1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
// This file is part of Substrate.

// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#[cfg(not(feature = "std"))]
use sp_std::prelude::*;
use sp_std::borrow::Borrow;
use codec::{FullCodec, FullEncode, Decode, Encode, EncodeLike};
use crate::{
	storage::{self, unhashed, StorageAppend, PrefixIterator},
	Never, hash::{StorageHasher, Twox128, ReversibleStorageHasher},
};

/// Generator for `StorageMap` used by `decl_storage`.
///
/// By default each key value is stored at:
/// ```nocompile
/// Twox128(module_prefix) ++ Twox128(storage_prefix) ++ Hasher(encode(key))
/// ```
///
/// # Warning
///
/// If the keys are not trusted (e.g. can be set by a user), a cryptographic `hasher` such as
/// `blake2_256` must be used.  Otherwise, other values in storage can be compromised.
pub trait StorageMap<K: FullEncode, V: FullCodec> {
	/// The type that get/take returns.
	type Query;

	/// Hasher. Used for generating final key.
	type Hasher: StorageHasher;

	/// Module prefix. Used for generating final key.
	fn module_prefix() -> &'static [u8];

	/// Storage prefix. Used for generating final key.
	fn storage_prefix() -> &'static [u8];

	/// The full prefix; just the hash of `module_prefix` concatenated to the hash of
	/// `storage_prefix`.
	fn prefix_hash() -> Vec<u8> {
		let module_prefix_hashed = Twox128::hash(Self::module_prefix());
		let storage_prefix_hashed = Twox128::hash(Self::storage_prefix());

		let mut result = Vec::with_capacity(
			module_prefix_hashed.len() + storage_prefix_hashed.len()
		);

		result.extend_from_slice(&module_prefix_hashed[..]);
		result.extend_from_slice(&storage_prefix_hashed[..]);

		result
	}

	/// Convert an optional value retrieved from storage to the type queried.
	fn from_optional_value_to_query(v: Option<V>) -> Self::Query;

	/// Convert a query to an optional value into storage.
	fn from_query_to_optional_value(v: Self::Query) -> Option<V>;

	/// Generate the full key used in top storage.
	fn storage_map_final_key<KeyArg>(key: KeyArg) -> Vec<u8> where
		KeyArg: EncodeLike<K>,
	{
		let module_prefix_hashed = Twox128::hash(Self::module_prefix());
		let storage_prefix_hashed = Twox128::hash(Self::storage_prefix());
		let key_hashed = key.borrow().using_encoded(Self::Hasher::hash);

		let mut final_key = Vec::with_capacity(
			module_prefix_hashed.len() + storage_prefix_hashed.len() + key_hashed.as_ref().len()
		);

		final_key.extend_from_slice(&module_prefix_hashed[..]);
		final_key.extend_from_slice(&storage_prefix_hashed[..]);
		final_key.extend_from_slice(key_hashed.as_ref());

		final_key
	}
}

/// Utility to iterate through items in a storage map.
pub struct StorageMapIterator<K, V, Hasher> {
	prefix: Vec<u8>,
	previous_key: Vec<u8>,
	drain: bool,
	_phantom: ::sp_std::marker::PhantomData<(K, V, Hasher)>,
}

impl<
	K: Decode + Sized,
	V: Decode + Sized,
	Hasher: ReversibleStorageHasher
> Iterator for StorageMapIterator<K, V, Hasher> {
	type Item = (K, V);

	fn next(&mut self) -> Option<(K, V)> {
		loop {
			let maybe_next = sp_io::storage::next_key(&self.previous_key)
				.filter(|n| n.starts_with(&self.prefix));
			break match maybe_next {
				Some(next) => {
					self.previous_key = next;
					match unhashed::get::<V>(&self.previous_key) {
						Some(value) => {
							if self.drain {
								unhashed::kill(&self.previous_key)
							}
							let mut key_material = Hasher::reverse(&self.previous_key[self.prefix.len()..]);
							match K::decode(&mut key_material) {
								Ok(key) => Some((key, value)),
								Err(_) => continue,
							}
						}
						None => continue,
					}
				}
				None => None,
			}
		}
	}
}

impl<
	K: FullCodec,
	V: FullCodec,
	G: StorageMap<K, V>,
> storage::IterableStorageMap<K, V> for G where
	G::Hasher: ReversibleStorageHasher
{
	type Iterator = PrefixIterator<(K, V)>;

	/// Enumerate all elements in the map.
	fn iter() -> Self::Iterator {
		let prefix = G::prefix_hash();
		PrefixIterator {
			prefix: prefix.clone(),
			previous_key: prefix,
			drain: false,
			closure: |raw_key_without_prefix, mut raw_value| {
				let mut key_material = G::Hasher::reverse(raw_key_without_prefix);
				Ok((K::decode(&mut key_material)?, V::decode(&mut raw_value)?))
			},
		}
	}

