1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
//! B+-tree nodes.

use super::{slice_insert, slice_shift, Forest, Node, SetValue, INNER_SIZE};
use core::borrow::{Borrow, BorrowMut};
use core::fmt;

/// B+-tree node.
///
/// A B+-tree has different node types for inner nodes and leaf nodes. Inner nodes contain M node
/// references and M-1 keys while leaf nodes contain N keys and values. Values for M and N are
/// chosen such that a node is exactly 64 bytes (a cache line) when keys and values are 32 bits
/// each.
///
/// An inner node contains at least M/2 node references unless it is the right-most node at its
/// level. A leaf node contains at least N/2 keys unless it is the right-most leaf.
#[allow(dead_code)] // workaround for https://github.com/rust-lang/rust/issues/64362
pub(super) enum NodeData<F: Forest> {
    Inner {
        /// The number of keys in this node.
        /// The number of node references is always one more.
        size: u8,

        /// Keys discriminating sub-trees.
        ///
        /// The key in `keys[i]` is greater than all keys in `tree[i]` and less than or equal to
        /// all keys in `tree[i+1]`.
        keys: [F::Key; INNER_SIZE - 1],

        /// Sub-trees.
        tree: [Node; INNER_SIZE],
    },
    Leaf {
        /// Number of key-value pairs in this node.
        size: u8,

        // Key array.
        keys: F::LeafKeys,

        // Value array.
        vals: F::LeafValues,
    },
    /// An unused node on the free list.
    Free { next: Option<Node> },
}

// Implement `Clone` and `Copy` manually, because deriving them would also require `Forest` to
// implement `Clone`.
impl<F: Forest> Copy for NodeData<F> {}
impl<F: Forest> Clone for NodeData<F> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<F: Forest> NodeData<F> {
    /// Is this a free/unused node?
    pub fn is_free(&self) -> bool {
        match *self {
            Self::Free { .. } => true,
            _ => false,
        }
    }

    /// Get the number of entries in this node.
    ///
    /// This is the number of outgoing edges in an inner node, or the number of key-value pairs in
    /// a leaf node.
    pub fn entries(&self) -> usize {
        match *self {
            Self::Inner { size, .. } => usize::from(size) + 1,
            Self::Leaf { size, .. } => usize::from(size),
            Self::Free { .. } => panic!("freed node"),
        }
    }

    /// Create an inner node with a single key and two sub-trees.
    pub fn inner(left: Node, key: F::Key, right: Node) -> Self {
        // Splat the key and right node to the whole array.
        // Saves us from inventing a default/reserved value.
        let mut tree = [right; INNER_SIZE];
        tree[0] = left;
        Self::Inner {
            size: 1,
            keys: [key; INNER_SIZE - 1],
            tree,
        }
    }

    /// Create a leaf node with a single key-value pair.
    pub fn leaf(key: F::Key, value: F::Value) -> Self {
        Self::Leaf {
            size: 1,
            keys: F::splat_key(key),
            vals: F::splat_value(value),
        }
    }

    /// Unwrap an inner node into two slices (keys, trees).
    pub fn unwrap_inner(&self) -> (&[F::Key], &[Node]) {
        match *self {
            Self::Inner {
                size,
                ref keys,
                ref tree,
            } => {
                let size = usize::from(size);
                // TODO: We could probably use `get_unchecked()` here since `size` is always in
                // range.
                (&keys[0..size], &tree[0..=size])
            }
            _ => panic!("Expected inner node"),
        }
    }

    /// Unwrap a leaf node into two slices (keys, values) of the same length.
    pub fn unwrap_leaf(&self) -> (&[F::Key], &[F::Value]) {
        match *self {
            Self::Leaf {
                size,
                ref keys,
                ref vals,
            } => {
                let size = usize::from(size);
                let keys = keys.borrow();
                let vals = vals.borrow();
                // TODO: We could probably use `get_unchecked()` here since `size` is always in
                // range.
                (&keys[0..size], &vals[0..size])
            }
            _ => panic!("Expected leaf node"),
        }
    }

