1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
//! This implements the VCode container: a CFG of Insts that have been lowered.
//!
//! VCode is virtual-register code. An instruction in VCode is almost a machine
//! instruction; however, its register slots can refer to virtual registers in
//! addition to real machine registers.
//!
//! VCode is structured with traditional basic blocks, and
//! each block must be terminated by an unconditional branch (one target), a
//! conditional branch (two targets), or a return (no targets). Note that this
//! slightly differs from the machine code of most ISAs: in most ISAs, a
//! conditional branch has one target (and the not-taken case falls through).
//! However, we expect that machine backends will elide branches to the following
//! block (i.e., zero-offset jumps), and will be able to codegen a branch-cond /
//! branch-uncond pair if *both* targets are not fallthrough. This allows us to
//! play with layout prior to final binary emission, as well, if we want.
//!
//! See the main module comment in `mod.rs` for more details on the VCode-based
//! backend pipeline.

use crate::ir::{self, types, Constant, ConstantData, SourceLoc};
use crate::machinst::*;
use crate::settings;
use crate::timing;

use regalloc::Function as RegallocFunction;
use regalloc::Set as RegallocSet;
use regalloc::{
    BlockIx, InstIx, PrettyPrint, Range, RegAllocResult, RegClass, RegUsageCollector,
    RegUsageMapper, SpillSlot, StackmapRequestInfo,
};

use alloc::boxed::Box;
use alloc::{borrow::Cow, vec::Vec};
use cranelift_entity::{entity_impl, Keys, PrimaryMap};
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt;
use std::iter;
use std::string::String;

/// Index referring to an instruction in VCode.
pub type InsnIndex = u32;
/// Index referring to a basic block in VCode.
pub type BlockIndex = u32;
/// Range of an instructions in VCode.
pub type InsnRange = core::ops::Range<InsnIndex>;

/// VCodeInst wraps all requirements for a MachInst to be in VCode: it must be
/// a `MachInst` and it must be able to emit itself at least to a `SizeCodeSink`.
pub trait VCodeInst: MachInst + MachInstEmit {}
impl<I: MachInst + MachInstEmit> VCodeInst for I {}

/// A function in "VCode" (virtualized-register code) form, after lowering.
/// This is essentially a standard CFG of basic blocks, where each basic block
/// consists of lowered instructions produced by the machine-specific backend.
pub struct VCode<I: VCodeInst> {
    /// Function liveins.
    liveins: RegallocSet<RealReg>,

    /// Function liveouts.
    liveouts: RegallocSet<RealReg>,

    /// VReg IR-level types.
    vreg_types: Vec<Type>,

    /// Do we have any ref values among our vregs?
    have_ref_values: bool,

    /// Lowered machine instructions in order corresponding to the original IR.
    insts: Vec<I>,

    /// Source locations for each instruction. (`SourceLoc` is a `u32`, so it is
    /// reasonable to keep one of these per instruction.)
    srclocs: Vec<SourceLoc>,

    /// Entry block.
    entry: BlockIndex,

    /// Block instruction indices.
    block_ranges: Vec<(InsnIndex, InsnIndex)>,

    /// Block successors: index range in the successor-list below.
    block_succ_range: Vec<(usize, usize)>,

    /// Block successor lists, concatenated into one Vec. The `block_succ_range`
    /// list of tuples above gives (start, end) ranges within this list that
    /// correspond to each basic block's successors.
    block_succs: Vec<BlockIx>,

    /// Block-order information.
    block_order: BlockLoweringOrder,

    /// ABI object.
    abi: Box<dyn ABICallee<I = I>>,

    /// Constant information used during code emission. This should be
    /// immutable across function compilations within the same module.
    emit_info: I::Info,

    /// Safepoint instruction indices. Filled in post-regalloc. (Prior to
    /// regalloc, the safepoint instructions are listed in the separate
    /// `StackmapRequestInfo` held separate from the `VCode`.)
    safepoint_insns: Vec<InsnIndex>,

    /// For each safepoint entry in `safepoint_insns`, a list of `SpillSlot`s.
    /// These are used to generate actual stack maps at emission. Filled in
    /// post-regalloc.
    safepoint_slots: Vec<Vec<SpillSlot>>,

    /// Ranges for prologue and epilogue instructions.
    prologue_epilogue_ranges: Option<(InsnRange, Box<[InsnRange]>)>,

    /// Instruction end offsets
    insts_layout: RefCell<(Vec<u32>, u32)>,

    /// Constants.
    constants: VCodeConstants,
}

/// A builder for a VCode function body. This builder is designed for the
/// lowering approach that we take: we traverse basic blocks in forward
/// (original IR) order, but within each basic block, we generate code from
/// bottom to top; and within each IR instruction that we visit in this reverse
/// order, we emit machine instructions in *forward* order again.
///
/// Hence, to produce the final instructions in proper order, we perform two
/// swaps.  First, the machine instructions (`I` instances) are produced in
/// forward order for an individual IR instruction. Then these are *reversed*
/// and concatenated to `bb_insns` at the end of the IR instruction lowering.
/// The `bb_insns` vec will thus contain all machine instructions for a basic
/// block, in reverse order. Finally, when we're done with a basic block, we
/// reverse the whole block's vec of instructions again, and concatenate onto
/// the VCode's insts.
pub struct VCodeBuilder<I: VCodeInst> {
    /// In-progress VCode.
    vcode: VCode<I>,