	/// Enumerate all elements in the map.
	fn drain() -> Self::Iterator {
		let mut iterator = Self::iter();
		iterator.drain = true;
		iterator
	}

	fn translate<O: Decode, F: FnMut(K, O) -> Option<V>>(mut f: F) {
		let prefix = G::prefix_hash();
		let mut previous_key = prefix.clone();
		while let Some(next) = sp_io::storage::next_key(&previous_key)
			.filter(|n| n.starts_with(&prefix))
		{
			previous_key = next;
			let value = match unhashed::get::<O>(&previous_key) {
				Some(value) => value,
				None => {
					crate::debug::error!("Invalid translate: fail to decode old value");
					continue
				},
			};

			let mut key_material = G::Hasher::reverse(&previous_key[prefix.len()..]);
			let key = match K::decode(&mut key_material) {
				Ok(key) => key,
				Err(_) => {
					crate::debug::error!("Invalid translate: fail to decode key");
					continue
				},
			};

			match f(key, value) {
				Some(new) => unhashed::put::<V>(&previous_key, &new),
				None => unhashed::kill(&previous_key),
			}
		}
	}
}

impl<K: FullEncode, V: FullCodec, G: StorageMap<K, V>> storage::StorageMap<K, V> for G {
	type Query = G::Query;

	fn hashed_key_for<KeyArg: EncodeLike<K>>(key: KeyArg) -> Vec<u8> {
		Self::storage_map_final_key(key)
	}

	fn swap<KeyArg1: EncodeLike<K>, KeyArg2: EncodeLike<K>>(key1: KeyArg1, key2: KeyArg2) {
		let k1 = Self::storage_map_final_key(key1);
		let k2 = Self::storage_map_final_key(key2);

		let v1 = unhashed::get_raw(k1.as_ref());
		if let Some(val) = unhashed::get_raw(k2.as_ref()) {
			unhashed::put_raw(k1.as_ref(), &val);
		} else {
			unhashed::kill(k1.as_ref())
		}
		if let Some(val) = v1 {
			unhashed::put_raw(k2.as_ref(), &val);
		} else {
			unhashed::kill(k2.as_ref())
		}
	}

	fn contains_key<KeyArg: EncodeLike<K>>(key: KeyArg) -> bool {
		unhashed::exists(Self::storage_map_final_key(key).as_ref())
	}

	fn get<KeyArg: EncodeLike<K>>(key: KeyArg) -> Self::Query {
		G::from_optional_value_to_query(unhashed::get(Self::storage_map_final_key(key).as_ref()))
	}

	fn try_get<KeyArg: EncodeLike<K>>(key: KeyArg) -> Result<V, ()> {
		unhashed::get(Self::storage_map_final_key(key).as_ref()).ok_or(())
	}

	fn insert<KeyArg: EncodeLike<K>, ValArg: EncodeLike<V>>(key: KeyArg, val: ValArg) {
		unhashed::put(Self::storage_map_final_key(key).as_ref(), &val)
	}

	fn remove<KeyArg: EncodeLike<K>>(key: KeyArg) {
		unhashed::kill(Self::storage_map_final_key(key).as_ref())
	}

	fn mutate<KeyArg: EncodeLike<K>, R, F: FnOnce(&mut Self::Query) -> R>(key: KeyArg, f: F) -> R {
		Self::try_mutate(key, |v| Ok::<R, Never>(f(v))).expect("`Never` can not be constructed; qed")
	}

	fn mutate_exists<KeyArg: EncodeLike<K>, R, F: FnOnce(&mut Option<V>) -> R>(key: KeyArg, f: F) -> R {
		Self::try_mutate_exists(key, |v| Ok::<R, Never>(f(v))).expect("`Never` can not be constructed; qed")
	}

	fn try_mutate<KeyArg: EncodeLike<K>, R, E, F: FnOnce(&mut Self::Query) -> Result<R, E>>(
		key: KeyArg,
		f: F
	) -> Result<R, E> {
		let final_key = Self::storage_map_final_key(key);
		let mut val = G::from_optional_value_to_query(unhashed::get(final_key.as_ref()));

		let ret = f(&mut val);
		if ret.is_ok() {
			match G::from_query_to_optional_value(val) {
				Some(ref val) => unhashed::put(final_key.as_ref(), &val.borrow()),
				None => unhashed::kill(final_key.as_ref()),
			}
		}
		ret
	}

	fn try_mutate_exists<KeyArg: EncodeLike<K>, R, E, F: FnOnce(&mut Option<V>) -> Result<R, E>>(
		key: KeyArg,
		f: F
	) -> Result<R, E> {
		let final_key = Self::storage_map_final_key(key);
		let mut val = unhashed::get(final_key.as_ref());

		let ret = f(&mut val);
		if ret.is_ok() {
			match val {
				Some(ref val) => unhashed::put(final_key.as_ref(), &val.borrow()),
				None => unhashed::kill(final_key.as_ref()),
			}
		}
		ret
	}