    /// Unwrap a mutable leaf node into two slices (keys, values) of the same length.
    pub fn unwrap_leaf_mut(&mut self) -> (&mut [F::Key], &mut [F::Value]) {
        match *self {
            Self::Leaf {
                size,
                ref mut keys,
                ref mut vals,
            } => {
                let size = usize::from(size);
                let keys = keys.borrow_mut();
                let vals = vals.borrow_mut();
                // TODO: We could probably use `get_unchecked_mut()` here since `size` is always in
                // range.
                (&mut keys[0..size], &mut vals[0..size])
            }
            _ => panic!("Expected leaf node"),
        }
    }

    /// Get the critical key for a leaf node.
    /// This is simply the first key.
    pub fn leaf_crit_key(&self) -> F::Key {
        match *self {
            Self::Leaf { size, ref keys, .. } => {
                debug_assert!(size > 0, "Empty leaf node");
                keys.borrow()[0]
            }
            _ => panic!("Expected leaf node"),
        }
    }

    /// Try to insert `(key, node)` at key-position `index` in an inner node.
    /// This means that `key` is inserted at `keys[i]` and `node` is inserted at `tree[i + 1]`.
    /// If the node is full, this leaves the node unchanged and returns false.
    pub fn try_inner_insert(&mut self, index: usize, key: F::Key, node: Node) -> bool {
        match *self {
            Self::Inner {
                ref mut size,
                ref mut keys,
                ref mut tree,
            } => {
                let sz = usize::from(*size);
                debug_assert!(sz <= keys.len());
                debug_assert!(index <= sz, "Can't insert at {} with {} keys", index, sz);

                if let Some(ks) = keys.get_mut(0..=sz) {
                    *size = (sz + 1) as u8;
                    slice_insert(ks, index, key);
                    slice_insert(&mut tree[1..=sz + 1], index, node);
                    true
                } else {
                    false
                }
            }
            _ => panic!("Expected inner node"),
        }
    }

    /// Try to insert `key, value` at `index` in a leaf node, but fail and return false if the node
    /// is full.
    pub fn try_leaf_insert(&mut self, index: usize, key: F::Key, value: F::Value) -> bool {
        match *self {
            Self::Leaf {
                ref mut size,
                ref mut keys,
                ref mut vals,
            } => {
                let sz = usize::from(*size);
                let keys = keys.borrow_mut();
                let vals = vals.borrow_mut();
                debug_assert!(sz <= keys.len());
                debug_assert!(index <= sz);

                if let Some(ks) = keys.get_mut(0..=sz) {
                    *size = (sz + 1) as u8;
                    slice_insert(ks, index, key);
                    slice_insert(&mut vals[0..=sz], index, value);
                    true
                } else {
                    false
                }
            }
            _ => panic!("Expected leaf node"),
        }
    }

    /// Split off the second half of this node.
    /// It is assumed that this a completely full inner or leaf node.
    ///
    /// The `insert_index` parameter is the position where an insertion was tried and failed. The
    /// node will be split in half with a bias towards an even split after the insertion is retried.
    pub fn split(&mut self, insert_index: usize) -> SplitOff<F> {
        match *self {
            Self::Inner {
                ref mut size,
                ref keys,
                ref tree,
            } => {
                debug_assert_eq!(usize::from(*size), keys.len(), "Node not full");

                // Number of tree entries in the lhs node.
                let l_ents = split_pos(tree.len(), insert_index + 1);
                let r_ents = tree.len() - l_ents;

                // With INNER_SIZE=8, we get l_ents=4 and:
                //
                // self: [ n0 k0 n1 k1 n2 k2 n3 k3 n4 k4 n5 k5 n6 k6 n7 ]
                // lhs:  [ n0 k0 n1 k1 n2 k2 n3 ]
                // crit_key = k3 (not present in either node)
                // rhs:  [ n4 k4 n5 k5 n6 k6 n7 ]

                // 1. Truncate the LHS.
                *size = (l_ents - 1) as u8;

                // 2. Copy second half to `rhs_data`.
                let mut r_keys = *keys;
                r_keys[0..r_ents - 1].copy_from_slice(&keys[l_ents..]);

                let mut r_tree = *tree;
                r_tree[0..r_ents].copy_from_slice(&tree[l_ents..]);

