1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
//! x86 ABI implementation.

use super::super::settings as shared_settings;
use super::registers::{FPR, GPR, RU};
use super::settings as isa_settings;
use crate::abi::{legalize_args, ArgAction, ArgAssigner, ValueConversion};
use crate::cursor::{Cursor, CursorPosition, EncCursor};
use crate::ir;
use crate::ir::immediates::Imm64;
use crate::ir::stackslot::{StackOffset, StackSize};
use crate::ir::types;
use crate::ir::{
    get_probestack_funcref, AbiParam, ArgumentExtension, ArgumentLoc, ArgumentPurpose, InstBuilder,
    ValueLoc,
};
use crate::isa::{CallConv, RegClass, RegUnit, TargetIsa};
use crate::regalloc::RegisterSet;
use crate::result::CodegenResult;
use crate::stack_layout::layout_stack;
use alloc::borrow::Cow;
use core::i32;
use target_lexicon::{PointerWidth, Triple};

/// Argument registers for x86-64
static ARG_GPRS: [RU; 6] = [RU::rdi, RU::rsi, RU::rdx, RU::rcx, RU::r8, RU::r9];

/// Return value registers.
static RET_GPRS: [RU; 3] = [RU::rax, RU::rdx, RU::rcx];

/// Argument registers for x86-64, when using windows fastcall
static ARG_GPRS_WIN_FASTCALL_X64: [RU; 4] = [RU::rcx, RU::rdx, RU::r8, RU::r9];

/// Return value registers for x86-64, when using windows fastcall
static RET_GPRS_WIN_FASTCALL_X64: [RU; 1] = [RU::rax];

/// The win64 fastcall ABI uses some shadow stack space, allocated by the caller, that can be used
/// by the callee for temporary values.
///
/// [1] "Space is allocated on the call stack as a shadow store for callees to save" This shadow
/// store contains the parameters which are passed through registers (ARG_GPRS) and is eventually
/// used by the callee to save & restore the values of the arguments.
///
/// [2] https://blogs.msdn.microsoft.com/oldnewthing/20110302-00/?p=11333 "Although the x64 calling
/// convention reserves spill space for parameters, you don’t have to use them as such"
const WIN_SHADOW_STACK_SPACE: StackSize = 32;

/// Stack alignment requirement for functions.
///
/// 16 bytes is the perfect stack alignment, because:
///
/// - On Win64, "The primary exceptions are the stack pointer and malloc or alloca memory, which
/// are aligned to 16 bytes in order to aid performance".
/// - The original 32-bit x86 ELF ABI had a 4-byte aligned stack pointer, but newer versions use a
/// 16-byte aligned stack pointer.
/// - This allows using aligned loads and stores on SIMD vectors of 16 bytes that are located
/// higher up in the stack.
const STACK_ALIGNMENT: u32 = 16;

#[derive(Clone)]
struct Args {
    pointer_bytes: u8,
    pointer_bits: u8,
    pointer_type: ir::Type,
    gpr: &'static [RU],
    gpr_used: usize,
    fpr_limit: usize,
    fpr_used: usize,
    offset: u32,
    call_conv: CallConv,
    shared_flags: shared_settings::Flags,
    #[allow(dead_code)]
    isa_flags: isa_settings::Flags,
    assigning_returns: bool,
}

impl Args {
    fn new(
        bits: u8,
        gpr: &'static [RU],
        fpr_limit: usize,
        call_conv: CallConv,
        shared_flags: &shared_settings::Flags,
        isa_flags: &isa_settings::Flags,
        assigning_returns: bool,
    ) -> Self {
        let offset = if call_conv.extends_windows_fastcall() {
            WIN_SHADOW_STACK_SPACE
        } else {
            0
        };

        Self {
            pointer_bytes: bits / 8,
            pointer_bits: bits,
            pointer_type: ir::Type::int(u16::from(bits)).unwrap(),
            gpr,
            gpr_used: 0,
            fpr_limit,
            fpr_used: 0,
            offset,
            call_conv,
            shared_flags: shared_flags.clone(),
            isa_flags: isa_flags.clone(),
            assigning_returns,
        }
    }
}

impl ArgAssigner for Args {
    fn assign(&mut self, arg: &AbiParam) -> ArgAction {
        if let ArgumentPurpose::StructArgument(size) = arg.purpose {
            if self.call_conv != CallConv::SystemV {
                panic!(
                    "The sarg argument purpose is not yet implemented for non-systemv call conv {:?}",
                    self.call_conv,
                );
            }
            let loc = ArgumentLoc::Stack(self.offset as i32);
            self.offset += size;
            debug_assert!(self.offset <= i32::MAX as u32);
            return ArgAction::AssignAndChangeType(loc, types::SARG_T);
        }

        let ty = arg.value_type;

        if ty.bits() > u16::from(self.pointer_bits) {
            if !self.assigning_returns && self.call_conv.extends_windows_fastcall() {
                // "Any argument that doesn't fit in 8 bytes, or isn't
                // 1, 2, 4, or 8 bytes, must be passed by reference"
                return ValueConversion::Pointer(self.pointer_type).into();
            } else if !ty.is_vector() && !ty.is_float() {
                // On SystemV large integers and booleans are broken down to fit in a register.
                return ValueConversion::IntSplit.into();
            }
        }

