1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
//! Constraint solver for register coloring.
//!
//! The coloring phase of SSA-based register allocation is very simple in theory, but in practice
//! it is complicated by the various constraints imposed by individual instructions:
//!
//! - Call and return instructions have to satisfy ABI requirements for arguments and return
//! values.
//! - Values live across a call must be in a callee-saved register.
//! - Some instructions have operand constraints such as register sub-classes, fixed registers, or
//! tied operands.
//!
//! # The instruction register coloring problem
//!
//! The constraint solver addresses the problem of satisfying the constraints of a single
//! instruction. We have:
//!
//! - A set of values that are live in registers before the instruction, with current register
//! assignments. Some are used by the instruction, some are not.
//! - A subset of the live register values that are killed by the instruction.
//! - A set of new register values that are defined by the instruction.
//!
//! We are not concerned with stack values at all. The reload pass ensures that all values required
//! to be in a register by the instruction are already in a register.
//!
//! A solution to the register coloring problem consists of:
//!
//! - Register reassignment prescriptions for a subset of the live register values.
//! - Register assignments for the instruction's defined values.
//!
//! The solution ensures that when live registers are reassigned as prescribed before the
//! instruction, all its operand constraints are satisfied, and the definition assignments won't
//! conflict.
//!
//! # Register diversions and global interference
//!
//! We can divert register values temporarily to satisfy constraints, but we need to put the
//! values back into their originally assigned register locations before leaving the block.
//! Otherwise, values won't be in the right register at the entry point of other blocks.
//!
//! Some values are *local*, and we don't need to worry about putting those values back since they
//! are not used in any other blocks.
//!
//! When we assign register locations to defines, we are assigning both the register used locally
//! immediately after the instruction and the register used globally when the defined value is used
//! in a different block. We need to avoid interference both locally at the instruction and globally.
//!
//! We have multiple mappings of values to registers:
//!
//! 1. The initial local mapping before the instruction. This includes any diversions from previous
//! instructions in the block, but not diversions for the current instruction.
//! 2. The local mapping after applying the additional reassignments required to satisfy the
//! constraints of the current instruction.
//! 3. The local mapping after the instruction. This excludes values killed by the instruction and
//! includes values defined by the instruction.
//! 4. The global mapping after the instruction. This mapping only contains values with global live
//! ranges, and it does not include any diversions.
//!
//! All four mappings must be kept free of interference.
//!
//! # Problems handled by previous passes.
//!
//! The constraint solver can only reassign registers, it can't create spill code, so some
//! constraints are handled by earlier passes:
//!
//! - There will be enough free registers available for the defines. Ensuring this is the primary
//! purpose of the spilling phase.
//! - When the same value is used for multiple operands, the intersection of operand constraints is
//! non-empty. The spilling phase will insert copies to handle mutually incompatible constraints,
//! such as when the same value is bound to two different function arguments.
//! - Values bound to tied operands must be killed by the instruction. Also enforced by the
//! spiller.
//! - Values used by register operands are in registers, and values used by stack operands are in
//! stack slots. This is enforced by the reload pass.
//!
//! # Solver algorithm
//!
//! The goal of the solver is to satisfy the instruction constraints with a minimal number of
//! register assignments before the instruction.
//!
//! 1. Compute the set of values used by operands with a fixed register constraint that isn't
//! already satisfied. These are mandatory predetermined reassignments.
//! 2. Compute the set of values that don't satisfy their register class constraint. These are
//! mandatory reassignments that we need to solve.
//! 3. Add the set of defines to the set of variables computed in 2. Exclude defines tied to an
//! input operand since their value is pre-determined.
//!
//! The set of values computed in 2. and 3. are the *variables* for the solver. Given a set of
//! variables, we can also compute a set of allocatable registers by removing the variables from
//! the set of assigned registers before the instruction.
//!
//! 1. For each variable, compute its domain as the intersection of the allocatable registers and
//! its register class constraint.
//! 2. Sort the variables in order of increasing domain size.
//! 3. Search for a solution that assigns each variable a register from its domain without
//! interference between variables.
//!
//! If the search fails to find a solution, we may need to reassign more registers. Find an
//! appropriate candidate among the set of live register values, add it as a variable and start
//! over.
use super::RegisterSet;
use crate::dbg::DisplayList;
use crate::entity::{SparseMap, SparseMapValue};
use crate::ir::Value;
use crate::isa::{RegClass, RegUnit};
use crate::regalloc::register_set::RegSetIter;
use alloc::vec::Vec;
use core::cmp;
use core::fmt;
use core::mem;
use core::u16;
use log::debug;
/// A variable in the constraint problem.
///
/// Variables represent register values that can be assigned to any register unit within the
/// constraint register class. This includes live register values that can be reassigned to a new
/// register and values defined by the instruction which must be assigned to a register.
///
/// Besides satisfying the register class constraint, variables must also be mutually
/// non-interfering in up to three contexts:
///
/// 1. Input side live registers, after applying all the reassignments.
/// 2. Output side live registers, considering all the local register diversions.
/// 3. Global live register, not considering any local diversions.