                SplitOff {
                    lhs_entries: l_ents,
                    rhs_entries: r_ents,
                    crit_key: keys[l_ents - 1],
                    rhs_data: Self::Inner {
                        size: (r_ents - 1) as u8,
                        keys: r_keys,
                        tree: r_tree,
                    },
                }
            }
            Self::Leaf {
                ref mut size,
                ref keys,
                ref vals,
            } => {
                let o_keys = keys.borrow();
                let o_vals = vals.borrow();
                debug_assert_eq!(usize::from(*size), o_keys.len(), "Node not full");

                let l_size = split_pos(o_keys.len(), insert_index);
                let r_size = o_keys.len() - l_size;

                // 1. Truncate the LHS node at `l_size`.
                *size = l_size as u8;

                // 2. Copy second half to `rhs_data`.
                let mut r_keys = *keys;
                r_keys.borrow_mut()[0..r_size].copy_from_slice(&o_keys[l_size..]);

                let mut r_vals = *vals;
                r_vals.borrow_mut()[0..r_size].copy_from_slice(&o_vals[l_size..]);

                SplitOff {
                    lhs_entries: l_size,
                    rhs_entries: r_size,
                    crit_key: o_keys[l_size],
                    rhs_data: Self::Leaf {
                        size: r_size as u8,
                        keys: r_keys,
                        vals: r_vals,
                    },
                }
            }
            _ => panic!("Expected leaf node"),
        }
    }

    /// Remove the sub-tree at `index` from this inner node.
    ///
    /// Note that `index` refers to a sub-tree entry and not a key entry as it does for
    /// `try_inner_insert()`. It is possible to remove the first sub-tree (which can't be inserted
    /// by `try_inner_insert()`).
    ///
    /// Return an indication of the node's health (i.e. below half capacity).
    pub fn inner_remove(&mut self, index: usize) -> Removed {
        match *self {
            Self::Inner {
                ref mut size,
                ref mut keys,
                ref mut tree,
            } => {
                let ents = usize::from(*size) + 1;
                debug_assert!(ents <= tree.len());
                debug_assert!(index < ents);
                // Leave an invalid 0xff size when node becomes empty.
                *size = ents.wrapping_sub(2) as u8;
                if ents > 1 {
                    slice_shift(&mut keys[index.saturating_sub(1)..ents - 1], 1);
                }
                slice_shift(&mut tree[index..ents], 1);
                Removed::new(index, ents - 1, tree.len())
            }
            _ => panic!("Expected inner node"),
        }
    }

    /// Remove the key-value pair at `index` from this leaf node.
    ///
    /// Return an indication of the node's health (i.e. below half capacity).
    pub fn leaf_remove(&mut self, index: usize) -> Removed {
        match *self {
            Self::Leaf {
                ref mut size,
                ref mut keys,
                ref mut vals,
            } => {
                let sz = usize::from(*size);
                let keys = keys.borrow_mut();
                let vals = vals.borrow_mut();
                *size -= 1;
                slice_shift(&mut keys[index..sz], 1);
                slice_shift(&mut vals[index..sz], 1);
                Removed::new(index, sz - 1, keys.len())
            }
            _ => panic!("Expected leaf node"),
        }
    }

    /// Balance this node with its right sibling.
    ///
    /// It is assumed that the current node has underflowed. Look at the right sibling node and do
    /// one of two things:
    ///
    /// 1. Move all entries to the right node, leaving this node empty, or
    /// 2. Distribute entries evenly between the two nodes.
    ///
    /// In the first case, `None` is returned. In the second case, the new critical key for the
    /// right sibling node is returned.
    pub fn balance(&mut self, crit_key: F::Key, rhs: &mut Self) -> Option<F::Key> {
        match (self, rhs) {
            (
                &mut Self::Inner {
                    size: ref mut l_size,
                    keys: ref mut l_keys,
                    tree: ref mut l_tree,
                },
                &mut Self::Inner {
                    size: ref mut r_size,
                    keys: ref mut r_keys,
                    tree: ref mut r_tree,
                },
            ) => {
                let l_ents = usize::from(*l_size) + 1;
                let r_ents = usize::from(*r_size) + 1;
                let ents = l_ents + r_ents;