        // Vectors should stay in vector registers unless SIMD is not enabled--then they are split
        if ty.is_vector() {
            if self.shared_flags.enable_simd() {
                let reg = FPR.unit(self.fpr_used);
                self.fpr_used += 1;
                return ArgumentLoc::Reg(reg).into();
            }
            return ValueConversion::VectorSplit.into();
        }

        // Small integers are extended to the size of a pointer register, but
        // only in ABIs that require this. The Baldrdash (SpiderMonkey) ABI
        // does, but our other supported ABIs on x86 do not.
        if ty.is_int()
            && ty.bits() < u16::from(self.pointer_bits)
            && self.call_conv.extends_baldrdash()
        {
            match arg.extension {
                ArgumentExtension::None => {}
                ArgumentExtension::Uext => return ValueConversion::Uext(self.pointer_type).into(),
                ArgumentExtension::Sext => return ValueConversion::Sext(self.pointer_type).into(),
            }
        }

        // Handle special-purpose arguments.
        if ty.is_int() && self.call_conv.extends_baldrdash() {
            match arg.purpose {
                // This is SpiderMonkey's `WasmTlsReg`.
                ArgumentPurpose::VMContext => {
                    return ArgumentLoc::Reg(if self.pointer_bits == 64 {
                        RU::r14
                    } else {
                        RU::rsi
                    } as RegUnit)
                    .into();
                }
                // This is SpiderMonkey's `WasmTableCallSigReg`.
                ArgumentPurpose::SignatureId => {
                    return ArgumentLoc::Reg(if self.pointer_bits == 64 {
                        RU::r10
                    } else {
                        RU::rcx
                    } as RegUnit)
                    .into()
                }
                _ => {}
            }
        }

        // Try to use a GPR.
        if !ty.is_float() && self.gpr_used < self.gpr.len() {
            let reg = self.gpr[self.gpr_used] as RegUnit;
            self.gpr_used += 1;
            return ArgumentLoc::Reg(reg).into();
        }

        // Try to use an FPR.
        let fpr_offset = if self.call_conv.extends_windows_fastcall() {
            // Float and general registers on windows share the same parameter index.
            // The used register depends entirely on the parameter index: Even if XMM0
            // is not used for the first parameter, it cannot be used for the second parameter.
            debug_assert_eq!(self.fpr_limit, self.gpr.len());
            &mut self.gpr_used
        } else {
            &mut self.fpr_used
        };

        if ty.is_float() && *fpr_offset < self.fpr_limit {
            let reg = FPR.unit(*fpr_offset);
            *fpr_offset += 1;
            return ArgumentLoc::Reg(reg).into();
        }

        // Assign a stack location.
        let loc = ArgumentLoc::Stack(self.offset as i32);
        self.offset += u32::from(self.pointer_bytes);
        debug_assert!(self.offset <= i32::MAX as u32);
        loc.into()
    }
}

/// Legalize `sig`.
pub fn legalize_signature(
    sig: &mut Cow<ir::Signature>,
    triple: &Triple,
    _current: bool,
    shared_flags: &shared_settings::Flags,
    isa_flags: &isa_settings::Flags,
) {
    let bits;
    let mut args;

    match triple.pointer_width().unwrap() {
        PointerWidth::U16 => panic!(),
        PointerWidth::U32 => {
            bits = 32;
            args = Args::new(bits, &[], 0, sig.call_conv, shared_flags, isa_flags, false);
        }
        PointerWidth::U64 => {
            bits = 64;
            args = if sig.call_conv.extends_windows_fastcall() {
                Args::new(
                    bits,
                    &ARG_GPRS_WIN_FASTCALL_X64[..],
                    4,
                    sig.call_conv,
                    shared_flags,
                    isa_flags,
                    false,
                )
            } else {
                Args::new(
                    bits,
                    &ARG_GPRS[..],
                    8,
                    sig.call_conv,
                    shared_flags,
                    isa_flags,
                    false,
                )
            };
        }
    }

    let (ret_regs, ret_fpr_limit) = if sig.call_conv.extends_windows_fastcall() {
        // windows-x64 calling convention only uses XMM0 or RAX for return values
        (&RET_GPRS_WIN_FASTCALL_X64[..], 1)
    } else {
        (&RET_GPRS[..], 2)
    };

    let mut rets = Args::new(
        bits,
        ret_regs,
        ret_fpr_limit,
        sig.call_conv,
        shared_flags,
        isa_flags,
        true,
    );

    // If we don't have enough available return registers
    // to fit all of the return values, we need to backtrack and start
    // assigning locations all over again with a different strategy. In order to
    // do that, we need a copy of the original assigner for the returns.
    let mut backup_rets = rets.clone();

    if let Some(new_returns) = legalize_args(&sig.returns, &mut rets) {
        if new_returns
            .iter()
            .filter(|r| r.purpose == ArgumentPurpose::Normal)
            .any(|r| !r.location.is_reg())
        {
            // The return values couldn't all fit into available return
            // registers. Introduce the use of a struct-return parameter.
            debug_assert!(!sig.uses_struct_return_param());

