1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//! Waking mechanism for threads blocked on channel operations.

use std::sync::atomic::{AtomicBool, Ordering};
use std::thread::{self, ThreadId};

use crate::context::Context;
use crate::select::{Operation, Selected};
use crate::utils::Spinlock;

/// Represents a thread blocked on a specific channel operation.
pub(crate) struct Entry {
    /// The operation.
    pub(crate) oper: Operation,

    /// Optional packet.
    pub(crate) packet: usize,

    /// Context associated with the thread owning this operation.
    pub(crate) cx: Context,
}

/// A queue of threads blocked on channel operations.
///
/// This data structure is used by threads to register blocking operations and get woken up once
/// an operation becomes ready.
pub(crate) struct Waker {
    /// A list of select operations.
    selectors: Vec<Entry>,

    /// A list of operations waiting to be ready.
    observers: Vec<Entry>,
}

impl Waker {
    /// Creates a new `Waker`.
    #[inline]
    pub(crate) fn new() -> Self {
        Waker {
            selectors: Vec::new(),
            observers: Vec::new(),
        }
    }

    /// Registers a select operation.
    #[inline]
    pub(crate) fn register(&mut self, oper: Operation, cx: &Context) {
        self.register_with_packet(oper, 0, cx);
    }

    /// Registers a select operation and a packet.
    #[inline]
    pub(crate) fn register_with_packet(&mut self, oper: Operation, packet: usize, cx: &Context) {
        self.selectors.push(Entry {
            oper,
            packet,
            cx: cx.clone(),
        });
    }

    /// Unregisters a select operation.
    #[inline]
    pub(crate) fn unregister(&mut self, oper: Operation) -> Option<Entry> {
        if let Some((i, _)) = self
            .selectors
            .iter()
            .enumerate()
            .find(|&(_, entry)| entry.oper == oper)
        {
            let entry = self.selectors.remove(i);
            Some(entry)
        } else {
            None
        }
    }

    /// Attempts to find another thread's entry, select the operation, and wake it up.
    #[inline]
    pub(crate) fn try_select(&mut self) -> Option<Entry> {
        let mut entry = None;

        if !self.selectors.is_empty() {
            let thread_id = current_thread_id();

            for i in 0..self.selectors.len() {
                // Does the entry belong to a different thread?
                if self.selectors[i].cx.thread_id() != thread_id {
                    // Try selecting this operation.
                    let sel = Selected::Operation(self.selectors[i].oper);
                    let res = self.selectors[i].cx.try_select(sel);

                    if res.is_ok() {
                        // Provide the packet.
                        self.selectors[i].cx.store_packet(self.selectors[i].packet);
                        // Wake the thread up.
                        self.selectors[i].cx.unpark();

                        // Remove the entry from the queue to keep it clean and improve
                        // performance.
                        entry = Some(self.selectors.remove(i));
                        break;
                    }
                }
            }
        }

        entry
    }

    /// Returns `true` if there is an entry which can be selected by the current thread.
    #[inline]
    pub(crate) fn can_select(&self) -> bool {
        if self.selectors.is_empty() {
            false
        } else {
            let thread_id = current_thread_id();

            self.selectors.iter().any(|entry| {
                entry.cx.thread_id() != thread_id && entry.cx.selected() == Selected::Waiting
            })
        }
    }

    /// Registers an operation waiting to be ready.
    #[inline]
    pub(crate) fn watch(&mut self, oper: Operation, cx: &Context) {
        self.observers.push(Entry {
            oper,
            packet: 0,
            cx: cx.clone(),
        });
    }

    /// Unregisters an operation waiting to be ready.
    #[inline]
    pub(crate) fn unwatch(&mut self, oper: Operation) {
        self.observers.retain(|e| e.oper != oper);
    }

    /// Notifies all operations waiting to be ready.
    #[inline]
    pub(crate) fn notify(&mut self) {
        for entry in self.observers.drain(..) {
            if entry.cx.try_select(Selected::Operation(entry.oper)).is_ok() {
                entry.cx.unpark();
            }
        }
    }

