1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
// Copyright 2015 Brendan Zabarauskas
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! A crate that provides facilities for testing the approximate equality of floating-point
//! based types, using either relative difference, or units in the last place (ULPs)
//! comparisons.
//!
//! You can also use the `*_{eq, ne}!` and `assert_*_{eq, ne}!` macros to test for equality using a
//! more positional style:
//!
//! ```rust
//! #[macro_use]
//! extern crate approx;
//!
//! use std::f64;
//!
//! # fn main() {
//! abs_diff_eq!(1.0, 1.0);
//! abs_diff_eq!(1.0, 1.0, epsilon = f64::EPSILON);
//!
//! relative_eq!(1.0, 1.0);
//! relative_eq!(1.0, 1.0, epsilon = f64::EPSILON);
//! relative_eq!(1.0, 1.0, max_relative = 1.0);
//! relative_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_relative = 1.0);
//! relative_eq!(1.0, 1.0, max_relative = 1.0, epsilon = f64::EPSILON);
//!
//! ulps_eq!(1.0, 1.0);
//! ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON);
//! ulps_eq!(1.0, 1.0, max_ulps = 4);
//! ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_ulps = 4);
//! ulps_eq!(1.0, 1.0, max_ulps = 4, epsilon = f64::EPSILON);
//! # }
//! ```
//!
//! # Implementing approximate equality for custom types
//!
//! The `*Eq` traits allow approximate equalities to be implemented on types, based on the
//! fundamental floating point implementations.
//!
//! For example, we might want to be able to do approximate assertions on a complex number type:
//!
//! ```rust
//! #[macro_use]
//! extern crate approx;
//! # use approx::{AbsDiffEq, RelativeEq, UlpsEq};
//!
//! #[derive(Debug, PartialEq)]
//! struct Complex<T> {
//! x: T,
//! i: T,
//! }
//! # impl<T: AbsDiffEq> AbsDiffEq for Complex<T> where T::Epsilon: Copy {
//! # type Epsilon = T::Epsilon;
//! # fn default_epsilon() -> T::Epsilon { T::default_epsilon() }
//! # fn abs_diff_eq(&self, other: &Self, epsilon: T::Epsilon) -> bool {
//! # T::abs_diff_eq(&self.x, &other.x, epsilon) &&
//! # T::abs_diff_eq(&self.i, &other.i, epsilon)
//! # }
//! # }
//! # impl<T: RelativeEq> RelativeEq for Complex<T> where T::Epsilon: Copy {
//! # fn default_max_relative() -> T::Epsilon { T::default_max_relative() }
//! # fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon)
//! # -> bool {
//! # T::relative_eq(&self.x, &other.x, epsilon, max_relative) &&
//! # T::relative_eq(&self.i, &other.i, epsilon, max_relative)
//! # }
//! # }
//! # impl<T: UlpsEq> UlpsEq for Complex<T> where T::Epsilon: Copy {
//! # fn default_max_ulps() -> u32 { T::default_max_ulps() }
//! # fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
//! # T::ulps_eq(&self.x, &other.x, epsilon, max_ulps) &&
//! # T::ulps_eq(&self.i, &other.i, epsilon, max_ulps)
//! # }
//! # }
//!
//! # fn main() {
//! let x = Complex { x: 1.2, i: 2.3 };
//!
//! assert_relative_eq!(x, x);
//! assert_ulps_eq!(x, x, max_ulps = 4);
//! # }
//! ```
//!
//! To do this we can implement [`AbsDiffEq`], [`RelativeEq`] and [`UlpsEq`] generically in terms
//! of a type parameter that also implements `AbsDiffEq`, `RelativeEq` and `UlpsEq` respectively.
//! This means that we can make comparisons for either `Complex<f32>` or `Complex<f64>`:
//!
//! ```rust
//! # use approx::{AbsDiffEq, RelativeEq, UlpsEq};
//! # #[derive(Debug, PartialEq)]
//! # struct Complex<T> { x: T, i: T, }
//! #
//! impl<T: AbsDiffEq> AbsDiffEq for Complex<T> where
//! T::Epsilon: Copy,
//! {
//! type Epsilon = T::Epsilon;
//!
