1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.

use crate::bitset::BitSet;
use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::types::{I32, I64};
use crate::ir::{self, InstBuilder, MemFlags};
use crate::isa::TargetIsa;

#[cfg(any(
    feature = "x86",
    feature = "arm32",
    feature = "arm64",
    feature = "riscv"
))]
use crate::predicates;
#[cfg(any(
    feature = "x86",
    feature = "arm32",
    feature = "arm64",
    feature = "riscv"
))]
use alloc::vec::Vec;

use crate::timing;
use alloc::collections::BTreeSet;

mod boundary;
mod call;
mod globalvalue;
mod heap;
mod libcall;
mod split;
mod table;

use self::call::expand_call;
use self::globalvalue::expand_global_value;
use self::heap::expand_heap_addr;
pub(crate) use self::libcall::expand_as_libcall;
use self::table::expand_table_addr;

enum LegalizeInstResult {
    Done,
    Legalized,
    SplitLegalizePending,
}

/// Legalize `inst` for `isa`.
fn legalize_inst(
    inst: ir::Inst,
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) -> LegalizeInstResult {
    let opcode = pos.func.dfg[inst].opcode();

    // Check for ABI boundaries that need to be converted to the legalized signature.
    if opcode.is_call() {
        if boundary::handle_call_abi(isa, inst, pos.func, cfg) {
            return LegalizeInstResult::Legalized;
        }
    } else if opcode.is_return() {
        if boundary::handle_return_abi(inst, pos.func, cfg) {
            return LegalizeInstResult::Legalized;
        }
    } else if opcode.is_branch() {
        split::simplify_branch_arguments(&mut pos.func.dfg, inst);
    } else if opcode == ir::Opcode::Isplit {
        pos.use_srcloc(inst);

        let arg = match pos.func.dfg[inst] {
            ir::InstructionData::Unary { arg, .. } => pos.func.dfg.resolve_aliases(arg),
            _ => panic!("Expected isplit: {}", pos.func.dfg.display_inst(inst, None)),
        };

        match pos.func.dfg.value_def(arg) {
            ir::ValueDef::Result(inst, _num) => {
                if let ir::InstructionData::Binary {
                    opcode: ir::Opcode::Iconcat,
                    ..
                } = pos.func.dfg[inst]
                {
                    // `arg` was created by an `iconcat` instruction.
                } else {
                    // `arg` was not created by an `iconcat` instruction. Don't try to resolve it,
                    // as otherwise `split::isplit` will re-insert the original `isplit`, causing
                    // an endless loop.
                    return LegalizeInstResult::SplitLegalizePending;
                }
            }
            ir::ValueDef::Param(_block, _num) => {}
        }

        let res = pos.func.dfg.inst_results(inst).to_vec();
        assert_eq!(res.len(), 2);
        let (resl, resh) = (res[0], res[1]); // Prevent borrowck error

        // Remove old isplit
        pos.func.dfg.clear_results(inst);
        pos.remove_inst();

        let curpos = pos.position();
        let srcloc = pos.srcloc();
        let (xl, xh) = split::isplit(pos.func, cfg, curpos, srcloc, arg);

        pos.func.dfg.change_to_alias(resl, xl);
        pos.func.dfg.change_to_alias(resh, xh);

        return LegalizeInstResult::Legalized;
    }

    match pos.func.update_encoding(inst, isa) {
        Ok(()) => LegalizeInstResult::Done,
        Err(action) => {
            // We should transform the instruction into legal equivalents.
            // If the current instruction was replaced, we need to double back and revisit
            // the expanded sequence. This is both to assign encodings and possible to
            // expand further.
            // There's a risk of infinite looping here if the legalization patterns are
            // unsound. Should we attempt to detect that?
            if action(inst, pos.func, cfg, isa) {
                return LegalizeInstResult::Legalized;
            }

            // We don't have any pattern expansion for this instruction either.
            // Try converting it to a library call as a last resort.
            if expand_as_libcall(inst, pos.func, isa) {
                LegalizeInstResult::Legalized
            } else {
                LegalizeInstResult::Done
            }
        }
    }
}