///
pub struct Variable {
/// The value whose register assignment we're looking for.
pub value: Value,
/// Original register unit holding this live value before the instruction, or `None` for a
/// value that is defined by the instruction.
from: Option<RegUnit>,
/// Avoid interference on the input side.
is_input: bool,
/// Avoid interference on the output side.
is_output: bool,
/// Avoid interference with the global registers.
is_global: bool,
/// Number of registers available in the domain of this variable.
domain: u16,
/// The assigned register unit after a full solution was found.
pub solution: RegUnit,
/// Any solution must belong to the constraint register class.
constraint: RegClass,
}
impl Variable {
fn new_live(value: Value, constraint: RegClass, from: RegUnit, is_output: bool) -> Self {
Self {
value,
constraint,
from: Some(from),
is_input: true,
is_output,
is_global: false,
domain: 0,
solution: !0,
}
}
fn new_def(value: Value, constraint: RegClass, is_global: bool) -> Self {
Self {
value,
constraint,
from: None,
is_input: false,
is_output: true,
is_global,
domain: 0,
solution: !0,
}
}
/// Does this variable represent a value defined by the current instruction?
pub fn is_define(&self) -> bool {
self.from.is_none()
}
/// Get an iterator over possible register choices, given the available registers on the input
/// and output sides as well as the available global register set.
fn iter(&self, iregs: &RegisterSet, oregs: &RegisterSet, gregs: &RegisterSet) -> RegSetIter {
if !self.is_output {
debug_assert!(!self.is_global, "Global implies output");
debug_assert!(self.is_input, "Missing interference set");
return iregs.iter(self.constraint);
}
let mut r = oregs.clone();
if self.is_input {
r.intersect(iregs);
}
if self.is_global {
r.intersect(gregs);
}
r.iter(self.constraint)
}
}
impl fmt::Display for Variable {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}({}", self.value, self.constraint)?;
if let Some(reg) = self.from {
write!(f, ", from {}", self.constraint.info.display_regunit(reg))?;
}
if self.is_input {
write!(f, ", in")?;
}
if self.is_output {
write!(f, ", out")?;
}
if self.is_global {
write!(f, ", global")?;
}
if self.is_define() {
write!(f, ", def")?;
}
if self.domain > 0 {
write!(f, ", {}", self.domain)?;
}
write!(f, ")")
}
}
#[derive(Clone, Debug)]
pub struct Assignment {
pub value: Value,
pub from: RegUnit,
pub to: RegUnit,
pub rc: RegClass,
}
impl SparseMapValue<Value> for Assignment {
fn key(&self) -> Value {
self.value
}
}
impl fmt::Display for Assignment {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let ri = self.rc.info;
write!(
f,
"{}:{}({} -> {})",
self.value,
self.rc,
ri.display_regunit(self.from),
ri.display_regunit(self.to)
)
}
}
/// A move operation between two registers or between a register and an emergency spill slot.
#[derive(Clone, PartialEq)]
pub enum Move {
Reg {
value: Value,
rc: RegClass,
from: RegUnit,
to: RegUnit,
},
#[allow(dead_code)] // rustc doesn't see it isn't dead.
Spill {
value: Value,
rc: RegClass,
from: RegUnit,
to_slot: usize,
},
Fill {
value: Value,
rc: RegClass,
from_slot: usize,
to: RegUnit,
},
}
impl Move {
/// Create a register move from an assignment, but not for identity assignments.
fn with_assignment(a: &Assignment) -> Option<Self> {
if a.from != a.to {
Some(Self::Reg {
value: a.value,
from: a.from,
to: a.to,
rc: a.rc,
})
} else {
None
}
}
/// Get the "from" register and register class, if possible.
#[cfg_attr(feature = "cargo-clippy", allow(clippy::wrong_self_convention))]
fn from_reg(&self) -> Option<(RegClass, RegUnit)> {
match *self {
Self::Reg { rc, from, .. } | Self::Spill { rc, from, .. } => Some((rc, from)),
Self::Fill { .. } => None,
}
}
/// Get the "to" register and register class, if possible.
fn to_reg(&self) -> Option<(RegClass, RegUnit)> {
match *self {
Self::Reg { rc, to, .. } | Self::Fill { rc, to, .. } => Some((rc, to)),
Self::Spill { .. } => None,
}
}
/// Replace the "to" register with `new` and return the old value.
fn replace_to_reg(&mut self, new: RegUnit) -> RegUnit {
mem::replace(
match *self {
Self::Reg { ref mut to, .. } | Self::Fill { ref mut to, .. } => to,
Self::Spill { .. } => panic!("No to register in a spill {}", self),
},
new,
)
}
/// Convert this `Reg` move to a spill to `slot` and return the old "to" register.
fn change_to_spill(&mut self, slot: usize) -> RegUnit {
match self.clone() {
Self::Reg {
value,
rc,
from,
to,
} => {
*self = Self::Spill {
value,
rc,
from,
to_slot: slot,
};
to
}
_ => panic!("Expected reg move: {}", self),
}
}
/// Get the value being moved.
fn value(&self) -> Value {
match *self {
Self::Reg { value, .. } | Self::Fill { value, .. } | Self::Spill { value, .. } => value,
}
}
/// Get the associated register class.
fn rc(&self) -> RegClass {
match *self {
Self::Reg { rc, .. } | Self::Fill { rc, .. } | Self::Spill { rc, .. } => rc,
}
}
}
impl fmt::Display for Move {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Self::Reg {
value,
from,
to,
rc,
} => write!(
f,
"{}:{}({} -> {})",
value,
rc,
rc.info.display_regunit(from),
rc.info.display_regunit(to)
),
Self::Spill {
value,
from,
to_slot,
rc,
} => write!(
f,
"{}:{}({} -> slot {})",
value,
rc,
rc.info.display_regunit(from),
to_slot
),
Self::Fill {
value,
from_slot,
to,
rc,
} => write!(
f,
"{}:{}(slot {} -> {})",
value,
rc,
from_slot,
rc.info.display_regunit(to)
),
}
}
}
impl fmt::Debug for Move {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let as_display: &dyn fmt::Display = self;
as_display.fmt(f)
}
}
/// Constraint solver for register allocation around a single instruction.