//! fn default_epsilon() -> T::Epsilon {
//! T::default_epsilon()
//! }
//!
//! fn abs_diff_eq(&self, other: &Self, epsilon: T::Epsilon) -> bool {
//! T::abs_diff_eq(&self.x, &other.x, epsilon) &&
//! T::abs_diff_eq(&self.i, &other.i, epsilon)
//! }
//! }
//!
//! impl<T: RelativeEq> RelativeEq for Complex<T> where
//! T::Epsilon: Copy,
//! {
//! fn default_max_relative() -> T::Epsilon {
//! T::default_max_relative()
//! }
//!
//! fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
//! T::relative_eq(&self.x, &other.x, epsilon, max_relative) &&
//! T::relative_eq(&self.i, &other.i, epsilon, max_relative)
//! }
//! }
//!
//! impl<T: UlpsEq> UlpsEq for Complex<T> where
//! T::Epsilon: Copy,
//! {
//! fn default_max_ulps() -> u32 {
//! T::default_max_ulps()
//! }
//!
//! fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
//! T::ulps_eq(&self.x, &other.x, epsilon, max_ulps) &&
//! T::ulps_eq(&self.i, &other.i, epsilon, max_ulps)
//! }
//! }
//! ```
//!
//! # References
//!
//! Floating point is hard! Thanks goes to these links for helping to make things a _little_
//! easier to understand:
//!
//! - [Comparing Floating Point Numbers, 2012 Edition](
//! https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/)
//! - [The Floating Point Guide - Comparison](http://floating-point-gui.de/errors/comparison/)
//! - [What Every Computer Scientist Should Know About Floating-Point Arithmetic](
//! https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html)
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "num-complex")]
extern crate num_complex;
extern crate num_traits;
#[cfg(not(feature = "std"))]
use core as std;
mod abs_diff_eq;
mod relative_eq;
mod ulps_eq;
mod macros;
pub use abs_diff_eq::AbsDiffEq;
pub use relative_eq::RelativeEq;
pub use ulps_eq::UlpsEq;
/// The requisite parameters for testing for approximate equality using a
/// absolute difference based comparison.
///
/// This is not normally used directly, rather via the
/// `assert_abs_diff_{eq|ne}!` and `abs_diff_{eq|ne}!` macros.
///
/// # Example
///
/// ```rust
/// use std::f64;
/// use approx::AbsDiff;
///
/// AbsDiff::default().eq(&1.0, &1.0);
/// AbsDiff::default().epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// ```
pub struct AbsDiff<A, B = A>
where
A: AbsDiffEq<B> + ?Sized,
B: ?Sized,
{
/// The tolerance to use when testing values that are close together.
pub epsilon: A::Epsilon,
}
impl<A, B> Default for AbsDiff<A, B>
where
A: AbsDiffEq<B> + ?Sized,
B: ?Sized,
{
#[inline]
fn default() -> AbsDiff<A, B> {
AbsDiff {
epsilon: A::default_epsilon(),
}
}
}
impl<A, B> AbsDiff<A, B>
where
A: AbsDiffEq<B> + ?Sized,
B: ?Sized,
{
/// Replace the epsilon value with the one specified.
#[inline]
pub fn epsilon(self, epsilon: A::Epsilon) -> AbsDiff<A, B> {
AbsDiff { epsilon, ..self }
}
/// Peform the equality comparison
#[inline]
#[must_use]
pub fn eq(self, lhs: &A, rhs: &B) -> bool {
A::abs_diff_eq(lhs, rhs, self.epsilon)
}
/// Peform the inequality comparison
#[inline]
#[must_use]
pub fn ne(self, lhs: &A, rhs: &B) -> bool {
A::abs_diff_ne(lhs, rhs, self.epsilon)
}
}
/// The requisite parameters for testing for approximate equality using a
/// relative based comparison.
///
/// This is not normally used directly, rather via the
/// `assert_relative_{eq|ne}!` and `relative_{eq|ne}!` macros.
