1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
 *
 * Computer-graphics specific implementations.
 * Currently, it is mostly implemented for homogeneous matrices in 2- and 3-space.
 *
 */

use num::{One, Zero};

use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameDiff, DimNameSub, U1};
use crate::base::storage::{Storage, StorageMut};
use crate::base::{
    Const, DefaultAllocator, Matrix3, Matrix4, OMatrix, OVector, Scalar, SquareMatrix, Unit,
    Vector, Vector2, Vector3,
};
use crate::geometry::{
    Isometry, IsometryMatrix3, Orthographic3, Perspective3, Point, Point2, Point3, Rotation2,
    Rotation3,
};

use simba::scalar::{ClosedAdd, ClosedMul, RealField};

/// # Translation and scaling in any dimension
impl<T, D: DimName> OMatrix<T, D, D>
where
    T: Scalar + Zero + One,
    DefaultAllocator: Allocator<T, D, D>,
{
    /// Creates a new homogeneous matrix that applies the same scaling factor on each dimension.
    #[inline]
    pub fn new_scaling(scaling: T) -> Self {
        let mut res = Self::from_diagonal_element(scaling);
        res[(D::dim() - 1, D::dim() - 1)] = T::one();

        res
    }

    /// Creates a new homogeneous matrix that applies a distinct scaling factor for each dimension.
    #[inline]
    pub fn new_nonuniform_scaling<SB>(scaling: &Vector<T, DimNameDiff<D, U1>, SB>) -> Self
    where
        D: DimNameSub<U1>,
        SB: Storage<T, DimNameDiff<D, U1>>,
    {
        let mut res = Self::identity();
        for i in 0..scaling.len() {
            res[(i, i)] = scaling[i].inlined_clone();
        }

        res
    }

    /// Creates a new homogeneous matrix that applies a pure translation.
    #[inline]
    pub fn new_translation<SB>(translation: &Vector<T, DimNameDiff<D, U1>, SB>) -> Self
    where
        D: DimNameSub<U1>,
        SB: Storage<T, DimNameDiff<D, U1>>,
    {
        let mut res = Self::identity();
        res.generic_slice_mut(
            (0, D::dim() - 1),
            (DimNameDiff::<D, U1>::name(), Const::<1>),
        )
        .copy_from(translation);

        res
    }
}

/// # 2D transformations as a Matrix3
impl<T: RealField> Matrix3<T> {
    /// Builds a 2 dimensional homogeneous rotation matrix from an angle in radian.
    #[inline]
    pub fn new_rotation(angle: T) -> Self {
        Rotation2::new(angle).to_homogeneous()
    }

    /// Creates a new homogeneous matrix that applies a scaling factor for each dimension with respect to point.
    ///
    /// Can be used to implement "zoom_to" functionality.
    #[inline]
    pub fn new_nonuniform_scaling_wrt_point(scaling: &Vector2<T>, pt: &Point2<T>) -> Self {
        let zero = T::zero();
        let one = T::one();
        Matrix3::new(
            scaling.x,
            zero,
            pt.x - pt.x * scaling.x,
            zero,
            scaling.y,
            pt.y - pt.y * scaling.y,
            zero,
            zero,
            one,
        )
    }
}

/// # 3D transformations as a Matrix4
impl<T: RealField> Matrix4<T> {
    /// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
    ///
    /// Returns the identity matrix if the given argument is zero.
    #[inline]
    pub fn new_rotation(axisangle: Vector3<T>) -> Self {
        Rotation3::new(axisangle).to_homogeneous()
    }

    /// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
    ///
    /// Returns the identity matrix if the given argument is zero.
    #[inline]
    pub fn new_rotation_wrt_point(axisangle: Vector3<T>, pt: Point3<T>) -> Self {
        let rot = Rotation3::from_scaled_axis(axisangle);
        Isometry::rotation_wrt_point(rot, pt).to_homogeneous()
    }