///
/// Start by programming in the instruction constraints.
///
/// 1. Initialize the solver by calling `reset()` with the set of allocatable registers before the
/// instruction.
/// 2. Program the input side constraints: Call `reassign_in()` for all fixed register constraints,
/// and `add_var()` for any input operands whose constraints are not already satisfied.
/// 3. Check for conflicts between fixed input assignments and existing live values by calling
/// `has_fixed_input_conflicts()`. Resolve any conflicts by calling `add_var()` with the
/// conflicting values.
/// 4. Prepare for adding output side constraints by calling `inputs_done()`.
/// 5. Add any killed register values that no longer cause interference on the output side by
/// calling `add_kill()`.
/// 6. Program the output side constraints: Call `add_fixed_output()` for all fixed register
/// constraints and `add_def()` for free defines. Resolve fixed output conflicts by calling
/// `add_through_var()`.
///
pub struct Solver {
/// Register reassignments that are required or decided as part of a full solution.
/// This includes identity assignments for values that are already in the correct fixed
/// register.
assignments: SparseMap<Value, Assignment>,
/// Variables are the values that should be reassigned as part of a solution.
/// Values with fixed register constraints are not considered variables. They are represented
/// in the `assignments` vector if necessary.
vars: Vec<Variable>,
/// Are we finished adding input-side constraints? This changes the meaning of the `regs_in`
/// and `regs_out` register sets.
inputs_done: bool,
/// Available registers on the input side of the instruction.
///
/// While we're adding input constraints (`!inputs_done`):
///
/// - Live values on the input side are marked as unavailable.
/// - The 'from' registers of fixed input reassignments are marked as available as they are
/// added.
/// - Input-side variables are marked as available.
///
/// After finishing input constraints (`inputs_done`):
///
/// - Live values on the input side are marked as unavailable.
/// - The 'to' registers of fixed input reassignments are marked as unavailable.
/// - Input-side variables are marked as available.
///
regs_in: RegisterSet,
/// Available registers on the output side of the instruction / fixed input scratch space.
///
/// While we're adding input constraints (`!inputs_done`):
///
/// - The 'to' registers of fixed input reassignments are marked as unavailable.
///
/// After finishing input constraints (`inputs_done`):
///
/// - Live-through values are marked as unavailable.
/// - Fixed output assignments are marked as unavailable.
/// - Live-through variables are marked as available.
///
regs_out: RegisterSet,
/// List of register moves scheduled to avoid conflicts.
///
/// This is used as working space by the `schedule_moves()` function.
moves: Vec<Move>,
/// List of pending fill moves. This is only used during `schedule_moves()`.
fills: Vec<Move>,
}
/// Interface for programming the constraints into the solver.
impl Solver {
/// Create a new empty solver.
pub fn new() -> Self {
Self {
assignments: SparseMap::new(),
vars: Vec::new(),
inputs_done: false,
regs_in: RegisterSet::new(),
regs_out: RegisterSet::new(),
moves: Vec::new(),
fills: Vec::new(),
}
}
/// Clear all data structures in this coloring pass.
pub fn clear(&mut self) {
self.assignments.clear();
self.vars.clear();
self.inputs_done = false;
self.regs_in = RegisterSet::new();
self.regs_out = RegisterSet::new();
self.moves.clear();
self.fills.clear();
}
/// Reset the solver state and prepare solving for a new instruction with an initial set of
/// allocatable registers.
///
/// The `regs` set is the allocatable registers before any reassignments are applied.
pub fn reset(&mut self, regs: &RegisterSet) {
self.assignments.clear();
self.vars.clear();
self.inputs_done = false;
self.regs_in = regs.clone();
// Used for tracking fixed input assignments while `!inputs_done`:
self.regs_out = RegisterSet::new();
self.moves.clear();
self.fills.clear();
}
/// Add a fixed input reassignment of `value`.
///
/// This means that `value` must be assigned to `to` and can't become a variable. Call with
/// `from == to` to ensure that `value` is not reassigned from its existing register location.