            // We're using the first register for the return pointer parameter.
            let mut ret_ptr_param = AbiParam {
                value_type: args.pointer_type,
                purpose: ArgumentPurpose::StructReturn,
                extension: ArgumentExtension::None,
                location: ArgumentLoc::Unassigned,
                legalized_to_pointer: false,
            };
            match args.assign(&ret_ptr_param) {
                ArgAction::Assign(ArgumentLoc::Reg(reg)) => {
                    ret_ptr_param.location = ArgumentLoc::Reg(reg);
                    sig.to_mut().params.push(ret_ptr_param);
                }
                _ => unreachable!("return pointer should always get a register assignment"),
            }

            // We're using the first return register for the return pointer (like
            // sys v does).
            let mut ret_ptr_return = AbiParam {
                value_type: args.pointer_type,
                purpose: ArgumentPurpose::StructReturn,
                extension: ArgumentExtension::None,
                location: ArgumentLoc::Unassigned,
                legalized_to_pointer: false,
            };
            match backup_rets.assign(&ret_ptr_return) {
                ArgAction::Assign(ArgumentLoc::Reg(reg)) => {
                    ret_ptr_return.location = ArgumentLoc::Reg(reg);
                    sig.to_mut().returns.push(ret_ptr_return);
                }
                _ => unreachable!("return pointer should always get a register assignment"),
            }

            sig.to_mut().returns.retain(|ret| {
                // Either this is the return pointer, in which case we want to keep
                // it, or else assume that it is assigned for a reason and doesn't
                // conflict with our return pointering legalization.
                debug_assert_eq!(
                    ret.location.is_assigned(),
                    ret.purpose != ArgumentPurpose::Normal
                );
                ret.location.is_assigned()
            });

            if let Some(new_returns) = legalize_args(&sig.returns, &mut backup_rets) {
                sig.to_mut().returns = new_returns;
            }
        } else {
            sig.to_mut().returns = new_returns;
        }
    }

    if let Some(new_params) = legalize_args(&sig.params, &mut args) {
        sig.to_mut().params = new_params;
    }
}

/// Get register class for a type appearing in a legalized signature.
pub fn regclass_for_abi_type(ty: ir::Type) -> RegClass {
    if ty.is_int() || ty.is_bool() || ty.is_ref() {
        GPR
    } else {
        FPR
    }
}

/// Get the set of allocatable registers for `func`.
pub fn allocatable_registers(triple: &Triple, flags: &shared_settings::Flags) -> RegisterSet {
    let mut regs = RegisterSet::new();
    regs.take(GPR, RU::rsp as RegUnit);
    regs.take(GPR, RU::rbp as RegUnit);

    // 32-bit arch only has 8 registers.
    if triple.pointer_width().unwrap() != PointerWidth::U64 {
        for i in 8..16 {
            regs.take(GPR, GPR.unit(i));
            regs.take(FPR, FPR.unit(i));
        }
        if flags.enable_pinned_reg() {
            unimplemented!("Pinned register not implemented on x86-32.");
        }
    } else {
        // Choose r15 as the pinned register on 64-bits: it is non-volatile on native ABIs and
        // isn't the fixed output register of any instruction.
        if flags.enable_pinned_reg() {
            regs.take(GPR, RU::r15 as RegUnit);
        }
    }

    regs
}

/// Get the set of callee-saved general-purpose registers.
fn callee_saved_gprs(isa: &dyn TargetIsa, call_conv: CallConv) -> &'static [RU] {
    match isa.triple().pointer_width().unwrap() {
        PointerWidth::U16 => panic!(),
        PointerWidth::U32 => &[RU::rbx, RU::rsi, RU::rdi],
        PointerWidth::U64 => {
            if call_conv.extends_windows_fastcall() {
                // "registers RBX, RBP, RDI, RSI, RSP, R12, R13, R14, R15, and XMM6-15 are
                // considered nonvolatile and must be saved and restored by a function that uses
                //  them."
                // as per https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention
                // RSP & RBP are not listed below, since they are restored automatically during
                // a function call. If that wasn't the case, function calls (RET) would not work.
                &[
                    RU::rbx,
                    RU::rdi,
                    RU::rsi,
                    RU::r12,
                    RU::r13,
                    RU::r14,
                    RU::r15,
                ]
            } else {
                &[RU::rbx, RU::r12, RU::r13, RU::r14, RU::r15]
            }
        }
    }
}

/// Get the set of callee-saved floating-point (SIMD) registers.
fn callee_saved_fprs(isa: &dyn TargetIsa, call_conv: CallConv) -> &'static [RU] {
    match isa.triple().pointer_width().unwrap() {
        PointerWidth::U16 => panic!(),
        PointerWidth::U32 => &[],
        PointerWidth::U64 => {
            if call_conv.extends_windows_fastcall() {
                // "registers RBX, ... , and XMM6-15 are considered nonvolatile and must be saved
                //  and restored by a function that uses them."
                // as per https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention as of
                // February 5th, 2020.
                &[
                    RU::xmm6,
                    RU::xmm7,
                    RU::xmm8,
                    RU::xmm9,
                    RU::xmm10,
                    RU::xmm11,
                    RU::xmm12,
                    RU::xmm13,
                    RU::xmm14,
                    RU::xmm15,
                ]
            } else {
                &[]
            }
        }
    }
}