    /// Creates a new homogeneous matrix that applies a scaling factor for each dimension with respect to point.
    ///
    /// Can be used to implement "zoom_to" functionality.
    #[inline]
    pub fn new_nonuniform_scaling_wrt_point(scaling: &Vector3<T>, pt: &Point3<T>) -> Self {
        let zero = T::zero();
        let one = T::one();
        Matrix4::new(
            scaling.x,
            zero,
            zero,
            pt.x - pt.x * scaling.x,
            zero,
            scaling.y,
            zero,
            pt.y - pt.y * scaling.y,
            zero,
            zero,
            scaling.z,
            pt.z - pt.z * scaling.z,
            zero,
            zero,
            zero,
            one,
        )
    }

    /// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
    ///
    /// Returns the identity matrix if the given argument is zero.
    /// This is identical to `Self::new_rotation`.
    #[inline]
    pub fn from_scaled_axis(axisangle: Vector3<T>) -> Self {
        Rotation3::from_scaled_axis(axisangle).to_homogeneous()
    }

    /// Creates a new rotation from Euler angles.
    ///
    /// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
    pub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self {
        Rotation3::from_euler_angles(roll, pitch, yaw).to_homogeneous()
    }

    /// Builds a 3D homogeneous rotation matrix from an axis and a rotation angle.
    pub fn from_axis_angle(axis: &Unit<Vector3<T>>, angle: T) -> Self {
        Rotation3::from_axis_angle(axis, angle).to_homogeneous()
    }

    /// Creates a new homogeneous matrix for an orthographic projection.
    #[inline]
    pub fn new_orthographic(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> Self {
        Orthographic3::new(left, right, bottom, top, znear, zfar).into_inner()
    }

    /// Creates a new homogeneous matrix for a perspective projection.
    #[inline]
    pub fn new_perspective(aspect: T, fovy: T, znear: T, zfar: T) -> Self {
        Perspective3::new(aspect, fovy, znear, zfar).into_inner()
    }

    /// Creates an isometry that corresponds to the local frame of an observer standing at the
    /// point `eye` and looking toward `target`.
    ///
    /// It maps the view direction `target - eye` to the positive `z` axis and the origin to the
    /// `eye`.
    #[inline]
    pub fn face_towards(eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>) -> Self {
        IsometryMatrix3::face_towards(eye, target, up).to_homogeneous()
    }

    /// Deprecated: Use [Matrix4::face_towards] instead.
    #[deprecated(note = "renamed to `face_towards`")]
    pub fn new_observer_frame(eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>) -> Self {
        Matrix4::face_towards(eye, target, up)
    }

    /// Builds a right-handed look-at view matrix.
    #[inline]
    pub fn look_at_rh(eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>) -> Self {
        IsometryMatrix3::look_at_rh(eye, target, up).to_homogeneous()
    }

    /// Builds a left-handed look-at view matrix.
    #[inline]
    pub fn look_at_lh(eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>) -> Self {
        IsometryMatrix3::look_at_lh(eye, target, up).to_homogeneous()
    }
}

/// # Append/prepend translation and scaling
impl<T: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: Storage<T, D, D>>
    SquareMatrix<T, D, S>
{
    /// Computes the transformation equal to `self` followed by an uniform scaling factor.
    #[inline]
    #[must_use = "Did you mean to use append_scaling_mut()?"]
    pub fn append_scaling(&self, scaling: T) -> OMatrix<T, D, D>
    where
        D: DimNameSub<U1>,
        DefaultAllocator: Allocator<T, D, D>,
    {
        let mut res = self.clone_owned();
        res.append_scaling_mut(scaling);
        res
    }

    /// Computes the transformation equal to an uniform scaling factor followed by `self`.
    #[inline]
    #[must_use = "Did you mean to use prepend_scaling_mut()?"]
    pub fn prepend_scaling(&self, scaling: T) -> OMatrix<T, D, D>
    where
        D: DimNameSub<U1>,
        DefaultAllocator: Allocator<T, D, D>,
    {
        let mut res = self.clone_owned();
        res.prepend_scaling_mut(scaling);
        res
    }

    /// Computes the transformation equal to `self` followed by a non-uniform scaling factor.
    #[inline]
    #[must_use = "Did you mean to use append_nonuniform_scaling_mut()?"]
    pub fn append_nonuniform_scaling<SB>(
        &self,
        scaling: &Vector<T, DimNameDiff<D, U1>, SB>,
    ) -> OMatrix<T, D, D>
    where
        D: DimNameSub<U1>,
        SB: Storage<T, DimNameDiff<D, U1>>,
        DefaultAllocator: Allocator<T, D, D>,
    {
        let mut res = self.clone_owned();
        res.append_nonuniform_scaling_mut(scaling);
        res
    }

