1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
use crate::enter;
use futures_core::future::Future;
use futures_core::stream::Stream;
use futures_core::task::{Context, Poll};
use futures_task::{waker_ref, ArcWake};
use futures_task::{FutureObj, LocalFutureObj, LocalSpawn, Spawn, SpawnError};
use futures_util::pin_mut;
use futures_util::stream::FuturesUnordered;
use futures_util::stream::StreamExt;
use std::cell::RefCell;
use std::ops::{Deref, DerefMut};
use std::rc::{Rc, Weak};
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
use std::thread::{self, Thread};
/// A single-threaded task pool for polling futures to completion.
///
/// This executor allows you to multiplex any number of tasks onto a single
/// thread. It's appropriate to poll strictly I/O-bound futures that do very
/// little work in between I/O actions.
///
/// To get a handle to the pool that implements
/// [`Spawn`](futures_task::Spawn), use the
/// [`spawner()`](LocalPool::spawner) method. Because the executor is
/// single-threaded, it supports a special form of task spawning for non-`Send`
/// futures, via [`spawn_local_obj`](futures_task::LocalSpawn::spawn_local_obj).
#[derive(Debug)]
pub struct LocalPool {
pool: FuturesUnordered<LocalFutureObj<'static, ()>>,
incoming: Rc<Incoming>,
}
/// A handle to a [`LocalPool`](LocalPool) that implements
/// [`Spawn`](futures_task::Spawn).
#[derive(Clone, Debug)]
pub struct LocalSpawner {
incoming: Weak<Incoming>,
}
type Incoming = RefCell<Vec<LocalFutureObj<'static, ()>>>;
pub(crate) struct ThreadNotify {
/// The (single) executor thread.
thread: Thread,
/// A flag to ensure a wakeup (i.e. `unpark()`) is not "forgotten"
/// before the next `park()`, which may otherwise happen if the code
/// being executed as part of the future(s) being polled makes use of
/// park / unpark calls of its own, i.e. we cannot assume that no other
/// code uses park / unpark on the executing `thread`.
unparked: AtomicBool,
}
thread_local! {
static CURRENT_THREAD_NOTIFY: Arc<ThreadNotify> = Arc::new(ThreadNotify {
thread: thread::current(),
unparked: AtomicBool::new(false),
});
}
impl ArcWake for ThreadNotify {
fn wake_by_ref(arc_self: &Arc<Self>) {
// Make sure the wakeup is remembered until the next `park()`.
let unparked = arc_self.unparked.swap(true, Ordering::Relaxed);
if !unparked {
// If the thread has not been unparked yet, it must be done
// now. If it was actually parked, it will run again,
// otherwise the token made available by `unpark`
// may be consumed before reaching `park()`, but `unparked`
// ensures it is not forgotten.
arc_self.thread.unpark();
}
}
}
// Set up and run a basic single-threaded spawner loop, invoking `f` on each
// turn.
fn run_executor<T, F: FnMut(&mut Context<'_>) -> Poll<T>>(mut f: F) -> T {
let _enter = enter().expect(
"cannot execute `LocalPool` executor from within \
another executor",
);
CURRENT_THREAD_NOTIFY.with(|thread_notify| {
let waker = waker_ref(thread_notify);
let mut cx = Context::from_waker(&waker);
loop {
if let Poll::Ready(t) = f(&mut cx) {
return t;
}
// Consume the wakeup that occurred while executing `f`, if any.
let unparked = thread_notify.unparked.swap(false, Ordering::Acquire);
if !unparked {
// No wakeup occurred. It may occur now, right before parking,
// but in that case the token made available by `unpark()`
// is guaranteed to still be available and `park()` is a no-op.
thread::park();
// When the thread is unparked, `unparked` will have been set
// and needs to be unset before the next call to `f` to avoid
// a redundant loop iteration.
thread_notify.unparked.store(false, Ordering::Release);
}
}
})
}
fn poll_executor<T, F: FnMut(&mut Context<'_>) -> T>(mut f: F) -> T {
let _enter = enter().expect(
"cannot execute `LocalPool` executor from within \
another executor",
);
CURRENT_THREAD_NOTIFY.with(|thread_notify| {
let waker = waker_ref(thread_notify);
let mut cx = Context::from_waker(&waker);
f(&mut cx)
})
}
impl LocalPool {
/// Create a new, empty pool of tasks.
pub fn new() -> Self {
Self { pool: FuturesUnordered::new(), incoming: Default::default() }
}
/// Get a clonable handle to the pool as a [`Spawn`].
pub fn spawner(&self) -> LocalSpawner {
LocalSpawner { incoming: Rc::downgrade(&self.incoming) }
}
/// Run all tasks in the pool to completion.