/// Legalize `func` for `isa`.
///
/// - Transform any instructions that don't have a legal representation in `isa`.
/// - Fill out `func.encodings`.
///
pub fn legalize_function(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    let _tt = timing::legalize();
    debug_assert!(cfg.is_valid());

    boundary::legalize_signatures(func, isa);

    func.encodings.resize(func.dfg.num_insts());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();

    // Split block params before trying to legalize instructions, so that the newly introduced
    // isplit instructions get legalized.
    while let Some(block) = pos.next_block() {
        split::split_block_params(pos.func, cfg, block);
    }

    pos.set_position(func_begin);

    // This must be a set to prevent trying to legalize `isplit` and `vsplit` twice in certain cases.
    let mut pending_splits = BTreeSet::new();

    // Process blocks in layout order. Some legalization actions may split the current block or append
    // new ones to the end. We need to make sure we visit those new blocks too.
    while let Some(_block) = pos.next_block() {
        // Keep track of the cursor position before the instruction being processed, so we can
        // double back when replacing instructions.
        let mut prev_pos = pos.position();

        while let Some(inst) = pos.next_inst() {
            match legalize_inst(inst, &mut pos, cfg, isa) {
                // Remember this position in case we need to double back.
                LegalizeInstResult::Done => prev_pos = pos.position(),

                // Go back and legalize the inserted return value conversion instructions.
                LegalizeInstResult::Legalized => pos.set_position(prev_pos),

                // The argument of a `isplit` or `vsplit` instruction didn't resolve to a
                // `iconcat` or `vconcat` instruction. Try again after legalizing the rest of
                // the instructions.
                LegalizeInstResult::SplitLegalizePending => {
                    pending_splits.insert(inst);
                }
            }
        }
    }

    // Try legalizing `isplit` and `vsplit` instructions, which could not previously be legalized.
    for inst in pending_splits {
        pos.goto_inst(inst);
        legalize_inst(inst, &mut pos, cfg, isa);
    }

    // Now that we've lowered all br_tables, we don't need the jump tables anymore.
    if !isa.flags().enable_jump_tables() {
        pos.func.jump_tables.clear();
    }
}

/// Perform a simple legalization by expansion of the function, without
/// platform-specific transforms.
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            let expanded = match pos.func.dfg[inst].opcode() {
                ir::Opcode::BrIcmp
                | ir::Opcode::GlobalValue
                | ir::Opcode::HeapAddr
                | ir::Opcode::StackLoad
                | ir::Opcode::StackStore
                | ir::Opcode::TableAddr
                | ir::Opcode::Trapnz
                | ir::Opcode::Trapz
                | ir::Opcode::ResumableTrapnz
                | ir::Opcode::BandImm
                | ir::Opcode::BorImm
                | ir::Opcode::BxorImm
                | ir::Opcode::IaddImm
                | ir::Opcode::IfcmpImm
                | ir::Opcode::ImulImm
                | ir::Opcode::IrsubImm
                | ir::Opcode::IshlImm
                | ir::Opcode::RotlImm
                | ir::Opcode::RotrImm
                | ir::Opcode::SdivImm
                | ir::Opcode::SremImm
                | ir::Opcode::SshrImm
                | ir::Opcode::UdivImm
                | ir::Opcode::UremImm
                | ir::Opcode::UshrImm
                | ir::Opcode::IcmpImm => expand(inst, &mut pos.func, cfg, isa),
                _ => false,
            };

            if expanded {
                // Legalization implementations require fixpoint loop
                // here. TODO: fix this.
                pos.set_position(prev_pos);
            } else {
                prev_pos = pos.position();
            }
        }
    }
}

// Include legalization patterns that were generated by `gen_legalizer.rs` from the
// `TransformGroup` in `cranelift-codegen/meta/shared/legalize.rs`.
//
// Concretely, this defines private functions `narrow()`, and `expand()`.
include!(concat!(env!("OUT_DIR"), "/legalizer.rs"));