    /// Computes the transformation equal to a non-uniform scaling factor followed by `self`.
    #[inline]
    #[must_use = "Did you mean to use prepend_nonuniform_scaling_mut()?"]
    pub fn prepend_nonuniform_scaling<SB>(
        &self,
        scaling: &Vector<T, DimNameDiff<D, U1>, SB>,
    ) -> OMatrix<T, D, D>
    where
        D: DimNameSub<U1>,
        SB: Storage<T, DimNameDiff<D, U1>>,
        DefaultAllocator: Allocator<T, D, D>,
    {
        let mut res = self.clone_owned();
        res.prepend_nonuniform_scaling_mut(scaling);
        res
    }

    /// Computes the transformation equal to `self` followed by a translation.
    #[inline]
    #[must_use = "Did you mean to use append_translation_mut()?"]
    pub fn append_translation<SB>(
        &self,
        shift: &Vector<T, DimNameDiff<D, U1>, SB>,
    ) -> OMatrix<T, D, D>
    where
        D: DimNameSub<U1>,
        SB: Storage<T, DimNameDiff<D, U1>>,
        DefaultAllocator: Allocator<T, D, D>,
    {
        let mut res = self.clone_owned();
        res.append_translation_mut(shift);
        res
    }

    /// Computes the transformation equal to a translation followed by `self`.
    #[inline]
    #[must_use = "Did you mean to use prepend_translation_mut()?"]
    pub fn prepend_translation<SB>(
        &self,
        shift: &Vector<T, DimNameDiff<D, U1>, SB>,
    ) -> OMatrix<T, D, D>
    where
        D: DimNameSub<U1>,
        SB: Storage<T, DimNameDiff<D, U1>>,
        DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimNameDiff<D, U1>>,
    {
        let mut res = self.clone_owned();
        res.prepend_translation_mut(shift);
        res
    }

    /// Computes in-place the transformation equal to `self` followed by an uniform scaling factor.
    #[inline]
    pub fn append_scaling_mut(&mut self, scaling: T)
    where
        S: StorageMut<T, D, D>,
        D: DimNameSub<U1>,
    {
        let mut to_scale = self.rows_generic_mut(0, DimNameDiff::<D, U1>::name());
        to_scale *= scaling;
    }

    /// Computes in-place the transformation equal to an uniform scaling factor followed by `self`.
    #[inline]
    pub fn prepend_scaling_mut(&mut self, scaling: T)
    where
        S: StorageMut<T, D, D>,
        D: DimNameSub<U1>,
    {
        let mut to_scale = self.columns_generic_mut(0, DimNameDiff::<D, U1>::name());
        to_scale *= scaling;
    }

    /// Computes in-place the transformation equal to `self` followed by a non-uniform scaling factor.
    #[inline]
    pub fn append_nonuniform_scaling_mut<SB>(&mut self, scaling: &Vector<T, DimNameDiff<D, U1>, SB>)
    where
        S: StorageMut<T, D, D>,
        D: DimNameSub<U1>,
        SB: Storage<T, DimNameDiff<D, U1>>,
    {
        for i in 0..scaling.len() {
            let mut to_scale = self.fixed_rows_mut::<1>(i);
            to_scale *= scaling[i].inlined_clone();
        }
    }

    /// Computes in-place the transformation equal to a non-uniform scaling factor followed by `self`.
    #[inline]
    pub fn prepend_nonuniform_scaling_mut<SB>(
        &mut self,
        scaling: &Vector<T, DimNameDiff<D, U1>, SB>,
    ) where
        S: StorageMut<T, D, D>,
        D: DimNameSub<U1>,
        SB: Storage<T, DimNameDiff<D, U1>>,
    {
        for i in 0..scaling.len() {
            let mut to_scale = self.fixed_columns_mut::<1>(i);
            to_scale *= scaling[i].inlined_clone();
        }
    }