	fn take<KeyArg: EncodeLike<K>>(key: KeyArg) -> Self::Query {
		let key = Self::storage_map_final_key(key);
		let value = unhashed::take(key.as_ref());
		G::from_optional_value_to_query(value)
	}

	fn append<Item, EncodeLikeItem, EncodeLikeKey>(key: EncodeLikeKey, item: EncodeLikeItem)
	where
		EncodeLikeKey: EncodeLike<K>,
		Item: Encode,
		EncodeLikeItem: EncodeLike<Item>,
		V: StorageAppend<Item>,
	{
		let key = Self::storage_map_final_key(key);
		sp_io::storage::append(&key, item.encode());
	}

	fn migrate_key<OldHasher: StorageHasher, KeyArg: EncodeLike<K>>(key: KeyArg) -> Option<V> {
		let old_key = {
			let module_prefix_hashed = Twox128::hash(Self::module_prefix());
			let storage_prefix_hashed = Twox128::hash(Self::storage_prefix());
			let key_hashed = key.borrow().using_encoded(OldHasher::hash);

			let mut final_key = Vec::with_capacity(
				module_prefix_hashed.len() + storage_prefix_hashed.len() + key_hashed.as_ref().len()
			);

			final_key.extend_from_slice(&module_prefix_hashed[..]);
			final_key.extend_from_slice(&storage_prefix_hashed[..]);
			final_key.extend_from_slice(key_hashed.as_ref());

			final_key
		};
		unhashed::take(old_key.as_ref()).map(|value| {
			unhashed::put(Self::storage_map_final_key(key).as_ref(), &value);
			value
		})
	}
}

/// Test iterators for StorageMap
#[cfg(test)]
mod test_iterators {
	use codec::{Encode, Decode};
	use crate::{
		hash::StorageHasher,
		storage::{generator::StorageMap, IterableStorageMap, unhashed},
	};

	pub trait Config: 'static {
		type Origin;
		type BlockNumber;
		type PalletInfo: crate::traits::PalletInfo;
		type DbWeight: crate::traits::Get<crate::weights::RuntimeDbWeight>;
	}

	crate::decl_module! {
		pub struct Module<T: Config> for enum Call where origin: T::Origin, system=self {}
	}

	#[derive(PartialEq, Eq, Clone, Encode, Decode)]
	struct NoDef(u32);

	crate::decl_storage! {
		trait Store for Module<T: Config> as Test {
			Map: map hasher(blake2_128_concat) u16 => u64;
		}
	}

	fn key_before_prefix(mut prefix: Vec<u8>) -> Vec<u8> {
		let last = prefix.iter_mut().last().unwrap();
		assert!(*last != 0, "mock function not implemented for this prefix");
		*last -= 1;
		prefix
	}

	fn key_after_prefix(mut prefix: Vec<u8>) -> Vec<u8> {
		let last = prefix.iter_mut().last().unwrap();
		assert!(*last != 255, "mock function not implemented for this prefix");
		*last += 1;
		prefix
	}

	#[test]
	fn map_reversible_reversible_iteration() {
		sp_io::TestExternalities::default().execute_with(|| {
			// All map iterator
			let prefix = Map::prefix_hash();

			unhashed::put(&key_before_prefix(prefix.clone()), &1u64);
			unhashed::put(&key_after_prefix(prefix.clone()), &1u64);

			for i in 0..4 {
				Map::insert(i as u16, i as u64);
			}

			assert_eq!(Map::iter().collect::<Vec<_>>(), vec![(3, 3), (0, 0), (2, 2), (1, 1)]);

			assert_eq!(Map::iter_values().collect::<Vec<_>>(), vec![3, 0, 2, 1]);

			assert_eq!(Map::drain().collect::<Vec<_>>(), vec![(3, 3), (0, 0), (2, 2), (1, 1)]);

			assert_eq!(Map::iter().collect::<Vec<_>>(), vec![]);
			assert_eq!(unhashed::get(&key_before_prefix(prefix.clone())), Some(1u64));
			assert_eq!(unhashed::get(&key_after_prefix(prefix.clone())), Some(1u64));

			// Translate
			let prefix = Map::prefix_hash();

			unhashed::put(&key_before_prefix(prefix.clone()), &1u64);
			unhashed::put(&key_after_prefix(prefix.clone()), &1u64);
			for i in 0..4 {
				Map::insert(i as u16, i as u64);
			}

			// Wrong key
			unhashed::put(&[prefix.clone(), vec![1, 2, 3]].concat(), &3u64.encode());

			// Wrong value
			unhashed::put(
				&[prefix.clone(), crate::Blake2_128Concat::hash(&6u16.encode())].concat(),
				&vec![1],
			);

			Map::translate(|_k1, v: u64| Some(v*2));
			assert_eq!(Map::iter().collect::<Vec<_>>(), vec![(3, 6), (0, 0), (2, 4), (1, 2)]);
		})
	}
}