/// Custom expansion for conditional trap instructions.
/// TODO: Add CFG support to the Rust DSL patterns so we won't have to do this.
fn expand_cond_trap(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    // Parse the instruction.
    let trapz;
    let (arg, code, opcode) = match func.dfg[inst] {
        ir::InstructionData::CondTrap { opcode, arg, code } => {
            // We want to branch *over* an unconditional trap.
            trapz = match opcode {
                ir::Opcode::Trapz => true,
                ir::Opcode::Trapnz | ir::Opcode::ResumableTrapnz => false,
                _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst, None)),
            };
            (arg, code, opcode)
        }
        _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst, None)),
    };

    // Split the block after `inst`:
    //
    //     trapnz arg
    //     ..
    //
    // Becomes:
    //
    //     brz arg, new_block_resume
    //     jump new_block_trap
    //
    //   new_block_trap:
    //     trap
    //
    //   new_block_resume:
    //     ..
    let old_block = func.layout.pp_block(inst);
    let new_block_trap = func.dfg.make_block();
    let new_block_resume = func.dfg.make_block();

    // Replace trap instruction by the inverted condition.
    if trapz {
        func.dfg.replace(inst).brnz(arg, new_block_resume, &[]);
    } else {
        func.dfg.replace(inst).brz(arg, new_block_resume, &[]);
    }

    // Add jump instruction after the inverted branch.
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_block_trap, &[]);

    // Insert the new label and the unconditional trap terminator.
    pos.insert_block(new_block_trap);

    match opcode {
        ir::Opcode::Trapz | ir::Opcode::Trapnz => {
            pos.ins().trap(code);
        }
        ir::Opcode::ResumableTrapnz => {
            pos.ins().resumable_trap(code);
            pos.ins().jump(new_block_resume, &[]);
        }
        _ => unreachable!(),
    }

    // Insert the new label and resume the execution when the trap fails.
    pos.insert_block(new_block_resume);

    // Finally update the CFG.
    cfg.recompute_block(pos.func, old_block);
    cfg.recompute_block(pos.func, new_block_resume);
    cfg.recompute_block(pos.func, new_block_trap);
}

/// Jump tables.
fn expand_br_table(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    if isa.flags().enable_jump_tables() {
        expand_br_table_jt(inst, func, cfg, isa);
    } else {
        expand_br_table_conds(inst, func, cfg, isa);
    }
}

/// Expand br_table to jump table.
fn expand_br_table_jt(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    use crate::ir::condcodes::IntCC;

    let (arg, default_block, table) = match func.dfg[inst] {
        ir::InstructionData::BranchTable {
            opcode: ir::Opcode::BrTable,
            arg,
            destination,
            table,
        } => (arg, destination, table),
        _ => panic!("Expected br_table: {}", func.dfg.display_inst(inst, None)),
    };

    // Rewrite:
    //
    //     br_table $idx, default_block, $jt
    //
    // To:
    //
    //     $oob = ifcmp_imm $idx, len($jt)
    //     brif uge $oob, default_block
    //     jump fallthrough_block
    //
    //   fallthrough_block:
    //     $base = jump_table_base.i64 $jt
    //     $rel_addr = jump_table_entry.i64 $idx, $base, 4, $jt
    //     $addr = iadd $base, $rel_addr
    //     indirect_jump_table_br $addr, $jt

    let block = func.layout.pp_block(inst);
    let jump_table_block = func.dfg.make_block();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Bounds check.
    let table_size = pos.func.jump_tables[table].len() as i64;
    let oob = pos
        .ins()
        .icmp_imm(IntCC::UnsignedGreaterThanOrEqual, arg, table_size);

    pos.ins().brnz(oob, default_block, &[]);
    pos.ins().jump(jump_table_block, &[]);
    pos.insert_block(jump_table_block);

    let addr_ty = isa.pointer_type();

    let arg = if pos.func.dfg.value_type(arg) == addr_ty {
        arg
    } else {
        pos.ins().uextend(addr_ty, arg)
    };

    let base_addr = pos.ins().jump_table_base(addr_ty, table);
    let entry = pos
        .ins()
        .jump_table_entry(arg, base_addr, I32.bytes() as u8, table);

    let addr = pos.ins().iadd(base_addr, entry);
    pos.ins().indirect_jump_table_br(addr, table);

    pos.remove_inst();
    cfg.recompute_block(pos.func, block);
    cfg.recompute_block(pos.func, jump_table_block);
}