///
/// ```
/// use futures::executor::LocalPool;
///
/// let mut pool = LocalPool::new();
///
/// // ... spawn some initial tasks using `spawn.spawn()` or `spawn.spawn_local()`
///
/// // run *all* tasks in the pool to completion, including any newly-spawned ones.
/// pool.run();
/// ```
///
/// The function will block the calling thread until *all* tasks in the pool
/// are complete, including any spawned while running existing tasks.
pub fn run(&mut self) {
run_executor(|cx| self.poll_pool(cx))
}
/// Runs all the tasks in the pool until the given future completes.
///
/// ```
/// use futures::executor::LocalPool;
///
/// let mut pool = LocalPool::new();
/// # let my_app = async {};
///
/// // run tasks in the pool until `my_app` completes
/// pool.run_until(my_app);
/// ```
///
/// The function will block the calling thread *only* until the future `f`
/// completes; there may still be incomplete tasks in the pool, which will
/// be inert after the call completes, but can continue with further use of
/// one of the pool's run or poll methods. While the function is running,
/// however, all tasks in the pool will try to make progress.
pub fn run_until<F: Future>(&mut self, future: F) -> F::Output {
pin_mut!(future);
run_executor(|cx| {
{
// if our main task is done, so are we
let result = future.as_mut().poll(cx);
if let Poll::Ready(output) = result {
return Poll::Ready(output);
}
}
let _ = self.poll_pool(cx);
Poll::Pending
})
}
/// Runs all tasks and returns after completing one future or until no more progress
/// can be made. Returns `true` if one future was completed, `false` otherwise.
///
/// ```
/// use futures::executor::LocalPool;
/// use futures::task::LocalSpawnExt;
/// use futures::future::{ready, pending};
///
/// let mut pool = LocalPool::new();
/// let spawner = pool.spawner();
///
/// spawner.spawn_local(ready(())).unwrap();
/// spawner.spawn_local(ready(())).unwrap();
/// spawner.spawn_local(pending()).unwrap();
///
/// // Run the two ready tasks and return true for them.
/// pool.try_run_one(); // returns true after completing one of the ready futures
/// pool.try_run_one(); // returns true after completing the other ready future
///
/// // the remaining task can not be completed
/// assert!(!pool.try_run_one()); // returns false
/// ```
///
/// This function will not block the calling thread and will return the moment
/// that there are no tasks left for which progress can be made or after exactly one
/// task was completed; Remaining incomplete tasks in the pool can continue with
/// further use of one of the pool's run or poll methods.
/// Though only one task will be completed, progress may be made on multiple tasks.
pub fn try_run_one(&mut self) -> bool {
poll_executor(|ctx| {
loop {
let ret = self.poll_pool_once(ctx);
// return if we have executed a future
if let Poll::Ready(Some(_)) = ret {
return true;
}
// if there are no new incoming futures
// then there is no feature that can make progress
// and we can return without having completed a single future
if self.incoming.borrow().is_empty() {
return false;
}
}
})
}
/// Runs all tasks in the pool and returns if no more progress can be made
/// on any task.
///
/// ```
/// use futures::executor::LocalPool;
/// use futures::task::LocalSpawnExt;
/// use futures::future::{ready, pending};
///
/// let mut pool = LocalPool::new();
/// let spawner = pool.spawner();
///
/// spawner.spawn_local(ready(())).unwrap();
/// spawner.spawn_local(ready(())).unwrap();
/// spawner.spawn_local(pending()).unwrap();
///
/// // Runs the two ready task and returns.