                if ents <= r_tree.len() {
                    // All entries will fit in the RHS node.
                    // We'll leave the LHS node empty, but first use it as a scratch space.
                    *l_size = 0;
                    // Insert `crit_key` between the two nodes.
                    l_keys[l_ents - 1] = crit_key;
                    l_keys[l_ents..ents - 1].copy_from_slice(&r_keys[0..r_ents - 1]);
                    r_keys[0..ents - 1].copy_from_slice(&l_keys[0..ents - 1]);
                    l_tree[l_ents..ents].copy_from_slice(&r_tree[0..r_ents]);
                    r_tree[0..ents].copy_from_slice(&l_tree[0..ents]);
                    *r_size = (ents - 1) as u8;
                    None
                } else {
                    // The entries don't all fit in one node. Distribute some from RHS -> LHS.
                    // Split evenly with a bias to putting one entry in LHS.
                    let r_goal = ents / 2;
                    let l_goal = ents - r_goal;
                    debug_assert!(l_goal > l_ents, "Node must be underflowed");

                    l_keys[l_ents - 1] = crit_key;
                    l_keys[l_ents..l_goal - 1].copy_from_slice(&r_keys[0..l_goal - 1 - l_ents]);
                    l_tree[l_ents..l_goal].copy_from_slice(&r_tree[0..l_goal - l_ents]);
                    *l_size = (l_goal - 1) as u8;

                    let new_crit = r_keys[r_ents - r_goal - 1];
                    slice_shift(&mut r_keys[0..r_ents - 1], r_ents - r_goal);
                    slice_shift(&mut r_tree[0..r_ents], r_ents - r_goal);
                    *r_size = (r_goal - 1) as u8;

                    Some(new_crit)
                }
            }
            (
                &mut Self::Leaf {
                    size: ref mut l_size,
                    keys: ref mut l_keys,
                    vals: ref mut l_vals,
                },
                &mut Self::Leaf {
                    size: ref mut r_size,
                    keys: ref mut r_keys,
                    vals: ref mut r_vals,
                },
            ) => {
                let l_ents = usize::from(*l_size);
                let l_keys = l_keys.borrow_mut();
                let l_vals = l_vals.borrow_mut();
                let r_ents = usize::from(*r_size);
                let r_keys = r_keys.borrow_mut();
                let r_vals = r_vals.borrow_mut();
                let ents = l_ents + r_ents;

                if ents <= r_vals.len() {
                    // We can fit all entries in the RHS node.
                    // We'll leave the LHS node empty, but first use it as a scratch space.
                    *l_size = 0;
                    l_keys[l_ents..ents].copy_from_slice(&r_keys[0..r_ents]);
                    r_keys[0..ents].copy_from_slice(&l_keys[0..ents]);
                    l_vals[l_ents..ents].copy_from_slice(&r_vals[0..r_ents]);
                    r_vals[0..ents].copy_from_slice(&l_vals[0..ents]);
                    *r_size = ents as u8;
                    None
                } else {
                    // The entries don't all fit in one node. Distribute some from RHS -> LHS.
                    // Split evenly with a bias to putting one entry in LHS.
                    let r_goal = ents / 2;
                    let l_goal = ents - r_goal;
                    debug_assert!(l_goal > l_ents, "Node must be underflowed");

                    l_keys[l_ents..l_goal].copy_from_slice(&r_keys[0..l_goal - l_ents]);
                    l_vals[l_ents..l_goal].copy_from_slice(&r_vals[0..l_goal - l_ents]);
                    *l_size = l_goal as u8;

                    slice_shift(&mut r_keys[0..r_ents], r_ents - r_goal);
                    slice_shift(&mut r_vals[0..r_ents], r_ents - r_goal);
                    *r_size = r_goal as u8;

                    Some(r_keys[0])
                }
            }
            _ => panic!("Mismatched nodes"),
        }
    }
}