/// Expand br_table to series of conditionals.
fn expand_br_table_conds(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    use crate::ir::condcodes::IntCC;

    let (arg, default_block, table) = match func.dfg[inst] {
        ir::InstructionData::BranchTable {
            opcode: ir::Opcode::BrTable,
            arg,
            destination,
            table,
        } => (arg, destination, table),
        _ => panic!("Expected br_table: {}", func.dfg.display_inst(inst, None)),
    };

    let block = func.layout.pp_block(inst);

    // This is a poor man's jump table using just a sequence of conditional branches.
    let table_size = func.jump_tables[table].len();
    let mut cond_failed_block = vec![];
    if table_size >= 1 {
        cond_failed_block = alloc::vec::Vec::with_capacity(table_size - 1);
        for _ in 0..table_size - 1 {
            cond_failed_block.push(func.dfg.make_block());
        }
    }

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Ignore the lint for this loop as the range needs to be 0 to table_size
    #[allow(clippy::needless_range_loop)]
    for i in 0..table_size {
        let dest = pos.func.jump_tables[table].as_slice()[i];
        let t = pos.ins().icmp_imm(IntCC::Equal, arg, i as i64);
        pos.ins().brnz(t, dest, &[]);
        // Jump to the next case.
        if i < table_size - 1 {
            let block = cond_failed_block[i];
            pos.ins().jump(block, &[]);
            pos.insert_block(block);
        }
    }

    // `br_table` jumps to the default destination if nothing matches
    pos.ins().jump(default_block, &[]);

    pos.remove_inst();
    cfg.recompute_block(pos.func, block);
    for failed_block in cond_failed_block.into_iter() {
        cfg.recompute_block(pos.func, failed_block);
    }
}

/// Expand the select instruction.
///
/// Conditional moves are available in some ISAs for some register classes. The remaining selects
/// are handled by a branch.
fn expand_select(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    let (ctrl, tval, fval) = match func.dfg[inst] {
        ir::InstructionData::Ternary {
            opcode: ir::Opcode::Select,
            args,
        } => (args[0], args[1], args[2]),
        _ => panic!("Expected select: {}", func.dfg.display_inst(inst, None)),
    };

    // Replace `result = select ctrl, tval, fval` with:
    //
    //   brnz ctrl, new_block(tval)
    //   jump new_block(fval)
    // new_block(result):
    let old_block = func.layout.pp_block(inst);
    let result = func.dfg.first_result(inst);
    func.dfg.clear_results(inst);
    let new_block = func.dfg.make_block();
    func.dfg.attach_block_param(new_block, result);

    func.dfg.replace(inst).brnz(ctrl, new_block, &[tval]);
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_block, &[fval]);
    pos.insert_block(new_block);

    cfg.recompute_block(pos.func, new_block);
    cfg.recompute_block(pos.func, old_block);
}

fn expand_br_icmp(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    let (cond, a, b, destination, block_args) = match func.dfg[inst] {
        ir::InstructionData::BranchIcmp {
            cond,
            destination,
            ref args,
            ..
        } => (
            cond,
            args.get(0, &func.dfg.value_lists).unwrap(),
            args.get(1, &func.dfg.value_lists).unwrap(),
            destination,
            args.as_slice(&func.dfg.value_lists)[2..].to_vec(),
        ),
        _ => panic!("Expected br_icmp {}", func.dfg.display_inst(inst, None)),
    };

    let old_block = func.layout.pp_block(inst);
    func.dfg.clear_results(inst);

    let icmp_res = func.dfg.replace(inst).icmp(cond, a, b);
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().brnz(icmp_res, destination, &block_args);

    cfg.recompute_block(pos.func, destination);
    cfg.recompute_block(pos.func, old_block);
}