/// Get the set of callee-saved registers that are used.
fn callee_saved_regs_used(isa: &dyn TargetIsa, func: &ir::Function) -> RegisterSet {
    let mut all_callee_saved = RegisterSet::empty();
    for reg in callee_saved_gprs(isa, func.signature.call_conv) {
        all_callee_saved.free(GPR, *reg as RegUnit);
    }
    for reg in callee_saved_fprs(isa, func.signature.call_conv) {
        all_callee_saved.free(FPR, *reg as RegUnit);
    }

    let mut used = RegisterSet::empty();
    for value_loc in func.locations.values() {
        // Note that `value_loc` here contains only a single unit of a potentially multi-unit
        // register. We don't use registers that overlap each other in the x86 ISA, but in others
        // we do. So this should not be blindly reused.
        if let ValueLoc::Reg(ru) = *value_loc {
            if GPR.contains(ru) {
                if !used.is_avail(GPR, ru) {
                    used.free(GPR, ru);
                }
            } else if FPR.contains(ru) {
                if !used.is_avail(FPR, ru) {
                    used.free(FPR, ru);
                }
            }
        }
    }

    // regmove and regfill instructions may temporarily divert values into other registers,
    // and these are not reflected in `func.locations`. Scan the function for such instructions
    // and note which callee-saved registers they use.
    //
    // TODO: Consider re-evaluating how regmove/regfill/regspill work and whether it's possible
    // to avoid this step.
    for block in &func.layout {
        for inst in func.layout.block_insts(block) {
            match func.dfg[inst] {
                ir::instructions::InstructionData::RegMove { dst, .. }
                | ir::instructions::InstructionData::RegFill { dst, .. } => {
                    if GPR.contains(dst) {
                        if !used.is_avail(GPR, dst) {
                            used.free(GPR, dst);
                        }
                    } else if FPR.contains(dst) {
                        if !used.is_avail(FPR, dst) {
                            used.free(FPR, dst);
                        }
                    }
                }
                _ => (),
            }
        }
    }

    used.intersect(&all_callee_saved);
    used
}

pub fn prologue_epilogue(func: &mut ir::Function, isa: &dyn TargetIsa) -> CodegenResult<()> {
    match func.signature.call_conv {
        // For now, just translate fast and cold as system_v.
        CallConv::Fast | CallConv::Cold | CallConv::SystemV => {
            system_v_prologue_epilogue(func, isa)
        }
        CallConv::WindowsFastcall => fastcall_prologue_epilogue(func, isa),
        CallConv::BaldrdashSystemV | CallConv::BaldrdashWindows => {
            baldrdash_prologue_epilogue(func, isa)
        }
        CallConv::Probestack => unimplemented!("probestack calling convention"),
        CallConv::Baldrdash2020 => unimplemented!("Baldrdash ABI 2020"),
    }
}

fn baldrdash_prologue_epilogue(func: &mut ir::Function, isa: &dyn TargetIsa) -> CodegenResult<()> {
    debug_assert!(
        !isa.flags().enable_probestack(),
        "baldrdash does not expect cranelift to emit stack probes"
    );

    let word_size = StackSize::from(isa.pointer_bytes());
    let shadow_store_size = if func.signature.call_conv.extends_windows_fastcall() {
        WIN_SHADOW_STACK_SPACE
    } else {
        0
    };

    let bytes =
        StackSize::from(isa.flags().baldrdash_prologue_words()) * word_size + shadow_store_size;

    let mut ss = ir::StackSlotData::new(ir::StackSlotKind::IncomingArg, bytes);
    ss.offset = Some(-(bytes as StackOffset));
    func.stack_slots.push(ss);

    let is_leaf = func.is_leaf();
    layout_stack(&mut func.stack_slots, is_leaf, STACK_ALIGNMENT)?;
    Ok(())
}

/// Implementation of the fastcall-based Win64 calling convention described at [1]
/// [1] https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention
fn fastcall_prologue_epilogue(func: &mut ir::Function, isa: &dyn TargetIsa) -> CodegenResult<()> {
    if isa.triple().pointer_width().unwrap() != PointerWidth::U64 {
        panic!("TODO: windows-fastcall: x86-32 not implemented yet");
    }

    // The reserved stack area is composed of:
    //   return address + frame pointer + all callee-saved registers
    //
    // Pushing the return address is an implicit function of the `call`
    // instruction. Each of the others we will then push explicitly. Then we
    // will adjust the stack pointer to make room for the rest of the required
    // space for this frame.
    let csrs = callee_saved_regs_used(isa, func);
    let gpsr_stack_size = ((csrs.iter(GPR).len() + 2) * isa.pointer_bytes() as usize) as u32;
    let fpsr_stack_size = (csrs.iter(FPR).len() * types::F64X2.bytes() as usize) as u32;
    let mut csr_stack_size = gpsr_stack_size + fpsr_stack_size;