///
/// In either case, `to` will not be available for variables on the input side of the
/// instruction.
pub fn reassign_in(&mut self, value: Value, rc: RegClass, from: RegUnit, to: RegUnit) {
debug!(
"reassign_in({}:{}, {} -> {})",
value,
rc,
rc.info.display_regunit(from),
rc.info.display_regunit(to)
);
debug_assert!(!self.inputs_done);
if self.regs_in.is_avail(rc, from) {
// It looks like `value` was already removed from the register set. It must have been
// added as a variable previously. A fixed constraint beats a variable, so convert it.
if let Some(idx) = self.vars.iter().position(|v| v.value == value) {
let v = self.vars.remove(idx);
debug!("-> converting variable {} to a fixed constraint", v);
// The spiller is responsible for ensuring that all constraints on the uses of a
// value are compatible.
debug_assert!(
v.constraint.contains(to),
"Incompatible constraints for {}",
value
);
} else {
panic!("Invalid from register for fixed {} constraint", value);
}
}
self.regs_in.free(rc, from);
self.regs_out.take(rc, to);
self.assignments.insert(Assignment {
value,
rc,
from,
to,
});
}
/// Add a variable representing an input side value with an existing register assignment.
///
/// A variable is a value that should be reassigned to something in the `constraint` register
/// class.
///
/// It is assumed initially that the value is also live on the output side of the instruction.
/// This can be changed by calling to `add_kill()`.
///
/// This function can only be used before calling `inputs_done()`. Afterwards, more input-side
/// variables can be added by calling `add_killed_var()` and `add_through_var()`
pub fn add_var(&mut self, value: Value, constraint: RegClass, from: RegUnit) {
debug!(
"add_var({}:{}, from={})",
value,
constraint,
constraint.info.display_regunit(from)
);
debug_assert!(!self.inputs_done);
self.add_live_var(value, constraint, from, true);
}
/// Add an extra input-side variable representing a value that is killed by the current
/// instruction.
///
/// This function should be called after `inputs_done()` only. Use `add_var()` before.
pub fn add_killed_var(&mut self, value: Value, rc: RegClass, from: RegUnit) {
debug!(
"add_killed_var({}:{}, from={})",
value,
rc,
rc.info.display_regunit(from)
);
debug_assert!(self.inputs_done);
self.add_live_var(value, rc, from, false);
}
/// Add an extra input-side variable representing a value that is live through the current
/// instruction.
///
/// This function should be called after `inputs_done()` only. Use `add_var()` before.
pub fn add_through_var(&mut self, value: Value, rc: RegClass, from: RegUnit) {
debug!(
"add_through_var({}:{}, from={})",
value,
rc,
rc.info.display_regunit(from)
);
debug_assert!(self.inputs_done);
self.add_live_var(value, rc, from, true);
}
/// Shared code for `add_var`, `add_killed_var`, and `add_through_var`.
///
/// Add a variable that is live before the instruction, and possibly live through. Merge
/// constraints if the value has already been added as a variable or fixed assignment.
fn add_live_var(&mut self, value: Value, rc: RegClass, from: RegUnit, live_through: bool) {
// Check for existing entries for this value.
if !self.can_add_var(rc, from) {
// There could be an existing variable entry.
if let Some(v) = self.vars.iter_mut().find(|v| v.value == value) {
// We have an existing variable entry for `value`. Combine the constraints.
if let Some(rc) = v.constraint.intersect(rc) {
debug!("-> combining constraint with {} yields {}", v, rc);
v.constraint = rc;
return;
} else {
// The spiller should have made sure the same value is not used with disjoint
// constraints.
panic!("Incompatible constraints: {} + {}", rc, v)
}
}
// No variable, then it must be a fixed reassignment.
if let Some(a) = self.assignments.get(value) {
debug!("-> already fixed assignment {}", a);
debug_assert!(rc.contains(a.to), "Incompatible constraints for {}", value);
return;
}
debug!("{}", self);
panic!("Wrong from register for {}", value);
}
let new_var = Variable::new_live(value, rc, from, live_through);
debug!("-> new var: {}", new_var);
self.regs_in.free(rc, from);
if self.inputs_done && live_through {
self.regs_out.free(rc, from);
}
self.vars.push(new_var);
}
/// Check for conflicts between fixed input assignments and existing live values.
///
/// Returns true if one of the live values conflicts with a fixed input assignment. Such a
/// conflicting value must be turned into a variable.
pub fn has_fixed_input_conflicts(&self) -> bool {
debug_assert!(!self.inputs_done);
// The `from` side of the fixed input diversions are taken from `regs_out`.
self.regs_out.interferes_with(&self.regs_in)
}
/// Check if `rc, reg` specifically conflicts with the fixed input assignments.
pub fn is_fixed_input_conflict(&self, rc: RegClass, reg: RegUnit) -> bool {
debug_assert!(!self.inputs_done);
!self.regs_out.is_avail(rc, reg)
}
/// Finish adding input side constraints.
///
/// Call this method to indicate that there will be no more fixed input reassignments added
/// and prepare for the output side constraints.
pub fn inputs_done(&mut self) {
debug_assert!(!self.has_fixed_input_conflicts());
// At this point, `regs_out` contains the `to` side of the input reassignments, and the
// `from` side has already been marked as available in `regs_in`.
//
// Remove the `to` assignments from `regs_in` so it now indicates the registers available
// to variables at the input side.
self.regs_in.intersect(&self.regs_out);
// The meaning of `regs_out` now changes completely to indicate the registers available to
// variables on the output side.
// The initial mask will be modified by `add_kill()` and `add_fixed_output()`.
self.regs_out = self.regs_in.clone();
// Now we can't add more fixed input assignments, but `add_var()` is still allowed.
self.inputs_done = true;
}
/// Record that an input register value is killed by the instruction.