/// Expand illegal `f32const` and `f64const` instructions.
fn expand_fconst(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    let ty = func.dfg.value_type(func.dfg.first_result(inst));
    debug_assert!(!ty.is_vector(), "Only scalar fconst supported: {}", ty);

    // In the future, we may want to generate constant pool entries for these constants, but for
    // now use an `iconst` and a bit cast.
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);
    let ival = match pos.func.dfg[inst] {
        ir::InstructionData::UnaryIeee32 {
            opcode: ir::Opcode::F32const,
            imm,
        } => pos.ins().iconst(ir::types::I32, i64::from(imm.bits())),
        ir::InstructionData::UnaryIeee64 {
            opcode: ir::Opcode::F64const,
            imm,
        } => pos.ins().iconst(ir::types::I64, imm.bits() as i64),
        _ => panic!("Expected fconst: {}", pos.func.dfg.display_inst(inst, None)),
    };
    pos.func.dfg.replace(inst).bitcast(ty, ival);
}

/// Expand illegal `stack_load` instructions.
fn expand_stack_load(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    let ty = func.dfg.value_type(func.dfg.first_result(inst));
    let addr_ty = isa.pointer_type();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let (stack_slot, offset) = match pos.func.dfg[inst] {
        ir::InstructionData::StackLoad {
            opcode: _opcode,
            stack_slot,
            offset,
        } => (stack_slot, offset),
        _ => panic!(
            "Expected stack_load: {}",
            pos.func.dfg.display_inst(inst, None)
        ),
    };

    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

    // Stack slots are required to be accessible and aligned.
    let mflags = MemFlags::trusted();
    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
}

/// Expand illegal `stack_store` instructions.
fn expand_stack_store(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    let addr_ty = isa.pointer_type();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let (val, stack_slot, offset) = match pos.func.dfg[inst] {
        ir::InstructionData::StackStore {
            opcode: _opcode,
            arg,
            stack_slot,
            offset,
        } => (arg, stack_slot, offset),
        _ => panic!(
            "Expected stack_store: {}",
            pos.func.dfg.display_inst(inst, None)
        ),
    };

    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

    let mut mflags = MemFlags::new();
    // Stack slots are required to be accessible and aligned.
    mflags.set_notrap();
    mflags.set_aligned();
    pos.func.dfg.replace(inst).store(mflags, val, addr, 0);
}

/// Split a load into two parts before `iconcat`ing the result together.
fn narrow_load(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let (ptr, offset, flags) = match pos.func.dfg[inst] {
        ir::InstructionData::Load {
            opcode: ir::Opcode::Load,
            arg,
            offset,
            flags,
        } => (arg, offset, flags),
        _ => panic!("Expected load: {}", pos.func.dfg.display_inst(inst, None)),
    };

    let res_ty = pos.func.dfg.ctrl_typevar(inst);
    let small_ty = res_ty.half_width().expect("Can't narrow load");

    let al = pos.ins().load(small_ty, flags, ptr, offset);
    let ah = pos.ins().load(
        small_ty,
        flags,
        ptr,
        offset.try_add_i64(8).expect("load offset overflow"),
    );
    let (al, ah) = match flags.endianness(isa.endianness()) {
        ir::Endianness::Little => (al, ah),
        ir::Endianness::Big => (ah, al),
    };
    pos.func.dfg.replace(inst).iconcat(al, ah);
}