    // FPRs must be saved with 16-byte alignment; because they follow the GPRs on the stack, align if needed
    if fpsr_stack_size > 0 {
        csr_stack_size = (csr_stack_size + 15) & !15;
    }

    func.create_stack_slot(ir::StackSlotData {
        kind: ir::StackSlotKind::IncomingArg,
        size: csr_stack_size,
        offset: Some(-(csr_stack_size as StackOffset)),
    });

    let is_leaf = func.is_leaf();

    // If not a leaf function, allocate an explicit stack slot at the end of the space for the callee's shadow space
    if !is_leaf {
        // TODO: eventually use the caller-provided shadow store as spill slot space when laying out the stack
        func.create_stack_slot(ir::StackSlotData {
            kind: ir::StackSlotKind::ExplicitSlot,
            size: WIN_SHADOW_STACK_SPACE,
            offset: None,
        });
    }

    let total_stack_size = layout_stack(&mut func.stack_slots, is_leaf, STACK_ALIGNMENT)? as i32;

    // Subtract the GPR saved register size from the local size because pushes are used for the saves
    let local_stack_size = i64::from(total_stack_size - gpsr_stack_size as i32);

    // Add CSRs to function signature
    let reg_type = isa.pointer_type();
    let sp_arg_index = if fpsr_stack_size > 0 {
        let sp_arg = ir::AbiParam::special_reg(
            reg_type,
            ir::ArgumentPurpose::CalleeSaved,
            RU::rsp as RegUnit,
        );
        let index = func.signature.params.len();
        func.signature.params.push(sp_arg);
        Some(index)
    } else {
        None
    };
    let fp_arg = ir::AbiParam::special_reg(
        reg_type,
        ir::ArgumentPurpose::FramePointer,
        RU::rbp as RegUnit,
    );
    func.signature.params.push(fp_arg);
    func.signature.returns.push(fp_arg);

    for gp_csr in csrs.iter(GPR) {
        let csr_arg = ir::AbiParam::special_reg(reg_type, ir::ArgumentPurpose::CalleeSaved, gp_csr);
        func.signature.params.push(csr_arg);
        func.signature.returns.push(csr_arg);
    }

    for fp_csr in csrs.iter(FPR) {
        // The calling convention described in
        // https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention only requires
        // preserving the low 128 bits of XMM6-XMM15.
        let csr_arg =
            ir::AbiParam::special_reg(types::F64X2, ir::ArgumentPurpose::CalleeSaved, fp_csr);
        func.signature.params.push(csr_arg);
        func.signature.returns.push(csr_arg);
    }

    // Set up the cursor and insert the prologue
    let entry_block = func.layout.entry_block().expect("missing entry block");
    let mut pos = EncCursor::new(func, isa).at_first_insertion_point(entry_block);
    insert_common_prologue(
        &mut pos,
        local_stack_size,
        reg_type,
        &csrs,
        sp_arg_index.is_some(),
        isa,
    );

    // Reset the cursor and insert the epilogue
    let mut pos = pos.at_position(CursorPosition::Nowhere);
    insert_common_epilogues(&mut pos, local_stack_size, reg_type, &csrs, sp_arg_index);

    Ok(())
}

/// Insert a System V-compatible prologue and epilogue.
fn system_v_prologue_epilogue(func: &mut ir::Function, isa: &dyn TargetIsa) -> CodegenResult<()> {
    let pointer_width = isa.triple().pointer_width().unwrap();
    let word_size = pointer_width.bytes() as usize;

    let csrs = callee_saved_regs_used(isa, func);
    assert!(
        csrs.iter(FPR).len() == 0,
        "SysV ABI does not have callee-save SIMD registers"
    );

    // The reserved stack area is composed of:
    //   return address + frame pointer + all callee-saved registers
    //
    // Pushing the return address is an implicit function of the `call`
    // instruction. Each of the others we will then push explicitly. Then we
    // will adjust the stack pointer to make room for the rest of the required
    // space for this frame.
    let csr_stack_size = ((csrs.iter(GPR).len() + 2) * word_size) as i32;
    func.create_stack_slot(ir::StackSlotData {
        kind: ir::StackSlotKind::IncomingArg,
        size: csr_stack_size as u32,
        offset: Some(-csr_stack_size),
    });

    let is_leaf = func.is_leaf();
    let total_stack_size = layout_stack(&mut func.stack_slots, is_leaf, STACK_ALIGNMENT)? as i32;
    let local_stack_size = i64::from(total_stack_size - csr_stack_size);

    // Add CSRs to function signature
    let reg_type = ir::Type::int(u16::from(pointer_width.bits())).unwrap();
    // On X86-32 all parameters, including vmctx, are passed on stack, and we need
    // to extract vmctx from the stack before we can save the frame pointer.
    let sp_arg_index = if isa.pointer_bits() == 32 {
        let sp_arg = ir::AbiParam::special_reg(
            reg_type,
            ir::ArgumentPurpose::CalleeSaved,
            RU::rsp as RegUnit,
        );
        let index = func.signature.params.len();
        func.signature.params.push(sp_arg);
        Some(index)
    } else {
        None
    };
    let fp_arg = ir::AbiParam::special_reg(
        reg_type,
        ir::ArgumentPurpose::FramePointer,
        RU::rbp as RegUnit,
    );
    func.signature.params.push(fp_arg);
    func.signature.returns.push(fp_arg);

    for csr in csrs.iter(GPR) {
        let csr_arg = ir::AbiParam::special_reg(reg_type, ir::ArgumentPurpose::CalleeSaved, csr);
        func.signature.params.push(csr_arg);
        func.signature.returns.push(csr_arg);
    }