    /// Notifies all registered operations that the channel is disconnected.
    #[inline]
    pub(crate) fn disconnect(&mut self) {
        for entry in self.selectors.iter() {
            if entry.cx.try_select(Selected::Disconnected).is_ok() {
                // Wake the thread up.
                //
                // Here we don't remove the entry from the queue. Registered threads must
                // unregister from the waker by themselves. They might also want to recover the
                // packet value and destroy it, if necessary.
                entry.cx.unpark();
            }
        }

        self.notify();
    }
}

impl Drop for Waker {
    #[inline]
    fn drop(&mut self) {
        debug_assert_eq!(self.selectors.len(), 0);
        debug_assert_eq!(self.observers.len(), 0);
    }
}

/// A waker that can be shared among threads without locking.
///
/// This is a simple wrapper around `Waker` that internally uses a mutex for synchronization.
pub(crate) struct SyncWaker {
    /// The inner `Waker`.
    inner: Spinlock<Waker>,

    /// `true` if the waker is empty.
    is_empty: AtomicBool,
}

impl SyncWaker {
    /// Creates a new `SyncWaker`.
    #[inline]
    pub(crate) fn new() -> Self {
        SyncWaker {
            inner: Spinlock::new(Waker::new()),
            is_empty: AtomicBool::new(true),
        }
    }

    /// Registers the current thread with an operation.
    #[inline]
    pub(crate) fn register(&self, oper: Operation, cx: &Context) {
        let mut inner = self.inner.lock();
        inner.register(oper, cx);
        self.is_empty.store(
            inner.selectors.is_empty() && inner.observers.is_empty(),
            Ordering::SeqCst,
        );
    }

    /// Unregisters an operation previously registered by the current thread.
    #[inline]
    pub(crate) fn unregister(&self, oper: Operation) -> Option<Entry> {
        let mut inner = self.inner.lock();
        let entry = inner.unregister(oper);
        self.is_empty.store(
            inner.selectors.is_empty() && inner.observers.is_empty(),
            Ordering::SeqCst,
        );
        entry
    }

    /// Attempts to find one thread (not the current one), select its operation, and wake it up.
    #[inline]
    pub(crate) fn notify(&self) {
        if !self.is_empty.load(Ordering::SeqCst) {
            let mut inner = self.inner.lock();
            if !self.is_empty.load(Ordering::SeqCst) {
                inner.try_select();
                inner.notify();
                self.is_empty.store(
                    inner.selectors.is_empty() && inner.observers.is_empty(),
                    Ordering::SeqCst,
                );
            }
        }
    }

    /// Registers an operation waiting to be ready.
    #[inline]
    pub(crate) fn watch(&self, oper: Operation, cx: &Context) {
        let mut inner = self.inner.lock();
        inner.watch(oper, cx);
        self.is_empty.store(
            inner.selectors.is_empty() && inner.observers.is_empty(),
            Ordering::SeqCst,
        );
    }

    /// Unregisters an operation waiting to be ready.
    #[inline]
    pub(crate) fn unwatch(&self, oper: Operation) {
        let mut inner = self.inner.lock();
        inner.unwatch(oper);
        self.is_empty.store(
            inner.selectors.is_empty() && inner.observers.is_empty(),
            Ordering::SeqCst,
        );
    }

    /// Notifies all threads that the channel is disconnected.
    #[inline]
    pub(crate) fn disconnect(&self) {
        let mut inner = self.inner.lock();
        inner.disconnect();
        self.is_empty.store(
            inner.selectors.is_empty() && inner.observers.is_empty(),
            Ordering::SeqCst,
        );
    }
}

impl Drop for SyncWaker {
    #[inline]
    fn drop(&mut self) {
        debug_assert_eq!(self.is_empty.load(Ordering::SeqCst), true);
    }
}

/// Returns the id of the current thread.
#[inline]
fn current_thread_id() -> ThreadId {
    thread_local! {
        /// Cached thread-local id.
        static THREAD_ID: ThreadId = thread::current().id();
    }

    THREAD_ID
        .try_with(|id| *id)
        .unwrap_or_else(|_| thread::current().id())
}