///
/// Even if a fixed reassignment has been added for the value, the `reg` argument should be the
/// original location before the reassignments.
///
/// This means that the register is available on the output side.
pub fn add_kill(&mut self, value: Value, rc: RegClass, reg: RegUnit) {
debug_assert!(self.inputs_done);
// If a fixed assignment is killed, the `to` register becomes available on the output side.
if let Some(a) = self.assignments.get(value) {
debug_assert_eq!(a.from, reg);
self.regs_out.free(a.rc, a.to);
return;
}
// It's also possible that a variable is killed. That means it doesn't need to satisfy
// interference constraints on the output side.
// Variables representing tied operands will get their `is_output` flag set again later.
if let Some(v) = self.vars.iter_mut().find(|v| v.value == value) {
debug_assert!(v.is_input);
v.is_output = false;
return;
}
// Alright, this is just a boring value being killed by the instruction. Just reclaim
// the assigned register.
self.regs_out.free(rc, reg);
}
/// Record that an input register is tied to an output register.
///
/// It is assumed that `add_kill` was called previously with the same arguments.
///
/// The output value that must have the same register as the input value is not recorded in the
/// solver.
///
/// If the value has already been assigned to a fixed register, return that.
pub fn add_tied_input(
&mut self,
value: Value,
rc: RegClass,
reg: RegUnit,
is_global: bool,
) -> Option<RegUnit> {
debug_assert!(self.inputs_done);
// If a fixed assignment is tied, the `to` register is not available on the output side.
if let Some(a) = self.assignments.get(value) {
debug_assert_eq!(a.from, reg);
self.regs_out.take(a.rc, a.to);
return Some(a.to);
}
// Check if a variable was created.
if let Some(v) = self.vars.iter_mut().find(|v| v.value == value) {
debug_assert!(v.is_input);
v.is_output = true;
v.is_global = is_global;
return None;
}
// No variable exists for `value` because its constraints are already satisfied.
// However, if the tied output value has a global live range, we must create a variable to
// avoid global interference too.
if is_global {
let mut new_var = Variable::new_live(value, rc, reg, true);
new_var.is_global = true;
debug!("add_tied_input: new tied-global value: {}", new_var);
self.vars.push(new_var);
self.regs_in.free(rc, reg);
} else {
self.regs_out.take(rc, reg);
}
None
}
/// Add a fixed output assignment.
///
/// This means that `to` will not be available for variables on the output side of the
/// instruction.
///
/// Returns `false` if a live value conflicts with `to`, so it couldn't be added. Find the
/// conflicting live-through value and turn it into a variable before calling this method
/// again.
#[allow(dead_code)]
pub fn add_fixed_output(&mut self, rc: RegClass, reg: RegUnit) -> bool {
debug_assert!(self.inputs_done);
if self.regs_out.is_avail(rc, reg) {
self.regs_out.take(rc, reg);
true
} else {
false
}
}
/// Add a defined output value.
///
/// This is similar to `add_var`, except the value doesn't have a prior register assignment.
pub fn add_def(&mut self, value: Value, constraint: RegClass, is_global: bool) {
debug_assert!(self.inputs_done);
self.vars
.push(Variable::new_def(value, constraint, is_global));
}
/// Clear the `is_global` flag on all solver variables.
///
/// This is used when there are not enough global registers available, and global defines have
/// to be replaced with local defines followed by a copy.
pub fn clear_all_global_flags(&mut self) {
for v in &mut self.vars {
v.is_global = false;
}
}
}
/// Error reported when the solver fails to find a solution with the current constraints.
///
/// When no solution can be found, the error indicates how constraints could be loosened to help.
pub enum SolverError {
/// There are not available registers in the given register class.
///
/// This should be resolved by turning live-through values into variables so they can be moved
/// out of the way.
Divert(RegClass),
/// There are insufficient available registers in the global set to assign an `is_global`
/// variable with the given value.
///
/// This should be resolved by converting the variable to a local one.
Global(Value),
}
/// Interface for searching for a solution.
impl Solver {
/// Try a quick-and-dirty solution.
///
/// This is expected to succeed for most instructions since the constraint problem is almost
/// always trivial.
///
/// Returns `Ok(regs)` if a solution was found.
pub fn quick_solve(
&mut self,
global_regs: &RegisterSet,
is_reload: bool,
) -> Result<RegisterSet, SolverError> {
self.find_solution(global_regs, is_reload)
}
/// Try harder to find a solution.
///
/// Call this method after `quick_solve()` fails.
///
/// This may return an error with a register class that has run out of registers. If registers
/// can be freed up in the starving class, this method can be called again after adding
/// variables for the freed registers.
pub fn real_solve(
&mut self,
global_regs: &RegisterSet,
is_reload: bool,
) -> Result<RegisterSet, SolverError> {
// Compute domain sizes for all the variables given the current register sets.
for v in &mut self.vars {
let d = v.iter(&self.regs_in, &self.regs_out, global_regs).len();
v.domain = cmp::min(d, u16::MAX as usize) as u16;
}
// Solve for vars with small domains first to increase the chance of finding a solution.
//
// Also consider this case:
//
// v0: out, global
// v1: in
// v2: in+out
//
// If only %r0 and %r1 are available, the global constraint may cause us to assign:
//
// v0 -> %r1
// v1 -> %r0
// v2 -> !