    // Set up the cursor and insert the prologue
    let entry_block = func.layout.entry_block().expect("missing entry block");
    let mut pos = EncCursor::new(func, isa).at_first_insertion_point(entry_block);
    insert_common_prologue(
        &mut pos,
        local_stack_size,
        reg_type,
        &csrs,
        sp_arg_index.is_some(),
        isa,
    );

    // Reset the cursor and insert the epilogue
    let mut pos = pos.at_position(CursorPosition::Nowhere);
    insert_common_epilogues(&mut pos, local_stack_size, reg_type, &csrs, sp_arg_index);

    Ok(())
}

/// Insert the prologue for a given function.
/// This is used by common calling conventions such as System V.
fn insert_common_prologue(
    pos: &mut EncCursor,
    stack_size: i64,
    reg_type: ir::types::Type,
    csrs: &RegisterSet,
    has_sp_param: bool,
    isa: &dyn TargetIsa,
) {
    let sp = if has_sp_param {
        let block = pos.current_block().expect("missing block under cursor");
        let sp = pos.func.dfg.append_block_param(block, reg_type);
        pos.func.locations[sp] = ir::ValueLoc::Reg(RU::rsp as RegUnit);
        Some(sp)
    } else {
        None
    };

    // If this is a leaf function with zero stack, then there's no need to
    // insert a stack check since it can't overflow anything and
    // forward-progress is guarantee so long as loop are handled anyway.
    //
    // If this has a stack size it could stack overflow, or if it isn't a leaf
    // it could be part of a long call chain which we need to check anyway.
    //
    // First we look for the stack limit as a special argument to the function,
    // and failing that we see if a custom stack limit factory has been provided
    // which will be used to likely calculate the stack limit from the arguments
    // or perhaps constants.
    if stack_size > 0 || !pos.func.is_leaf() {
        let scratch = ir::ValueLoc::Reg(RU::rax as RegUnit);
        let stack_limit_arg = match pos.func.special_param(ArgumentPurpose::StackLimit) {
            Some(arg) => {
                let copy = pos.ins().copy(arg);
                pos.func.locations[copy] = scratch;
                Some(copy)
            }
            None => pos
                .func
                .stack_limit
                .map(|gv| interpret_gv(pos, gv, sp, scratch)),
        };
        if let Some(stack_limit_arg) = stack_limit_arg {
            insert_stack_check(pos, stack_size, stack_limit_arg);
        }
    }

    // Append param to entry block
    let block = pos.current_block().expect("missing block under cursor");
    let fp = pos.func.dfg.append_block_param(block, reg_type);
    pos.func.locations[fp] = ir::ValueLoc::Reg(RU::rbp as RegUnit);

    pos.ins().x86_push(fp);

    let mov_sp_inst = pos
        .ins()
        .copy_special(RU::rsp as RegUnit, RU::rbp as RegUnit);

    let mut last_csr_push = None;
    for reg in csrs.iter(GPR) {
        // Append param to entry block
        let csr_arg = pos.func.dfg.append_block_param(block, reg_type);

        // Assign it a location
        pos.func.locations[csr_arg] = ir::ValueLoc::Reg(reg);
        last_csr_push = Some(pos.ins().x86_push(csr_arg));
    }

    // Allocate stack frame storage.
    let mut adjust_sp_inst = None;
    if stack_size > 0 {
        if isa.flags().enable_probestack() && stack_size > (1 << isa.flags().probestack_size_log2())
        {
            // Emit a stack probe.
            let rax = RU::rax as RegUnit;
            let rax_val = ir::ValueLoc::Reg(rax);

            // The probestack function expects its input in %rax.
            let arg = pos.ins().iconst(reg_type, stack_size);
            pos.func.locations[arg] = rax_val;

            // Call the probestack function.
            let callee = get_probestack_funcref(pos.func, reg_type, rax, isa);

            // Make the call.
            let call = if !isa.flags().is_pic()
                && isa.triple().pointer_width().unwrap() == PointerWidth::U64
                && !pos.func.dfg.ext_funcs[callee].colocated
            {
                // 64-bit non-PIC non-colocated calls need to be legalized to call_indirect.
                // Use r11 as it may be clobbered under all supported calling conventions.
                let r11 = RU::r11 as RegUnit;
                let sig = pos.func.dfg.ext_funcs[callee].signature;
                let addr = pos.ins().func_addr(reg_type, callee);
                pos.func.locations[addr] = ir::ValueLoc::Reg(r11);
                pos.ins().call_indirect(sig, addr, &[arg])
            } else {
                // Otherwise just do a normal call.
                pos.ins().call(callee, &[arg])
            };

