1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! Parks the runtime.
//!
//! A combination of the various resource driver park handles.

use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::{Arc, Condvar, Mutex};
use crate::loom::thread;
use crate::park::{Park, Unpark};
use crate::runtime::time;
use crate::util::TryLock;

use std::sync::atomic::Ordering::SeqCst;
use std::time::Duration;

pub(crate) struct Parker {
    inner: Arc<Inner>,
}

pub(crate) struct Unparker {
    inner: Arc<Inner>,
}

struct Inner {
    /// Avoids entering the park if possible
    state: AtomicUsize,

    /// Used to coordinate access to the driver / condvar
    mutex: Mutex<()>,

    /// Condvar to block on if the driver is unavailable.
    condvar: Condvar,

    /// Resource (I/O, time, ...) driver
    shared: Arc<Shared>,
}

const EMPTY: usize = 0;
const PARKED_CONDVAR: usize = 1;
const PARKED_DRIVER: usize = 2;
const NOTIFIED: usize = 3;

/// Shared across multiple Parker handles
struct Shared {
    /// Shared driver. Only one thread at a time can use this
    driver: TryLock<time::Driver>,

    /// Unpark handle
    handle: <time::Driver as Park>::Unpark,
}

impl Parker {
    pub(crate) fn new(driver: time::Driver) -> Parker {
        let handle = driver.unpark();

        Parker {
            inner: Arc::new(Inner {
                state: AtomicUsize::new(EMPTY),
                mutex: Mutex::new(()),
                condvar: Condvar::new(),
                shared: Arc::new(Shared {
                    driver: TryLock::new(driver),
                    handle,
                }),
            }),
        }
    }
}

impl Clone for Parker {
    fn clone(&self) -> Parker {
        Parker {
            inner: Arc::new(Inner {
                state: AtomicUsize::new(EMPTY),
                mutex: Mutex::new(()),
                condvar: Condvar::new(),
                shared: self.inner.shared.clone(),
            }),
        }
    }
}

impl Park for Parker {
    type Unpark = Unparker;
    type Error = ();

    fn unpark(&self) -> Unparker {
        Unparker {
            inner: self.inner.clone(),
        }
    }

    fn park(&mut self) -> Result<(), Self::Error> {
        self.inner.park();
        Ok(())
    }

    fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
        // Only parking with zero is supported...
        assert_eq!(duration, Duration::from_millis(0));

        if let Some(mut driver) = self.inner.shared.driver.try_lock() {
            driver.park_timeout(duration).map_err(|_| ())
        } else {
            Ok(())
        }
    }

    fn shutdown(&mut self) {
        self.inner.shutdown();
    }
}

impl Unpark for Unparker {
    fn unpark(&self) {
        self.inner.unpark();
    }
}

impl Inner {
    /// Parks the current thread for at most `dur`.
    fn park(&self) {
        for _ in 0..3 {
            // If we were previously notified then we consume this notification and
            // return quickly.
            if self
                .state
                .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
                .is_ok()
            {
                return;
            }

            thread::yield_now();
        }

        if let Some(mut driver) = self.shared.driver.try_lock() {
            self.park_driver(&mut driver);
        } else {
            self.park_condvar();
        }
    }

    fn park_condvar(&self) {
        // Otherwise we need to coordinate going to sleep
        let mut m = self.mutex.lock().unwrap();

        match self
            .state
            .compare_exchange(EMPTY, PARKED_CONDVAR, SeqCst, SeqCst)
        {
            Ok(_) => {}
            Err(NOTIFIED) => {
                // We must read here, even though we know it will be `NOTIFIED`.
                // This is because `unpark` may have been called again since we read
                // `NOTIFIED` in the `compare_exchange` above. We must perform an
                // acquire operation that synchronizes with that `unpark` to observe
                // any writes it made before the call to unpark. To do that we must
                // read from the write it made to `state`.
                let old = self.state.swap(EMPTY, SeqCst);
                debug_assert_eq!(old, NOTIFIED, "park state changed unexpectedly");

                return;
            }
            Err(actual) => panic!("inconsistent park state; actual = {}", actual),
        }

        loop {
            m = self.condvar.wait(m).unwrap();

            if self
                .state
                .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
                .is_ok()
            {
                // got a notification
                return;
            }

            // spurious wakeup, go back to sleep
        }
    }

    fn park_driver(&self, driver: &mut time::Driver) {
        match self
            .state
            .compare_exchange(EMPTY, PARKED_DRIVER, SeqCst, SeqCst)
        {
            Ok(_) => {}
            Err(NOTIFIED) => {
                // We must read here, even though we know it will be `NOTIFIED`.
                // This is because `unpark` may have been called again since we read
                // `NOTIFIED` in the `compare_exchange` above. We must perform an
                // acquire operation that synchronizes with that `unpark` to observe
                // any writes it made before the call to unpark. To do that we must
                // read from the write it made to `state`.
                let old = self.state.swap(EMPTY, SeqCst);
                debug_assert_eq!(old, NOTIFIED, "park state changed unexpectedly");

                return;
            }
            Err(actual) => panic!("inconsistent park state; actual = {}", actual),
        }

        // TODO: don't unwrap
        driver.park().unwrap();

        match self.state.swap(EMPTY, SeqCst) {
            NOTIFIED => {}      // got a notification, hurray!
            PARKED_DRIVER => {} // no notification, alas
            n => panic!("inconsistent park_timeout state: {}", n),
        }
    }

    fn unpark(&self) {
        // To ensure the unparked thread will observe any writes we made before
        // this call, we must perform a release operation that `park` can
        // synchronize with. To do that we must write `NOTIFIED` even if `state`
        // is already `NOTIFIED`. That is why this must be a swap rather than a
        // compare-and-swap that returns if it reads `NOTIFIED` on failure.
        match self.state.swap(NOTIFIED, SeqCst) {
            EMPTY => {}    // no one was waiting
            NOTIFIED => {} // already unparked
            PARKED_CONDVAR => self.unpark_condvar(),
            PARKED_DRIVER => self.unpark_driver(),
            actual => panic!("inconsistent state in unpark; actual = {}", actual),
        }
    }

    fn unpark_condvar(&self) {
        // There is a period between when the parked thread sets `state` to
        // `PARKED` (or last checked `state` in the case of a spurious wake
        // up) and when it actually waits on `cvar`. If we were to notify
        // during this period it would be ignored and then when the parked
        // thread went to sleep it would never wake up. Fortunately, it has
        // `lock` locked at this stage so we can acquire `lock` to wait until
        // it is ready to receive the notification.
        //
        // Releasing `lock` before the call to `notify_one` means that when the
        // parked thread wakes it doesn't get woken only to have to wait for us
        // to release `lock`.
        drop(self.mutex.lock().unwrap());

        self.condvar.notify_one()
    }

    fn unpark_driver(&self) {
        self.shared.handle.unpark();
    }

    fn shutdown(&self) {
        if let Some(mut driver) = self.shared.driver.try_lock() {
            driver.shutdown();
        }

        self.condvar.notify_all();
    }
}