//
// Usually in+out variables will have a smaller domain, but in the above case the domain
// size is the same, so we also prioritize in+out variables.
//
// Include the reversed previous solution for this variable partly as a stable tie breaker,
// partly to shake things up on a second attempt.
//
// Use the `from` register and value number as a tie breaker to get a stable sort.
self.vars.sort_unstable_by_key(|v| {
(
v.domain,
!(v.is_input && v.is_output),
!v.solution,
v.from.unwrap_or(0),
v.value,
)
});
debug!("real_solve for {}", self);
self.find_solution(global_regs, is_reload)
}
/// Search for a solution with the current list of variables.
///
/// If a solution was found, returns `Ok(regs)` with the set of available registers on the
/// output side after the solution. If no solution could be found, returns `Err(rc)` with the
/// constraint register class that needs more available registers.
fn find_solution(
&mut self,
global_regs: &RegisterSet,
is_reload: bool,
) -> Result<RegisterSet, SolverError> {
// Available registers on the input and output sides respectively.
let mut iregs = self.regs_in.clone();
let mut oregs = self.regs_out.clone();
let mut gregs = global_regs.clone();
for v in &mut self.vars {
let rc = v.constraint;
// Decide which register to assign. In order to try and keep registers holding
// reloaded values separate from all other registers to the extent possible, we choose
// the first available register in the normal case, but the last available one in the
// case of a reload. See "A side note on register choice heuristics" in
// src/redundant_reload_remover.rs for further details.
let mut reg_set_iter = v.iter(&iregs, &oregs, &gregs);
let maybe_reg = if is_reload {
reg_set_iter.rnext()
} else {
reg_set_iter.next()
};
let reg = match maybe_reg {
Some(reg) => reg,
None => {
// If `v` must avoid global interference, there is not point in requesting
// live registers be diverted. We need to make it a non-global value.
if v.is_global && gregs.iter(rc).next().is_none() {
return Err(SolverError::Global(v.value));
}
return Err(SolverError::Divert(rc));
}
};
v.solution = reg;
if v.is_input {
iregs.take(rc, reg);
}
if v.is_output {
oregs.take(rc, reg);
}
if v.is_global {
gregs.take(rc, reg);
}
}
Ok(oregs)
}
/// Get all the variables.
pub fn vars(&self) -> &[Variable] {
&self.vars
}
/// Check if `value` can be added as a variable to help find a solution.
pub fn can_add_var(&mut self, constraint: RegClass, from: RegUnit) -> bool {
!self.regs_in.is_avail(constraint, from)
&& !self.vars.iter().any(|var| var.from == Some(from))
}
}
/// Interface for working with parallel copies once a solution has been found.
impl Solver {
/// Collect all the register moves we need to execute.
fn collect_moves(&mut self) {
self.moves.clear();
// Collect moves from the chosen solution for all non-define variables.
for v in &self.vars {
if let Some(from) = v.from {
// Omit variable solutions that don't require the value to be moved.
if from != v.solution {
self.moves.push(Move::Reg {
value: v.value,
from,
to: v.solution,
rc: v.constraint,
});
}
}
}
// Convert all of the fixed register assignments into moves, but omit the ones that are
// already in the right register.
self.moves
.extend(self.assignments.values().filter_map(Move::with_assignment));
if !self.moves.is_empty() {
debug!("collect_moves: {}", DisplayList(&self.moves));
}
}
/// Try to schedule a sequence of `regmove` instructions that will shuffle registers into
/// place.
///
/// This may require the use of additional available registers, and it can fail if no
/// additional registers are available.
///
/// TODO: Handle failure by generating a sequence of register swaps, or by temporarily spilling
/// a register.
///
/// Returns the number of spills that had to be emitted.
pub fn schedule_moves(&mut self, regs: &RegisterSet) -> usize {
self.collect_moves();
debug_assert!(self.fills.is_empty());
let mut num_spill_slots = 0;
let mut avail = regs.clone();
let mut i = 0;
while i < self.moves.len() + self.fills.len() {
// Don't even look at the fills until we've spent all the moves. Deferring these lets
// us potentially reuse the claimed registers to resolve multiple cycles.
if i >= self.moves.len() {
self.moves.append(&mut self.fills);
}
// Find the first move that can be executed now.
if let Some(j) = self.moves[i..].iter().position(|m| match m.to_reg() {
Some((rc, reg)) => avail.is_avail(rc, reg),
None => true,
}) {
// This move can be executed now.
self.moves.swap(i, i + j);
let m = &self.moves[i];
if let Some((rc, reg)) = m.to_reg() {
avail.take(rc, reg);
}
if let Some((rc, reg)) = m.from_reg() {
avail.free(rc, reg);
}
debug!("move #{}: {}", i, m);
i += 1;
continue;
}
// When we get here, none of the `moves[i..]` can be executed. This means there are
// only cycles remaining. The cycles can be broken in a few ways:
//
// 1. Grab an available register and use it to break a cycle.
// 2. Move a value temporarily into a stack slot instead of a register.
// 3. Use swap instructions.
//
// TODO: So far we only implement 1 and 2.