/// Find the right split position for halving a full node with `len` entries to recover from a
/// failed insertion at `ins`.
///
/// If `len` is even, we should split straight down the middle regardless of `len`.
///
/// If `len` is odd, we should split the node such that the two halves are the same size after the
/// insertion is retried.
fn split_pos(len: usize, ins: usize) -> usize {
    // Anticipate `len` being a compile time constant, so this all folds away when `len` is even.
    if ins <= len / 2 {
        len / 2
    } else {
        (len + 1) / 2
    }
}

/// The result of splitting off the second half of a node.
pub(super) struct SplitOff<F: Forest> {
    /// The number of entries left in the original node which becomes the left-hand-side of the
    /// pair. This is the number of outgoing node edges for an inner node, and the number of
    /// key-value pairs for a leaf node.
    pub lhs_entries: usize,

    /// The number of entries in the new RHS node.
    pub rhs_entries: usize,

    /// The critical key separating the LHS and RHS nodes. All keys in the LHS sub-tree are less
    /// than the critical key, and all entries in the RHS sub-tree are greater or equal to the
    /// critical key.
    pub crit_key: F::Key,

    /// The RHS node data containing the elements that were removed from the original node (now the
    /// LHS).
    pub rhs_data: NodeData<F>,
}

/// The result of removing an entry from a node.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub(super) enum Removed {
    /// An entry was removed, and the node is still in good shape.
    Healthy,

    /// The node is in good shape after removing the rightmost element.
    Rightmost,

    /// The node has too few entries now, and it should be balanced with a sibling node.
    Underflow,

    /// The last entry was removed. For an inner node, this means that the `keys` array is empty
    /// and there is just a single sub-tree left.
    Empty,
}

impl Removed {
    /// Create a `Removed` status from a size and capacity.
    fn new(removed: usize, new_size: usize, capacity: usize) -> Self {
        if 2 * new_size >= capacity {
            if removed == new_size {
                Self::Rightmost
            } else {
                Self::Healthy
            }
        } else if new_size > 0 {
            Self::Underflow
        } else {
            Self::Empty
        }
    }
}

// Display ": value" or nothing at all for `()`.
pub(super) trait ValDisp {
    fn valfmt(&self, f: &mut fmt::Formatter) -> fmt::Result;
}

impl ValDisp for SetValue {
    fn valfmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
        Ok(())
    }
}

impl<T: fmt::Display> ValDisp for T {
    fn valfmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, ":{}", self)
    }
}

impl<F> fmt::Display for NodeData<F>
where
    F: Forest,
    F::Key: fmt::Display,
    F::Value: ValDisp,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Self::Inner { size, keys, tree } => {
                write!(f, "[ {}", tree[0])?;
                for i in 0..usize::from(size) {
                    write!(f, " {} {}", keys[i], tree[i + 1])?;
                }
                write!(f, " ]")
            }
            Self::Leaf { size, keys, vals } => {
                let keys = keys.borrow();
                let vals = vals.borrow();
                write!(f, "[")?;
                for i in 0..usize::from(size) {
                    write!(f, " {}", keys[i])?;
                    vals[i].valfmt(f)?;
                }
                write!(f, " ]")
            }
            Self::Free { next: Some(n) } => write!(f, "[ free -> {} ]", n),
            Self::Free { next: None } => write!(f, "[ free ]"),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::string::ToString;
    use core::mem;

    // Forest impl for a set implementation.
    struct TF();

    impl Forest for TF {
        type Key = char;
        type Value = SetValue;
        type LeafKeys = [char; 15];
        type LeafValues = [SetValue; 15];

        fn splat_key(key: Self::Key) -> Self::LeafKeys {
            [key; 15]
        }

        fn splat_value(value: Self::Value) -> Self::LeafValues {
            [value; 15]
        }
    }