///
/// # Example
///
/// ```rust
/// use std::f64;
/// use approx::Relative;
///
/// Relative::default().eq(&1.0, &1.0);
/// Relative::default().epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// Relative::default().max_relative(1.0).eq(&1.0, &1.0);
/// Relative::default().epsilon(f64::EPSILON).max_relative(1.0).eq(&1.0, &1.0);
/// Relative::default().max_relative(1.0).epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// ```
pub struct Relative<A, B = A>
where
A: RelativeEq<B> + ?Sized,
B: ?Sized,
{
/// The tolerance to use when testing values that are close together.
pub epsilon: A::Epsilon,
/// The relative tolerance for testing values that are far-apart.
pub max_relative: A::Epsilon,
}
impl<A, B> Default for Relative<A, B>
where
A: RelativeEq<B> + ?Sized,
B: ?Sized,
{
#[inline]
fn default() -> Relative<A, B> {
Relative {
epsilon: A::default_epsilon(),
max_relative: A::default_max_relative(),
}
}
}
impl<A, B> Relative<A, B>
where
A: RelativeEq<B> + ?Sized,
B: ?Sized,
{
/// Replace the epsilon value with the one specified.
#[inline]
pub fn epsilon(self, epsilon: A::Epsilon) -> Relative<A, B> {
Relative { epsilon, ..self }
}
/// Replace the maximum relative value with the one specified.
#[inline]
pub fn max_relative(self, max_relative: A::Epsilon) -> Relative<A, B> {
Relative {
max_relative,
..self
}
}
/// Peform the equality comparison
#[inline]
#[must_use]
pub fn eq(self, lhs: &A, rhs: &B) -> bool {
A::relative_eq(lhs, rhs, self.epsilon, self.max_relative)
}
/// Peform the inequality comparison
#[inline]
#[must_use]
pub fn ne(self, lhs: &A, rhs: &B) -> bool {
A::relative_ne(lhs, rhs, self.epsilon, self.max_relative)
}
}
/// The requisite parameters for testing for approximate equality using an ULPs
/// based comparison.
///
/// This is not normally used directly, rather via the `assert_ulps_{eq|ne}!`
/// and `ulps_{eq|ne}!` macros.
///
/// # Example
///
/// ```rust
/// use std::f64;
/// use approx::Ulps;
///
/// Ulps::default().eq(&1.0, &1.0);
/// Ulps::default().epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// Ulps::default().max_ulps(4).eq(&1.0, &1.0);
/// Ulps::default().epsilon(f64::EPSILON).max_ulps(4).eq(&1.0, &1.0);
/// Ulps::default().max_ulps(4).epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// ```
pub struct Ulps<A, B = A>
where
A: UlpsEq<B> + ?Sized,
B: ?Sized,
{
/// The tolerance to use when testing values that are close together.
pub epsilon: A::Epsilon,
/// The ULPs to tolerate when testing values that are far-apart.
pub max_ulps: u32,
}
impl<A, B> Default for Ulps<A, B>
where
A: UlpsEq<B> + ?Sized,
B: ?Sized,
{
#[inline]
fn default() -> Ulps<A, B> {
Ulps {
epsilon: A::default_epsilon(),
max_ulps: A::default_max_ulps(),
}
}
}
impl<A, B> Ulps<A, B>
where
A: UlpsEq<B> + ?Sized,
B: ?Sized,
{
/// Replace the epsilon value with the one specified.
#[inline]
pub fn epsilon(self, epsilon: A::Epsilon) -> Ulps<A, B> {
Ulps { epsilon, ..self }
}
/// Replace the max ulps value with the one specified.
#[inline]
pub fn max_ulps(self, max_ulps: u32) -> Ulps<A, B> {
Ulps { max_ulps, ..self }
}
/// Peform the equality comparison
#[inline]
#[must_use]
pub fn eq(self, lhs: &A, rhs: &B) -> bool {
A::ulps_eq(lhs, rhs, self.epsilon, self.max_ulps)
}
/// Peform the inequality comparison
#[inline]
#[must_use]
pub fn ne(self, lhs: &A, rhs: &B) -> bool {
A::ulps_ne(lhs, rhs, self.epsilon, self.max_ulps)
}
}