    /// Computes the transformation equal to `self` followed by a translation.
    #[inline]
    pub fn append_translation_mut<SB>(&mut self, shift: &Vector<T, DimNameDiff<D, U1>, SB>)
    where
        S: StorageMut<T, D, D>,
        D: DimNameSub<U1>,
        SB: Storage<T, DimNameDiff<D, U1>>,
    {
        for i in 0..D::dim() {
            for j in 0..D::dim() - 1 {
                let add = shift[j].inlined_clone() * self[(D::dim() - 1, i)].inlined_clone();
                self[(j, i)] += add;
            }
        }
    }

    /// Computes the transformation equal to a translation followed by `self`.
    #[inline]
    pub fn prepend_translation_mut<SB>(&mut self, shift: &Vector<T, DimNameDiff<D, U1>, SB>)
    where
        D: DimNameSub<U1>,
        S: StorageMut<T, D, D>,
        SB: Storage<T, DimNameDiff<D, U1>>,
        DefaultAllocator: Allocator<T, DimNameDiff<D, U1>>,
    {
        let scale = self
            .generic_slice(
                (D::dim() - 1, 0),
                (Const::<1>, DimNameDiff::<D, U1>::name()),
            )
            .tr_dot(&shift);
        let post_translation = self.generic_slice(
            (0, 0),
            (DimNameDiff::<D, U1>::name(), DimNameDiff::<D, U1>::name()),
        ) * shift;

        self[(D::dim() - 1, D::dim() - 1)] += scale;

        let mut translation = self.generic_slice_mut(
            (0, D::dim() - 1),
            (DimNameDiff::<D, U1>::name(), Const::<1>),
        );
        translation += post_translation;
    }
}

/// # Transformation of vectors and points
impl<T: RealField, D: DimNameSub<U1>, S: Storage<T, D, D>> SquareMatrix<T, D, S>
where
    DefaultAllocator: Allocator<T, D, D>
        + Allocator<T, DimNameDiff<D, U1>>
        + Allocator<T, DimNameDiff<D, U1>, DimNameDiff<D, U1>>,
{
    /// Transforms the given vector, assuming the matrix `self` uses homogeneous coordinates.
    #[inline]
    pub fn transform_vector(
        &self,
        v: &OVector<T, DimNameDiff<D, U1>>,
    ) -> OVector<T, DimNameDiff<D, U1>> {
        let transform = self.generic_slice(
            (0, 0),
            (DimNameDiff::<D, U1>::name(), DimNameDiff::<D, U1>::name()),
        );
        let normalizer = self.generic_slice(
            (D::dim() - 1, 0),
            (Const::<1>, DimNameDiff::<D, U1>::name()),
        );
        let n = normalizer.tr_dot(&v);

        if !n.is_zero() {
            return transform * (v / n);
        }

        transform * v
    }
}

impl<T: RealField, S: Storage<T, Const<3>, Const<3>>> SquareMatrix<T, Const<3>, S> {
    /// Transforms the given point, assuming the matrix `self` uses homogeneous coordinates.
    #[inline]
    pub fn transform_point(&self, pt: &Point<T, 2>) -> Point<T, 2> {
        let transform = self.fixed_slice::<2, 2>(0, 0);
        let translation = self.fixed_slice::<2, 1>(0, 2);
        let normalizer = self.fixed_slice::<1, 2>(2, 0);
        let n = normalizer.tr_dot(&pt.coords) + unsafe { *self.get_unchecked((2, 2)) };

        if !n.is_zero() {
            (transform * pt + translation) / n
        } else {
            transform * pt + translation
        }
    }
}

impl<T: RealField, S: Storage<T, Const<4>, Const<4>>> SquareMatrix<T, Const<4>, S> {
    /// Transforms the given point, assuming the matrix `self` uses homogeneous coordinates.
    #[inline]
    pub fn transform_point(&self, pt: &Point<T, 3>) -> Point<T, 3> {
        let transform = self.fixed_slice::<3, 3>(0, 0);
        let translation = self.fixed_slice::<3, 1>(0, 3);
        let normalizer = self.fixed_slice::<1, 3>(3, 0);
        let n = normalizer.tr_dot(&pt.coords) + unsafe { *self.get_unchecked((3, 3)) };

        if !n.is_zero() {
            (transform * pt + translation) / n
        } else {
            transform * pt + translation
        }
    }
}