            // If the probestack function doesn't adjust sp, do it ourselves.
            if !isa.flags().probestack_func_adjusts_sp() {
                let result = pos.func.dfg.inst_results(call)[0];
                pos.func.locations[result] = rax_val;
                adjust_sp_inst = Some(pos.ins().adjust_sp_down(result));
            }
        } else {
            // Simply decrement the stack pointer.
            adjust_sp_inst = Some(pos.ins().adjust_sp_down_imm(Imm64::new(stack_size)));
        }
    }

    // With the stack pointer adjusted, save any callee-saved floating point registers via offset
    // FPR saves are at the highest addresses of the local frame allocation, immediately following the GPR pushes
    let mut last_fpr_save = None;

    for (i, reg) in csrs.iter(FPR).enumerate() {
        // Append param to entry block
        let csr_arg = pos.func.dfg.append_block_param(block, types::F64X2);

        // Since regalloc has already run, we must assign a location.
        pos.func.locations[csr_arg] = ir::ValueLoc::Reg(reg);

        // Offset to where the register is saved relative to RSP, accounting for FPR save alignment
        let offset = ((i + 1) * types::F64X2.bytes() as usize) as i64
            + (stack_size % types::F64X2.bytes() as i64);

        last_fpr_save = Some(pos.ins().store(
            ir::MemFlags::trusted(),
            csr_arg,
            sp.expect("FPR save requires SP param"),
            (stack_size - offset) as i32,
        ));
    }

    pos.func.prologue_end = Some(
        last_fpr_save
            .or(adjust_sp_inst)
            .or(last_csr_push)
            .unwrap_or(mov_sp_inst),
    );
}

/// Inserts code necessary to calculate `gv`.
///
/// Note that this is typically done with `ins().global_value(...)` but that
/// requires legalization to run to encode it, and we're running super late
/// here in the backend where legalization isn't possible. To get around this
/// we manually interpret the `gv` specified and do register allocation for
/// intermediate values.
///
/// This is an incomplete implementation of loading `GlobalValue` values to get
/// compared to the stack pointer, but currently it serves enough functionality
/// to get this implemented in `wasmtime` itself. This'll likely get expanded a
/// bit over time!
fn interpret_gv(
    pos: &mut EncCursor,
    gv: ir::GlobalValue,
    sp: Option<ir::Value>,
    scratch: ir::ValueLoc,
) -> ir::Value {
    match pos.func.global_values[gv] {
        ir::GlobalValueData::VMContext => {
            let vmctx_index = pos
                .func
                .signature
                .special_param_index(ir::ArgumentPurpose::VMContext)
                .expect("no vmcontext parameter found");
            match pos.func.signature.params[vmctx_index] {
                AbiParam {
                    location: ArgumentLoc::Reg(_),
                    ..
                } => {
                    let entry = pos.func.layout.entry_block().unwrap();
                    pos.func.dfg.block_params(entry)[vmctx_index]
                }
                AbiParam {
                    location: ArgumentLoc::Stack(offset),
                    value_type,
                    ..
                } => {
                    let offset =
                        offset + i32::from(pos.isa.pointer_bytes() * (1 + vmctx_index as u8));
                    // The following access can be marked `trusted` because it is a load of an argument. We
                    // know it is safe because it was safe to write it in preparing this function call.
                    let ret =
                        pos.ins()
                            .load(value_type, ir::MemFlags::trusted(), sp.unwrap(), offset);
                    pos.func.locations[ret] = scratch;
                    return ret;
                }
                AbiParam {
                    location: ArgumentLoc::Unassigned,
                    ..
                } => unreachable!(),
            }
        }
        ir::GlobalValueData::Load {
            base,
            offset,
            global_type,
            readonly: _,
        } => {
            let base = interpret_gv(pos, base, sp, scratch);
            let ret = pos
                .ins()
                .load(global_type, ir::MemFlags::trusted(), base, offset);
            pos.func.locations[ret] = scratch;
            return ret;
        }
        ref other => panic!("global value for stack limit not supported: {}", other),
    }
}

/// Insert a check that generates a trap if the stack pointer goes
/// below a value in `stack_limit_arg`.
fn insert_stack_check(pos: &mut EncCursor, stack_size: i64, stack_limit_arg: ir::Value) {
    use crate::ir::condcodes::IntCC;

    // Our stack pointer, after subtracting `stack_size`, must not be below
    // `stack_limit_arg`. To do this we're going to add `stack_size` to
    // `stack_limit_arg` and see if the stack pointer is below that. The
    // `stack_size + stack_limit_arg` computation might overflow, however, due
    // to how stack limits may be loaded and set externally to trigger a trap.
    //
    // To handle this we'll need an extra comparison to see if the stack
    // pointer is already below `stack_limit_arg`. Most of the time this
    // isn't necessary though since the stack limit which triggers a trap is
    // likely a sentinel somewhere around `usize::max_value()`. In that case
    // only conditionally emit this pre-flight check. That way most functions
    // only have the one comparison, but are also guaranteed that if we add
    // `stack_size` to `stack_limit_arg` is won't overflow.
    //
    // This does mean that code generators which use this stack check
    // functionality need to ensure that values stored into the stack limit
    // will never overflow if this threshold is added.
    if stack_size >= 32 * 1024 {
        let cflags = pos.ins().ifcmp_sp(stack_limit_arg);
        pos.func.locations[cflags] = ir::ValueLoc::Reg(RU::rflags as RegUnit);
        pos.ins().trapif(
            IntCC::UnsignedGreaterThanOrEqual,
            cflags,
            ir::TrapCode::StackOverflow,
        );
    }