    #[test]
    fn inner() {
        let n1 = Node(1);
        let n2 = Node(2);
        let n3 = Node(3);
        let n4 = Node(4);
        let mut inner = NodeData::<TF>::inner(n1, 'c', n4);
        assert_eq!(mem::size_of_val(&inner), 64);
        assert_eq!(inner.to_string(), "[ node1 c node4 ]");

        assert!(inner.try_inner_insert(0, 'a', n2));
        assert_eq!(inner.to_string(), "[ node1 a node2 c node4 ]");

        assert!(inner.try_inner_insert(1, 'b', n3));
        assert_eq!(inner.to_string(), "[ node1 a node2 b node3 c node4 ]");

        for i in 3..7 {
            assert!(inner.try_inner_insert(
                usize::from(i),
                ('a' as u8 + i) as char,
                Node(i as u32 + 2),
            ));
        }
        assert_eq!(
            inner.to_string(),
            "[ node1 a node2 b node3 c node4 d node5 e node6 f node7 g node8 ]"
        );

        // Now the node is full and insertion should fail anywhere.
        assert!(!inner.try_inner_insert(0, 'x', n3));
        assert!(!inner.try_inner_insert(4, 'x', n3));
        assert!(!inner.try_inner_insert(7, 'x', n3));

        // Splitting should be independent of the hint because we have an even number of node
        // references.
        let saved = inner.clone();
        let sp = inner.split(1);
        assert_eq!(sp.lhs_entries, 4);
        assert_eq!(sp.rhs_entries, 4);
        assert_eq!(sp.crit_key, 'd');
        // The critical key is not present in either of the resulting nodes.
        assert_eq!(inner.to_string(), "[ node1 a node2 b node3 c node4 ]");
        assert_eq!(sp.rhs_data.to_string(), "[ node5 e node6 f node7 g node8 ]");

        assert_eq!(inner.inner_remove(0), Removed::Underflow);
        assert_eq!(inner.to_string(), "[ node2 b node3 c node4 ]");

        assert_eq!(inner.inner_remove(1), Removed::Underflow);
        assert_eq!(inner.to_string(), "[ node2 c node4 ]");

        assert_eq!(inner.inner_remove(1), Removed::Underflow);
        assert_eq!(inner.to_string(), "[ node2 ]");

        assert_eq!(inner.inner_remove(0), Removed::Empty);

        inner = saved;
        let sp = inner.split(6);
        assert_eq!(sp.lhs_entries, 4);
        assert_eq!(sp.rhs_entries, 4);
        assert_eq!(sp.crit_key, 'd');
        assert_eq!(inner.to_string(), "[ node1 a node2 b node3 c node4 ]");
        assert_eq!(sp.rhs_data.to_string(), "[ node5 e node6 f node7 g node8 ]");
    }

    #[test]
    fn leaf() {
        let mut leaf = NodeData::<TF>::leaf('d', SetValue());
        assert_eq!(leaf.to_string(), "[ d ]");

        assert!(leaf.try_leaf_insert(0, 'a', SetValue()));
        assert_eq!(leaf.to_string(), "[ a d ]");
        assert!(leaf.try_leaf_insert(1, 'b', SetValue()));
        assert!(leaf.try_leaf_insert(2, 'c', SetValue()));
        assert_eq!(leaf.to_string(), "[ a b c d ]");
        for i in 4..15 {
            assert!(leaf.try_leaf_insert(usize::from(i), ('a' as u8 + i) as char, SetValue()));
        }
        assert_eq!(leaf.to_string(), "[ a b c d e f g h i j k l m n o ]");

        // Now the node is full and insertion should fail anywhere.
        assert!(!leaf.try_leaf_insert(0, 'x', SetValue()));
        assert!(!leaf.try_leaf_insert(8, 'x', SetValue()));
        assert!(!leaf.try_leaf_insert(15, 'x', SetValue()));

        // The index given to `split` is not the split position, it's a hint for balancing the node.
        let saved = leaf.clone();
        let sp = leaf.split(12);
        assert_eq!(sp.lhs_entries, 8);
        assert_eq!(sp.rhs_entries, 7);
        assert_eq!(sp.crit_key, 'i');
        assert_eq!(leaf.to_string(), "[ a b c d e f g h ]");
        assert_eq!(sp.rhs_data.to_string(), "[ i j k l m n o ]");

        assert!(leaf.try_leaf_insert(8, 'i', SetValue()));
        assert_eq!(leaf.leaf_remove(2), Removed::Healthy);
        assert_eq!(leaf.to_string(), "[ a b d e f g h i ]");
        assert_eq!(leaf.leaf_remove(7), Removed::Underflow);
        assert_eq!(leaf.to_string(), "[ a b d e f g h ]");

        leaf = saved;
        let sp = leaf.split(7);
        assert_eq!(sp.lhs_entries, 7);
        assert_eq!(sp.rhs_entries, 8);
        assert_eq!(sp.crit_key, 'h');
        assert_eq!(leaf.to_string(), "[ a b c d e f g ]");
        assert_eq!(sp.rhs_data.to_string(), "[ h i j k l m n o ]");
    }

