1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
//! Data structures describing the registers in an ISA.
use crate::entity::EntityRef;
use core::fmt;
/// Register units are the smallest units of register allocation.
///
/// Normally there is a 1-1 correspondence between registers and register units, but when an ISA
/// has aliasing registers, the aliasing can be modeled with registers that cover multiple
/// register units.
///
/// The register allocator will enforce that each register unit only gets used for one thing.
pub type RegUnit = u16;
/// A bit mask indexed by register classes.
///
/// The size of this type is determined by the ISA with the most register classes.
pub type RegClassMask = u32;
/// A bit mask indexed by register units.
///
/// The size of this type is determined by the target ISA that has the most register units defined.
/// Currently that is arm32 which has 64+16 units.
pub type RegUnitMask = [RegClassMask; 3];
/// The register units in a target ISA are divided into disjoint register banks. Each bank covers a
/// contiguous range of register units.
///
/// The `RegBank` struct provides a static description of a register bank.
pub struct RegBank {
/// The name of this register bank as defined in the ISA's DSL definition.
pub name: &'static str,
/// The first register unit in this bank.
pub first_unit: RegUnit,
/// The total number of register units in this bank.
pub units: RegUnit,
/// Array of specially named register units. This array can be shorter than the number of units
/// in the bank.
pub names: &'static [&'static str],
/// Name prefix to use for those register units in the bank not covered by the `names` array.
/// The remaining register units will be named this prefix followed by their decimal offset in
/// the bank. So with a prefix `r`, registers will be named `r8`, `r9`, ...
pub prefix: &'static str,
/// Index of the first top-level register class in this bank.
pub first_toprc: usize,
/// Number of top-level register classes in this bank.
///
/// The top-level register classes in a bank are guaranteed to be numbered sequentially from
/// `first_toprc`, and all top-level register classes across banks come before any sub-classes.
pub num_toprcs: usize,
/// Is register pressure tracking enabled for this bank?
pub pressure_tracking: bool,
}
impl RegBank {
/// Does this bank contain `regunit`?
fn contains(&self, regunit: RegUnit) -> bool {
regunit >= self.first_unit && regunit - self.first_unit < self.units
}
/// Try to parse a regunit name. The name is not expected to begin with `%`.
fn parse_regunit(&self, name: &str) -> Option<RegUnit> {
match self.names.iter().position(|&x| x == name) {
Some(offset) => {
// This is one of the special-cased names.
Some(offset as RegUnit)
}
None => {
// Try a regular prefixed name.
if name.starts_with(self.prefix) {
name[self.prefix.len()..].parse().ok()
} else {
None
}
}
}
.and_then(|offset| {
if offset < self.units {
Some(offset + self.first_unit)
} else {
None
}
})
}
/// Write `regunit` to `w`, assuming that it belongs to this bank.
/// All regunits are written with a `%` prefix.
fn write_regunit(&self, f: &mut fmt::Formatter, regunit: RegUnit) -> fmt::Result {
let offset = regunit - self.first_unit;
assert!(offset < self.units);
if (offset as usize) < self.names.len() {
write!(f, "%{}", self.names[offset as usize])
} else {
write!(f, "%{}{}", self.prefix, offset)
}
}
}
/// A register class reference.
///
/// All register classes are statically defined in tables generated from the meta descriptions.
pub type RegClass = &'static RegClassData;
/// Data about a register class.
///
/// A register class represents a subset of the registers in a bank. It describes the set of
/// permitted registers for a register operand in a given encoding of an instruction.
///
/// A register class can be a subset of another register class. The top-level register classes are
/// disjoint.
pub struct RegClassData {
/// The name of the register class.
pub name: &'static str,
/// The index of this class in the ISA's RegInfo description.
pub index: u8,
/// How many register units to allocate per register.
pub width: u8,
/// Index of the register bank this class belongs to.
pub bank: u8,
/// Index of the top-level register class contains this one.
pub toprc: u8,
/// The first register unit in this class.
pub first: RegUnit,
/// Bit-mask of sub-classes of this register class, including itself.
///
/// Bits correspond to RC indexes.
pub subclasses: RegClassMask,
/// Mask of register units in the class. If `width > 1`, the mask only has a bit set for the
/// first register unit in each allocatable register.
pub mask: RegUnitMask,
/// The global `RegInfo` instance containing this register class.
pub info: &'static RegInfo,
/// The "pinned" register of the associated register bank.
///
/// This register must be non-volatile (callee-preserved) and must not be the fixed
/// output register of any instruction.
pub pinned_reg: Option<RegUnit>,
}
impl RegClassData {
/// Get the register class index corresponding to the intersection of `self` and `other`.
///
/// This register class is guaranteed to exist if the register classes overlap. If the register
/// classes don't overlap, returns `None`.
pub fn intersect_index(&self, other: RegClass) -> Option<RegClassIndex> {
// Compute the set of common subclasses.
let mask = self.subclasses & other.subclasses;
if mask == 0 {
// No overlap.
None
} else {
// Register class indexes are topologically ordered, so the largest common subclass has
// the smallest index.
Some(RegClassIndex(mask.trailing_zeros() as u8))
}
}
/// Get the intersection of `self` and `other`.
pub fn intersect(&self, other: RegClass) -> Option<RegClass> {
self.intersect_index(other).map(|rci| self.info.rc(rci))
}
/// Returns true if `other` is a subclass of this register class.