// Pick an assignment with the largest possible width. This is more likely to break up
// a cycle than an assignment with fewer register units. For example, it may be
// necessary to move two arm32 S-registers out of the way before a D-register can move
// into place.
//
// We use `min_by_key` and `!` instead of `max_by_key` because it preserves the
// existing order of moves with the same width.
let j = self.moves[i..]
.iter()
.enumerate()
.min_by_key(|&(_, m)| !m.rc().width)
.unwrap()
.0;
self.moves.swap(i, i + j);
// Check the top-level register class for an available register. It is an axiom of the
// register allocator that we can move between all registers in the top-level RC.
let m = self.moves[i].clone();
let toprc = m.rc().toprc();
if let Some(reg) = avail.iter(toprc).next() {
debug!(
"breaking cycle at {} with available {} register {}",
m,
toprc,
toprc.info.display_regunit(reg)
);
// Alter the move so it is guaranteed to be picked up when we loop. It is important
// that this move is scheduled immediately, otherwise we would have multiple moves
// of the same value, and they would not be commutable.
let old_to_reg = self.moves[i].replace_to_reg(reg);
// Append a fixup move so we end up in the right place. This move will be scheduled
// later. That's ok because it is the single remaining move of `m.value` after the
// next iteration.
self.moves.push(Move::Reg {
value: m.value(),
rc: toprc,
from: reg,
to: old_to_reg,
});
// TODO: What if allocating an extra register is not enough to break a cycle? This
// can happen when there are registers of different widths in a cycle. For ARM, we
// may have to move two S-registers out of the way before we can resolve a cycle
// involving a D-register.
continue;
}
// It was impossible to free up a register in toprc, so use an emergency spill slot as
// a last resort.
let slot = num_spill_slots;
num_spill_slots += 1;
debug!("breaking cycle at {} with slot {}", m, slot);
let old_to_reg = self.moves[i].change_to_spill(slot);
self.fills.push(Move::Fill {
value: m.value(),
rc: toprc,
from_slot: slot,
to: old_to_reg,
});
}
num_spill_slots
}
/// Borrow the scheduled set of register moves that was computed by `schedule_moves()`.
pub fn moves(&self) -> &[Move] {
&self.moves
}
}
impl fmt::Display for Solver {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let reginfo = self.vars.first().map(|v| v.constraint.info);
writeln!(f, "Solver {{ inputs_done: {},", self.inputs_done)?;
writeln!(f, " in: {}", self.regs_in.display(reginfo))?;
writeln!(f, " out: {}", self.regs_out.display(reginfo))?;
writeln!(
f,
" assignments: {}",
DisplayList(self.assignments.as_slice())
)?;
writeln!(f, " vars: {}", DisplayList(&self.vars))?;
writeln!(f, " moves: {}", DisplayList(&self.moves))?;
writeln!(f, "}}")
}
}
#[cfg(test)]
#[cfg(feature = "arm32")]
mod tests {
use super::{Move, Solver};
use crate::entity::EntityRef;
use crate::ir::Value;
use crate::isa::registers::{RegBank, RegClassData};
use crate::isa::{RegClass, RegInfo, RegUnit};
use crate::regalloc::RegisterSet;
use core::borrow::Borrow;
// Arm32 `TargetIsa` is now `TargetIsaAdapter`, which does not hold any info
// about registers, so we directly access `INFO` from registers-arm32.rs.
include!(concat!(env!("OUT_DIR"), "/registers-arm32.rs"));
// Get a register class by name.
fn rc_by_name(reginfo: &RegInfo, name: &str) -> RegClass {
reginfo
.classes
.iter()
.find(|rc| rc.name == name)
.expect("Can't find named register class.")
}
// Construct a register move.
fn mov(value: Value, rc: RegClass, from: RegUnit, to: RegUnit) -> Move {
Move::Reg {
value,
rc,
from,
to,
}
}
fn spill(value: Value, rc: RegClass, from: RegUnit, to_slot: usize) -> Move {
Move::Spill {
value,
rc,
from,
to_slot,
}
}
fn fill(value: Value, rc: RegClass, from_slot: usize, to: RegUnit) -> Move {
Move::Fill {
value,
rc,
from_slot,
to,
}
}
#[test]
fn simple_moves() {
let reginfo = INFO.borrow();
let gpr = rc_by_name(®info, "GPR");
let r0 = gpr.unit(0);
let r1 = gpr.unit(1);
let r2 = gpr.unit(2);
let gregs = RegisterSet::new();
let mut regs = RegisterSet::new();
let mut solver = Solver::new();
let v10 = Value::new(10);
let v11 = Value::new(11);
// As simple as it gets: Value is in r1, we want r0.
regs.take(gpr, r1);
solver.reset(®s);
solver.reassign_in(v10, gpr, r1, r0);
solver.inputs_done();
assert!(solver.quick_solve(&gregs, false).is_ok());
assert_eq!(solver.schedule_moves(®s), 0);
assert_eq!(solver.moves(), &[mov(v10, gpr, r1, r0)]);
// A bit harder: r0, r1 need to go in r1, r2.
regs.take(gpr, r0);
solver.reset(®s);
solver.reassign_in(v10, gpr, r0, r1);
solver.reassign_in(v11, gpr, r1, r2);
solver.inputs_done();
assert!(solver.quick_solve(&gregs, false).is_ok());
assert_eq!(solver.schedule_moves(®s), 0);
assert_eq!(
solver.moves(),
&[mov(v11, gpr, r1, r2), mov(v10, gpr, r0, r1)]
);
// Swap r0 and r1 in three moves using r2 as a scratch.