    /// In-progress stack map-request info.
    stack_map_info: StackmapRequestInfo,

    /// Index of the last block-start in the vcode.
    block_start: InsnIndex,

    /// Start of succs for the current block in the concatenated succs list.
    succ_start: usize,

    /// Current source location.
    cur_srcloc: SourceLoc,
}

impl<I: VCodeInst> VCodeBuilder<I> {
    /// Create a new VCodeBuilder.
    pub fn new(
        abi: Box<dyn ABICallee<I = I>>,
        emit_info: I::Info,
        block_order: BlockLoweringOrder,
        constants: VCodeConstants,
    ) -> VCodeBuilder<I> {
        let reftype_class = I::ref_type_regclass(abi.flags());
        let vcode = VCode::new(abi, emit_info, block_order, constants);
        let stack_map_info = StackmapRequestInfo {
            reftype_class,
            reftyped_vregs: vec![],
            safepoint_insns: vec![],
        };

        VCodeBuilder {
            vcode,
            stack_map_info,
            block_start: 0,
            succ_start: 0,
            cur_srcloc: SourceLoc::default(),
        }
    }

    /// Access the ABI object.
    pub fn abi(&mut self) -> &mut dyn ABICallee<I = I> {
        &mut *self.vcode.abi
    }

    /// Access to the BlockLoweringOrder object.
    pub fn block_order(&self) -> &BlockLoweringOrder {
        &self.vcode.block_order
    }

    /// Set the type of a VReg.
    pub fn set_vreg_type(&mut self, vreg: VirtualReg, ty: Type) {
        if self.vcode.vreg_types.len() <= vreg.get_index() {
            self.vcode
                .vreg_types
                .resize(vreg.get_index() + 1, ir::types::I8);
        }
        self.vcode.vreg_types[vreg.get_index()] = ty;
        if is_reftype(ty) {
            self.stack_map_info.reftyped_vregs.push(vreg);
            self.vcode.have_ref_values = true;
        }
    }

    /// Are there any reference-typed values at all among the vregs?
    pub fn have_ref_values(&self) -> bool {
        self.vcode.have_ref_values()
    }

    /// Set the current block as the entry block.
    pub fn set_entry(&mut self, block: BlockIndex) {
        self.vcode.entry = block;
    }

    /// End the current basic block. Must be called after emitting vcode insts
    /// for IR insts and prior to ending the function (building the VCode).
    pub fn end_bb(&mut self) {
        let start_idx = self.block_start;
        let end_idx = self.vcode.insts.len() as InsnIndex;
        self.block_start = end_idx;
        // Add the instruction index range to the list of blocks.
        self.vcode.block_ranges.push((start_idx, end_idx));
        // End the successors list.
        let succ_end = self.vcode.block_succs.len();
        self.vcode
            .block_succ_range
            .push((self.succ_start, succ_end));
        self.succ_start = succ_end;
    }

    /// Push an instruction for the current BB and current IR inst within the BB.
    pub fn push(&mut self, insn: I, is_safepoint: bool) {
        match insn.is_term() {
            MachTerminator::None | MachTerminator::Ret => {}
            MachTerminator::Uncond(target) => {
                self.vcode.block_succs.push(BlockIx::new(target.get()));
            }
            MachTerminator::Cond(true_branch, false_branch) => {
                self.vcode.block_succs.push(BlockIx::new(true_branch.get()));
                self.vcode
                    .block_succs
                    .push(BlockIx::new(false_branch.get()));
            }
            MachTerminator::Indirect(targets) => {
                for target in targets {
                    self.vcode.block_succs.push(BlockIx::new(target.get()));
                }
            }
        }
        self.vcode.insts.push(insn);
        self.vcode.srclocs.push(self.cur_srcloc);
        if is_safepoint {
            self.stack_map_info
                .safepoint_insns
                .push(InstIx::new((self.vcode.insts.len() - 1) as u32));
        }
    }

    /// Get the current source location.
    pub fn get_srcloc(&self) -> SourceLoc {
        self.cur_srcloc
    }

    /// Set the current source location.
    pub fn set_srcloc(&mut self, srcloc: SourceLoc) {
        self.cur_srcloc = srcloc;
    }

    /// Access the constants.
    pub fn constants(&mut self) -> &mut VCodeConstants {
        &mut self.vcode.constants
    }