/// Split a store into two parts after `isplit`ing the value.
fn narrow_store(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let (val, ptr, offset, flags) = match pos.func.dfg[inst] {
        ir::InstructionData::Store {
            opcode: ir::Opcode::Store,
            args,
            offset,
            flags,
        } => (args[0], args[1], offset, flags),
        _ => panic!("Expected store: {}", pos.func.dfg.display_inst(inst, None)),
    };

    let (al, ah) = pos.ins().isplit(val);
    let (al, ah) = match flags.endianness(isa.endianness()) {
        ir::Endianness::Little => (al, ah),
        ir::Endianness::Big => (ah, al),
    };
    pos.ins().store(flags, al, ptr, offset);
    pos.ins().store(
        flags,
        ah,
        ptr,
        offset.try_add_i64(8).expect("store offset overflow"),
    );
    pos.remove_inst();
}

/// Expands an illegal iconst value by splitting it into two.
fn narrow_iconst(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
) {
    let imm: i64 = if let ir::InstructionData::UnaryImm {
        opcode: ir::Opcode::Iconst,
        imm,
    } = &func.dfg[inst]
    {
        (*imm).into()
    } else {
        panic!("unexpected instruction in narrow_iconst");
    };

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let ty = pos.func.dfg.ctrl_typevar(inst);
    if isa.pointer_bits() == 32 && ty == I64 {
        let low = pos.ins().iconst(I32, imm & 0xffffffff);
        let high = pos.ins().iconst(I32, imm >> 32);
        // The instruction has as many results as iconcat, so no need to replace them.
        pos.func.dfg.replace(inst).iconcat(low, high);
        return;
    }

    unimplemented!("missing encoding or legalization for iconst.{:?}", ty);
}

fn narrow_icmp_imm(
    inst: ir::Inst,
    func: &mut ir::Function,
    _cfg: &mut ControlFlowGraph,
    _isa: &dyn TargetIsa,
) {
    use crate::ir::condcodes::{CondCode, IntCC};

    let (arg, cond, imm): (ir::Value, IntCC, i64) = match func.dfg[inst] {
        ir::InstructionData::IntCompareImm {
            opcode: ir::Opcode::IcmpImm,
            arg,
            cond,
            imm,
        } => (arg, cond, imm.into()),
        _ => panic!("unexpected instruction in narrow_icmp_imm"),
    };

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let ty = pos.func.dfg.ctrl_typevar(inst);
    let ty_half = ty.half_width().unwrap();

    let mask = ((1u128 << ty_half.bits()) - 1) as i64;
    let imm_low = pos.ins().iconst(ty_half, imm & mask);
    let imm_high = pos.ins().iconst(
        ty_half,
        imm.checked_shr(ty_half.bits().into()).unwrap_or(0) & mask,
    );
    let (arg_low, arg_high) = pos.ins().isplit(arg);

    match cond {
        IntCC::Equal => {
            let res_low = pos.ins().icmp(cond, arg_low, imm_low);
            let res_high = pos.ins().icmp(cond, arg_high, imm_high);
            pos.func.dfg.replace(inst).band(res_low, res_high);
        }
        IntCC::NotEqual => {
            let res_low = pos.ins().icmp(cond, arg_low, imm_low);
            let res_high = pos.ins().icmp(cond, arg_high, imm_high);
            pos.func.dfg.replace(inst).bor(res_low, res_high);
        }
        IntCC::SignedGreaterThan
        | IntCC::SignedGreaterThanOrEqual
        | IntCC::SignedLessThan
        | IntCC::SignedLessThanOrEqual
        | IntCC::UnsignedGreaterThan
        | IntCC::UnsignedGreaterThanOrEqual
        | IntCC::UnsignedLessThan
        | IntCC::UnsignedLessThanOrEqual => {
            let b1 = pos.ins().icmp(cond.without_equal(), arg_high, imm_high);
            let b2 = pos
                .ins()
                .icmp(cond.inverse().without_equal(), arg_high, imm_high);
            let b3 = pos.ins().icmp(cond.unsigned(), arg_low, imm_low);
            let c1 = pos.ins().bnot(b2);
            let c2 = pos.ins().band(c1, b3);
            pos.func.dfg.replace(inst).bor(b1, c2);
        }
        _ => unimplemented!("missing legalization for condition {:?}", cond),
    }
}