solver.reset(®s);
solver.reassign_in(v10, gpr, r0, r1);
solver.reassign_in(v11, gpr, r1, r0);
solver.inputs_done();
assert!(solver.quick_solve(&gregs, false).is_ok());
assert_eq!(solver.schedule_moves(®s), 0);
assert_eq!(
solver.moves(),
&[
mov(v10, gpr, r0, r2),
mov(v11, gpr, r1, r0),
mov(v10, gpr, r2, r1),
]
);
}
#[test]
fn harder_move_cycles() {
let reginfo = INFO.borrow();
let s = rc_by_name(®info, "S");
let d = rc_by_name(®info, "D");
let d0 = d.unit(0);
let d1 = d.unit(1);
let d2 = d.unit(2);
let s0 = s.unit(0);
let s1 = s.unit(1);
let s2 = s.unit(2);
let s3 = s.unit(3);
let gregs = RegisterSet::new();
let mut regs = RegisterSet::new();
let mut solver = Solver::new();
let v10 = Value::new(10);
let v11 = Value::new(11);
let v12 = Value::new(12);
// Not a simple cycle: Swap d0 <-> (s2, s3)
regs.take(d, d0);
regs.take(d, d1);
solver.reset(®s);
solver.reassign_in(v10, d, d0, d1);
solver.reassign_in(v11, s, s2, s0);
solver.reassign_in(v12, s, s3, s1);
solver.inputs_done();
assert!(solver.quick_solve(&gregs, false).is_ok());
assert_eq!(solver.schedule_moves(®s), 0);
assert_eq!(
solver.moves(),
&[
mov(v10, d, d0, d2),
mov(v11, s, s2, s0),
mov(v12, s, s3, s1),
mov(v10, d, d2, d1),
]
);
// Same problem in the other direction: Swap (s0, s1) <-> d1.
//
// If we divert the moves in order, we will need to allocate *two* temporary S registers. A
// trivial algorithm might assume that allocating a single temp is enough.
solver.reset(®s);
solver.reassign_in(v11, s, s0, s2);
solver.reassign_in(v12, s, s1, s3);
solver.reassign_in(v10, d, d1, d0);
solver.inputs_done();
assert!(solver.quick_solve(&gregs, false).is_ok());
assert_eq!(solver.schedule_moves(®s), 0);
assert_eq!(
solver.moves(),
&[
mov(v10, d, d1, d2),
mov(v12, s, s1, s3),
mov(v11, s, s0, s2),
mov(v10, d, d2, d0),
]
);
}
#[test]
fn emergency_spill() {
let reginfo = INFO.borrow();
let gpr = rc_by_name(®info, "GPR");
let r0 = gpr.unit(0);
let r1 = gpr.unit(1);
let r2 = gpr.unit(2);
let r3 = gpr.unit(3);
let r4 = gpr.unit(4);
let r5 = gpr.unit(5);
let gregs = RegisterSet::new();
let mut regs = RegisterSet::new();
let mut solver = Solver::new();
let v10 = Value::new(10);
let v11 = Value::new(11);
let v12 = Value::new(12);
let v13 = Value::new(13);
let v14 = Value::new(14);
let v15 = Value::new(15);
// Claim r0--r2 and r3--r15 for other values.
for i in 0..16 {
regs.take(gpr, gpr.unit(i));
}
// Request a permutation cycle.
solver.reset(®s);
solver.reassign_in(v10, gpr, r0, r1);
solver.reassign_in(v11, gpr, r1, r2);
solver.reassign_in(v12, gpr, r2, r0);
solver.inputs_done();
assert!(solver.quick_solve(&gregs, false).is_ok());
assert_eq!(solver.schedule_moves(®s), 1);
assert_eq!(
solver.moves(),
&[
spill(v10, gpr, r0, 0),
mov(v12, gpr, r2, r0),
mov(v11, gpr, r1, r2),
fill(v10, gpr, 0, r1),
]
);
// Two cycles should only require a single spill.
solver.reset(®s);
// Cycle 1.
solver.reassign_in(v10, gpr, r0, r1);
solver.reassign_in(v11, gpr, r1, r2);
solver.reassign_in(v12, gpr, r2, r0);
// Cycle 2.
solver.reassign_in(v13, gpr, r3, r4);
solver.reassign_in(v14, gpr, r4, r5);
solver.reassign_in(v15, gpr, r5, r3);
solver.inputs_done();
assert!(solver.quick_solve(&gregs, false).is_ok());
// We resolve two cycles with one spill.
assert_eq!(solver.schedule_moves(®s), 1);
assert_eq!(
solver.moves(),
&[
spill(v10, gpr, r0, 0),
mov(v12, gpr, r2, r0),
mov(v11, gpr, r1, r2),
mov(v13, gpr, r3, r1), // Use available r1 to break cycle 2.
mov(v15, gpr, r5, r3),
mov(v14, gpr, r4, r5),
mov(v13, gpr, r1, r4),
fill(v10, gpr, 0, r1), // Finally complete cycle 1.
]
);
}
}