Result<T> {
T::try_from(arg).map_err(|_| format!("Invalid enum discriminant: {}", arg))
}
}
#[cfg(not(feature = "std"))]
impl<T: Copy + Into<u8> + TryFrom<u8, Error = ()>> PassByImpl<T> for Enum<T> {
type Owned = ();
fn into_ffi_value(instance: &T) -> WrappedFFIValue<Self::FFIType, Self::Owned> {
let value: u8 = (*instance).into();
value.into()
}
fn from_ffi_value(arg: Self::FFIType) -> T {
T::try_from(arg).expect("Host to wasm provides a valid enum discriminant; qed")
}
}
/// The type is passed as `u8`.
///
/// The value is corresponds to the discriminant of the variant.
impl<T: Copy + Into<u8> + TryFrom<u8>> RIType for Enum<T> {
type FFIType = u8;
}