1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
use alloc::vec::Vec;
use crate::cursor::{Cursor, EncCursor};
use crate::dominator_tree::DominatorTree;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::{Block, Function, Inst, InstBuilder, InstructionData, Opcode, ValueList};
use crate::isa::TargetIsa;
use crate::topo_order::TopoOrder;
pub fn run(
isa: &dyn TargetIsa,
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &mut DominatorTree,
topo: &mut TopoOrder,
) {
let mut ctx = Context {
has_new_blocks: false,
cur: EncCursor::new(func, isa),
domtree,
topo,
cfg,
};
ctx.run()
}
struct Context<'a> {
has_new_blocks: bool,
cur: EncCursor<'a>,
domtree: &'a mut DominatorTree,
topo: &'a mut TopoOrder,
cfg: &'a mut ControlFlowGraph,
}
impl<'a> Context<'a> {
fn run(&mut self) {
self.topo.reset(self.cur.func.layout.blocks());
while let Some(block) = self.topo.next(&self.cur.func.layout, self.domtree) {
self.cur.goto_last_inst(block);
let terminator_inst = self.cur.current_inst().expect("terminator");
if let Some(inst) = self.cur.prev_inst() {
let opcode = self.cur.func.dfg[inst].opcode();
if opcode.is_branch() {
self.visit_conditional_branch(inst, opcode);
self.cur.goto_inst(terminator_inst);
self.visit_terminator_branch(terminator_inst);
}
}
}
if self.has_new_blocks {
self.cfg.compute(&self.cur.func);
self.domtree.compute(&self.cur.func, self.cfg);
}
}
fn visit_conditional_branch(&mut self, branch: Inst, opcode: Opcode) {
let target = match self.cur.func.dfg[branch] {
InstructionData::Branch { destination, .. }
| InstructionData::BranchIcmp { destination, .. }
| InstructionData::BranchInt { destination, .. }
| InstructionData::BranchFloat { destination, .. } => destination,
_ => panic!("Unexpected instruction in visit_conditional_branch"),
};
if self.should_split_edge(target) {
let new_block = self.cur.func.dfg.make_block();
assert_ne!(Some(target), self.cur.layout().entry_block());
self.cur.layout_mut().insert_block(new_block, target);
self.has_new_blocks = true;
let num_fixed = opcode.constraints().num_fixed_value_arguments();
let dfg = &mut self.cur.func.dfg;
let old_args: Vec<_> = {
let args = dfg[branch].take_value_list().expect("block parameters");
args.as_slice(&dfg.value_lists).iter().copied().collect()
};
let (branch_args, block_params) = old_args.split_at(num_fixed);
{
let branch_args = ValueList::from_slice(branch_args, &mut dfg.value_lists);
let data = &mut dfg[branch];
*data.branch_destination_mut().expect("branch") = new_block;
data.put_value_list(branch_args);
}
let ok = self.cur.func.update_encoding(branch, self.cur.isa).is_ok();
debug_assert!(ok);
self.cur.goto_first_insertion_point(new_block);
self.cur.ins().jump(target, block_params);
self.cur.goto_inst(branch);
}
}
fn visit_terminator_branch(&mut self, inst: Inst) {
let inst_data = &self.cur.func.dfg[inst];
let opcode = inst_data.opcode();
if opcode != Opcode::Jump && opcode != Opcode::Fallthrough {
if opcode != Opcode::IndirectJumpTableBr {
debug_assert!(!opcode.is_branch())
}
return;
}
let target = match inst_data {
InstructionData::Jump { destination, .. } => destination,
_ => panic!(
"Unexpected instruction {} in visit_terminator_branch",
self.cur.display_inst(inst)
),
};
debug_assert!(self.cur.func.dfg[inst].opcode().is_terminator());
if self.should_split_edge(*target) {
let new_block = self.cur.func.dfg.make_block();
self.has_new_blocks = true;
let jump = self.cur.ins().jump(new_block, &[]);
self.cur.insert_block(new_block);
self.cur.goto_inst(jump);
}
}
fn should_split_edge(&self, target: Block) -> bool {
if !self.cur.func.dfg.block_params(target).is_empty() {
return true;
};
debug_assert!(self.cfg.pred_iter(target).next() != None);
self.cfg.pred_iter(target).nth(1).is_some()
}
}