    #[test]
    fn optimal_split_pos() {
        // An even split is easy.
        assert_eq!(split_pos(8, 0), 4);
        assert_eq!(split_pos(8, 8), 4);

        // Easy cases for odd splits.
        assert_eq!(split_pos(7, 0), 3);
        assert_eq!(split_pos(7, 7), 4);

        // If the insertion point is the same as the split position, we
        // will append to the lhs node.
        assert_eq!(split_pos(7, 3), 3);
        assert_eq!(split_pos(7, 4), 4);
    }

    #[test]
    fn inner_balance() {
        let n1 = Node(1);
        let n2 = Node(2);
        let n3 = Node(3);
        let mut lhs = NodeData::<TF>::inner(n1, 'a', n2);
        assert!(lhs.try_inner_insert(1, 'b', n3));
        assert_eq!(lhs.to_string(), "[ node1 a node2 b node3 ]");

        let n11 = Node(11);
        let n12 = Node(12);
        let mut rhs = NodeData::<TF>::inner(n11, 'p', n12);

        for i in 1..4 {
            assert!(rhs.try_inner_insert(
                usize::from(i),
                ('p' as u8 + i) as char,
                Node(i as u32 + 12),
            ));
        }
        assert_eq!(
            rhs.to_string(),
            "[ node11 p node12 q node13 r node14 s node15 ]"
        );

        // 3+5 elements fit in RHS.
        assert_eq!(lhs.balance('o', &mut rhs), None);
        assert_eq!(
            rhs.to_string(),
            "[ node1 a node2 b node3 o node11 p node12 q node13 r node14 s node15 ]"
        );

        // 2+8 elements are redistributed.
        lhs = NodeData::<TF>::inner(Node(20), 'x', Node(21));
        assert_eq!(lhs.balance('y', &mut rhs), Some('o'));
        assert_eq!(
            lhs.to_string(),
            "[ node20 x node21 y node1 a node2 b node3 ]"
        );
        assert_eq!(
            rhs.to_string(),
            "[ node11 p node12 q node13 r node14 s node15 ]"
        );
    }

    #[test]
    fn leaf_balance() {
        let mut lhs = NodeData::<TF>::leaf('a', SetValue());
        for i in 1..6 {
            assert!(lhs.try_leaf_insert(usize::from(i), ('a' as u8 + i) as char, SetValue()));
        }
        assert_eq!(lhs.to_string(), "[ a b c d e f ]");

        let mut rhs = NodeData::<TF>::leaf('0', SetValue());
        for i in 1..8 {
            assert!(rhs.try_leaf_insert(usize::from(i), ('0' as u8 + i) as char, SetValue()));
        }
        assert_eq!(rhs.to_string(), "[ 0 1 2 3 4 5 6 7 ]");

        // 6+8 elements all fits in rhs.
        assert_eq!(lhs.balance('0', &mut rhs), None);
        assert_eq!(rhs.to_string(), "[ a b c d e f 0 1 2 3 4 5 6 7 ]");

        assert!(lhs.try_leaf_insert(0, 'x', SetValue()));
        assert!(lhs.try_leaf_insert(1, 'y', SetValue()));
        assert!(lhs.try_leaf_insert(2, 'z', SetValue()));
        assert_eq!(lhs.to_string(), "[ x y z ]");

        // 3+14 elements need redistribution.
        assert_eq!(lhs.balance('a', &mut rhs), Some('0'));
        assert_eq!(lhs.to_string(), "[ x y z a b c d e f ]");
        assert_eq!(rhs.to_string(), "[ 0 1 2 3 4 5 6 7 ]");
    }
}