/// // The empty task remains in the pool.
/// pool.run_until_stalled();
/// ```
///
/// This function will not block the calling thread and will return the moment
/// that there are no tasks left for which progress can be made;
/// remaining incomplete tasks in the pool can continue with further use of one
/// of the pool's run or poll methods. While the function is running, all tasks
/// in the pool will try to make progress.
pub fn run_until_stalled(&mut self) {
poll_executor(|ctx| {
let _ = self.poll_pool(ctx);
});
}
// Make maximal progress on the entire pool of spawned task, returning `Ready`
// if the pool is empty and `Pending` if no further progress can be made.
fn poll_pool(&mut self, cx: &mut Context<'_>) -> Poll<()> {
// state for the FuturesUnordered, which will never be used
loop {
let ret = self.poll_pool_once(cx);
// we queued up some new tasks; add them and poll again
if !self.incoming.borrow().is_empty() {
continue;
}
// no queued tasks; we may be done
match ret {
Poll::Pending => return Poll::Pending,
Poll::Ready(None) => return Poll::Ready(()),
_ => {}
}
}
}
// Try make minimal progress on the pool of spawned tasks
fn poll_pool_once(&mut self, cx: &mut Context<'_>) -> Poll<Option<()>> {
// empty the incoming queue of newly-spawned tasks
{
let mut incoming = self.incoming.borrow_mut();
for task in incoming.drain(..) {
self.pool.push(task)
}
}
// try to execute the next ready future
self.pool.poll_next_unpin(cx)
}
}
impl Default for LocalPool {
fn default() -> Self {
Self::new()
}
}
/// Run a future to completion on the current thread.
///
/// This function will block the caller until the given future has completed.
///
/// Use a [`LocalPool`](LocalPool) if you need finer-grained control over
/// spawned tasks.
pub fn block_on<F: Future>(f: F) -> F::Output {
pin_mut!(f);
run_executor(|cx| f.as_mut().poll(cx))
}
/// Turn a stream into a blocking iterator.
///
/// When `next` is called on the resulting `BlockingStream`, the caller
/// will be blocked until the next element of the `Stream` becomes available.
pub fn block_on_stream<S: Stream + Unpin>(stream: S) -> BlockingStream<S> {
BlockingStream { stream }
}
/// An iterator which blocks on values from a stream until they become available.
#[derive(Debug)]
pub struct BlockingStream<S: Stream + Unpin> {
stream: S,
}
impl<S: Stream + Unpin> Deref for BlockingStream<S> {
type Target = S;
fn deref(&self) -> &Self::Target {
&self.stream
}
}
impl<S: Stream + Unpin> DerefMut for BlockingStream<S> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.stream
}
}
impl<S: Stream + Unpin> BlockingStream<S> {
/// Convert this `BlockingStream` into the inner `Stream` type.
pub fn into_inner(self) -> S {
self.stream
}
}
impl<S: Stream + Unpin> Iterator for BlockingStream<S> {
type Item = S::Item;
fn next(&mut self) -> Option<Self::Item> {
LocalPool::new().run_until(self.stream.next())
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.stream.size_hint()
}
}
impl Spawn for LocalSpawner {
fn spawn_obj(&self, future: FutureObj<'static, ()>) -> Result<(), SpawnError> {
if let Some(incoming) = self.incoming.upgrade() {
incoming.borrow_mut().push(future.into());
Ok(())
} else {
Err(SpawnError::shutdown())
}
}
fn status(&self) -> Result<(), SpawnError> {
if self.incoming.upgrade().is_some() {
Ok(())
} else {
Err(SpawnError::shutdown())
}
}
}
impl LocalSpawn for LocalSpawner {
fn spawn_local_obj(&self, future: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> {
if let Some(incoming) = self.incoming.upgrade() {
incoming.borrow_mut().push(future);
Ok(())
} else {
Err(SpawnError::shutdown())
}
}
fn status_local(&self) -> Result<(), SpawnError> {
if self.incoming.upgrade().is_some() {
Ok(())
} else {
Err(SpawnError::shutdown())
}
}
}