/// A register class is considered to be a subclass of itself.
pub fn has_subclass<RCI: Into<RegClassIndex>>(&self, other: RCI) -> bool {
self.subclasses & (1 << other.into().0) as u32 != 0
}
/// Get the top-level register class containing this class.
pub fn toprc(&self) -> RegClass {
self.info.rc(RegClassIndex(self.toprc))
}
/// Get a specific register unit in this class.
pub fn unit(&self, offset: usize) -> RegUnit {
let uoffset = offset * usize::from(self.width);
self.first + uoffset as RegUnit
}
/// Does this register class contain `regunit`?
pub fn contains(&self, regunit: RegUnit) -> bool {
self.mask[(regunit / 32) as usize] & (1u32 << (regunit % 32) as u32) != 0
}
/// If the pinned register is used, is the given regunit the pinned register of this class?
#[inline]
pub fn is_pinned_reg(&self, enabled: bool, regunit: RegUnit) -> bool {
enabled
&& self
.pinned_reg
.map_or(false, |pinned_reg| pinned_reg == regunit)
}
/// Calculate the index of the register inside the class.
pub fn index_of(&self, regunit: RegUnit) -> u16 {
assert!(
self.contains(regunit),
"the {} register class does not contain {}",
self.name,
regunit
);
regunit - self.first
}
}
impl fmt::Display for RegClassData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(self.name)
}
}
impl fmt::Debug for RegClassData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(self.name)
}
}
/// Within an ISA, register classes are uniquely identified by their index.
impl PartialEq for RegClassData {
fn eq(&self, other: &Self) -> bool {
self.index == other.index
}
}
/// A small reference to a register class.
///
/// Use this when storing register classes in compact data structures. The `RegInfo::rc()` method
/// can be used to get the real register class reference back.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct RegClassIndex(u8);
impl EntityRef for RegClassIndex {
fn new(idx: usize) -> Self {
Self(idx as u8)
}
fn index(self) -> usize {
usize::from(self.0)
}
}
impl From<RegClass> for RegClassIndex {
fn from(rc: RegClass) -> Self {
Self(rc.index)
}
}
impl fmt::Display for RegClassIndex {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "rci{}", self.0)
}
}
/// Test of two registers overlap.
///
/// A register is identified as a `(RegClass, RegUnit)` pair. The register class is needed to
/// determine the width (in regunits) of the register.
pub fn regs_overlap(rc1: RegClass, reg1: RegUnit, rc2: RegClass, reg2: RegUnit) -> bool {
let end1 = reg1 + RegUnit::from(rc1.width);
let end2 = reg2 + RegUnit::from(rc2.width);
!(end1 <= reg2 || end2 <= reg1)
}
/// Information about the registers in an ISA.
///
/// The `RegUnit` data structure collects all relevant static information about the registers in an
/// ISA.
#[derive(Clone)]
pub struct RegInfo {
/// All register banks, ordered by their `first_unit`. The register banks are disjoint, but
/// there may be holes of unused register unit numbers between banks due to alignment.
pub banks: &'static [RegBank],
/// All register classes ordered topologically so a sub-class always follows its parent.
pub classes: &'static [RegClass],
}
impl RegInfo {
/// Get the register bank holding `regunit`.
pub fn bank_containing_regunit(&self, regunit: RegUnit) -> Option<&RegBank> {
// We could do a binary search, but most ISAs have only two register banks...
self.banks.iter().find(|b| b.contains(regunit))
}
/// Try to parse a regunit name. The name is not expected to begin with `%`.
pub fn parse_regunit(&self, name: &str) -> Option<RegUnit> {
self.banks
.iter()
.filter_map(|b| b.parse_regunit(name))
.next()
}
/// Make a temporary object that can display a register unit.
pub fn display_regunit(&self, regunit: RegUnit) -> DisplayRegUnit {
DisplayRegUnit {
regunit,
reginfo: self,
}
}
/// Get the register class corresponding to `idx`.
pub fn rc(&self, idx: RegClassIndex) -> RegClass {
self.classes[idx.index()]
}
/// Get the top-level register class containing the `idx` class.
pub fn toprc(&self, idx: RegClassIndex) -> RegClass {
self.classes[self.rc(idx).toprc as usize]
}
}
/// Temporary object that holds enough information to print a register unit.
pub struct DisplayRegUnit<'a> {
regunit: RegUnit,
reginfo: &'a RegInfo,
}
impl<'a> fmt::Display for DisplayRegUnit<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.reginfo.bank_containing_regunit(self.regunit) {
Some(b) => b.write_regunit(f, self.regunit),
None => write!(f, "%INVALID{}", self.regunit),
}
}
}
#[test]
fn assert_sizes() {
use cranelift_codegen_shared::constants;
use std::mem::size_of;
// In these tests, size_of returns number of bytes: we actually want the number of bits, so
// multiply these by 8.
assert!(
(size_of::<RegClassMask>() * 8) <= constants::MAX_NUM_REG_CLASSES,
"need to bump MAX_NUM_REG_CLASSES or change RegClassMask type"
);
assert!(
constants::MAX_NUM_REG_CLASSES < (1 << (size_of::<RegClassIndex>() * 8)),
"need to change RegClassIndex's type to a wider type"
);
}