    // Copy `stack_limit_arg` into a %rax and use it for calculating
    // a SP threshold.
    let sp_threshold = pos.ins().iadd_imm(stack_limit_arg, stack_size);
    pos.func.locations[sp_threshold] = ir::ValueLoc::Reg(RU::rax as RegUnit);

    // If the stack pointer currently reaches the SP threshold or below it then after opening
    // the current stack frame, the current stack pointer will reach the limit.
    let cflags = pos.ins().ifcmp_sp(sp_threshold);
    pos.func.locations[cflags] = ir::ValueLoc::Reg(RU::rflags as RegUnit);
    pos.ins().trapif(
        IntCC::UnsignedGreaterThanOrEqual,
        cflags,
        ir::TrapCode::StackOverflow,
    );
}

/// Find all `return` instructions and insert epilogues before them.
fn insert_common_epilogues(
    pos: &mut EncCursor,
    stack_size: i64,
    reg_type: ir::types::Type,
    csrs: &RegisterSet,
    sp_arg_index: Option<usize>,
) {
    while let Some(block) = pos.next_block() {
        pos.goto_last_inst(block);
        if let Some(inst) = pos.current_inst() {
            if pos.func.dfg[inst].opcode().is_return() {
                insert_common_epilogue(inst, block, stack_size, pos, reg_type, csrs, sp_arg_index);
            }
        }
    }
}

/// Insert an epilogue given a specific `return` instruction.
/// This is used by common calling conventions such as System V.
fn insert_common_epilogue(
    inst: ir::Inst,
    block: ir::Block,
    stack_size: i64,
    pos: &mut EncCursor,
    reg_type: ir::types::Type,
    csrs: &RegisterSet,
    sp_arg_index: Option<usize>,
) {
    // Insert the pop of the frame pointer
    let fp_pop = pos.ins().x86_pop(reg_type);
    let fp_pop_inst = pos.prev_inst().unwrap();
    pos.func.locations[fp_pop] = ir::ValueLoc::Reg(RU::rbp as RegUnit);
    pos.func.dfg.append_inst_arg(inst, fp_pop);

    // Insert the CSR pops
    let mut first_csr_pop_inst = None;
    for reg in csrs.iter(GPR) {
        let csr_pop = pos.ins().x86_pop(reg_type);
        first_csr_pop_inst = pos.prev_inst();
        assert!(first_csr_pop_inst.is_some());
        pos.func.locations[csr_pop] = ir::ValueLoc::Reg(reg);
        pos.func.dfg.append_inst_arg(inst, csr_pop);
    }

    // Insert the adjustment of SP
    let mut sp_adjust_inst = None;
    if stack_size > 0 {
        pos.ins().adjust_sp_up_imm(Imm64::new(stack_size));
        sp_adjust_inst = pos.prev_inst();
        assert!(sp_adjust_inst.is_some());
    }

    let mut first_fpr_load = None;
    if let Some(index) = sp_arg_index {
        let sp = pos
            .func
            .dfg
            .block_params(pos.func.layout.entry_block().unwrap())[index];

        // Insert the FPR loads (unlike the GPRs, which are stack pops, these are in-order loads)
        for (i, reg) in csrs.iter(FPR).enumerate() {
            // Offset to where the register is saved relative to RSP, accounting for FPR save alignment
            let offset = ((i + 1) * types::F64X2.bytes() as usize) as i64
                + (stack_size % types::F64X2.bytes() as i64);

            let value = pos.ins().load(
                types::F64X2,
                ir::MemFlags::trusted(),
                sp,
                (stack_size - offset) as i32,
            );

            first_fpr_load.get_or_insert(pos.current_inst().expect("current inst"));

            pos.func.locations[value] = ir::ValueLoc::Reg(reg);
            pos.func.dfg.append_inst_arg(inst, value);
        }
    } else {
        assert!(csrs.iter(FPR).len() == 0);
    }

    pos.func.epilogues_start.push((
        first_fpr_load
            .or(sp_adjust_inst)
            .or(first_csr_pop_inst)
            .unwrap_or(fp_pop_inst),
        block,
    ));
}

#[cfg(feature = "unwind")]
pub fn create_unwind_info(
    func: &ir::Function,
    isa: &dyn TargetIsa,
) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
    use crate::isa::unwind::UnwindInfo;

    // Assumption: RBP is being used as the frame pointer for both calling conventions
    // In the future, we should be omitting frame pointer as an optimization, so this will change
    Ok(match func.signature.call_conv {
        CallConv::Fast | CallConv::Cold | CallConv::SystemV => {
            super::unwind::systemv::create_unwind_info(func, isa)?.map(|u| UnwindInfo::SystemV(u))
        }
        CallConv::WindowsFastcall => {
            super::unwind::winx64::create_unwind_info(func, isa)?.map(|u| UnwindInfo::WindowsX64(u))
        }
        _ => None,
    })
}