    /// Build the final VCode, returning the vcode itself as well as auxiliary
    /// information, such as the stack map request information.
    pub fn build(self) -> (VCode<I>, StackmapRequestInfo) {
        // TODO: come up with an abstraction for "vcode and auxiliary data". The
        // auxiliary data needs to be separate from the vcode so that it can be
        // referenced as the vcode is mutated (e.g. by the register allocator).
        (self.vcode, self.stack_map_info)
    }
}

fn is_redundant_move<I: VCodeInst>(insn: &I) -> bool {
    if let Some((to, from)) = insn.is_move() {
        to.to_reg() == from
    } else {
        false
    }
}

/// Is this type a reference type?
fn is_reftype(ty: Type) -> bool {
    ty == types::R64 || ty == types::R32
}

impl<I: VCodeInst> VCode<I> {
    /// New empty VCode.
    fn new(
        abi: Box<dyn ABICallee<I = I>>,
        emit_info: I::Info,
        block_order: BlockLoweringOrder,
        constants: VCodeConstants,
    ) -> VCode<I> {
        VCode {
            liveins: abi.liveins(),
            liveouts: abi.liveouts(),
            vreg_types: vec![],
            have_ref_values: false,
            insts: vec![],
            srclocs: vec![],
            entry: 0,
            block_ranges: vec![],
            block_succ_range: vec![],
            block_succs: vec![],
            block_order,
            abi,
            emit_info,
            safepoint_insns: vec![],
            safepoint_slots: vec![],
            prologue_epilogue_ranges: None,
            insts_layout: RefCell::new((vec![], 0)),
            constants,
        }
    }

    /// Returns the flags controlling this function's compilation.
    pub fn flags(&self) -> &settings::Flags {
        self.abi.flags()
    }

    /// Get the IR-level type of a VReg.
    pub fn vreg_type(&self, vreg: VirtualReg) -> Type {
        self.vreg_types[vreg.get_index()]
    }

    /// Are there any reference-typed values at all among the vregs?
    pub fn have_ref_values(&self) -> bool {
        self.have_ref_values
    }

    /// Get the entry block.
    pub fn entry(&self) -> BlockIndex {
        self.entry
    }

    /// Get the number of blocks. Block indices will be in the range `0 ..
    /// (self.num_blocks() - 1)`.
    pub fn num_blocks(&self) -> usize {
        self.block_ranges.len()
    }

    /// Stack frame size for the full function's body.
    pub fn frame_size(&self) -> u32 {
        self.abi.frame_size()
    }

    /// Inbound stack-args size.
    pub fn stack_args_size(&self) -> u32 {
        self.abi.stack_args_size()
    }

    /// Get the successors for a block.
    pub fn succs(&self, block: BlockIndex) -> &[BlockIx] {
        let (start, end) = self.block_succ_range[block as usize];
        &self.block_succs[start..end]
    }

    /// Take the results of register allocation, with a sequence of
    /// instructions including spliced fill/reload/move instructions, and replace
    /// the VCode with them.
    pub fn replace_insns_from_regalloc(&mut self, result: RegAllocResult<Self>) {
        // Record the spillslot count and clobbered registers for the ABI/stack
        // setup code.
        self.abi.set_num_spillslots(result.num_spill_slots as usize);
        self.abi
            .set_clobbered(result.clobbered_registers.map(|r| Writable::from_reg(*r)));

        let mut final_insns = vec![];
        let mut final_block_ranges = vec![(0, 0); self.num_blocks()];
        let mut final_srclocs = vec![];
        let mut final_safepoint_insns = vec![];
        let mut safept_idx = 0;

        let mut prologue_start = None;
        let mut prologue_end = None;
        let mut epilogue_islands = vec![];

        assert!(result.target_map.elems().len() == self.num_blocks());
        for block in 0..self.num_blocks() {
            let start = result.target_map.elems()[block].get() as usize;
            let end = if block == self.num_blocks() - 1 {
                result.insns.len()
            } else {
                result.target_map.elems()[block + 1].get() as usize
            };
            let block = block as BlockIndex;
            let final_start = final_insns.len() as InsnIndex;

            if block == self.entry {
                prologue_start = Some(final_insns.len() as InsnIndex);
                // Start with the prologue.
                let prologue = self.abi.gen_prologue();
                let len = prologue.len();
                final_insns.extend(prologue.into_iter());
                final_srclocs.extend(iter::repeat(SourceLoc::default()).take(len));
                prologue_end = Some(final_insns.len() as InsnIndex);
            }

            for i in start..end {
                let insn = &result.insns[i];

                // Elide redundant moves at this point (we only know what is
                // redundant once registers are allocated).
                if is_redundant_move(insn) {
                    continue;
                }

                // Is there a srcloc associated with this insn? Look it up based on original
                // instruction index (if new insn corresponds to some original insn, i.e., is not
                // an inserted load/spill/move).
                let orig_iix = result.orig_insn_map[InstIx::new(i as u32)];
                let srcloc = if orig_iix.is_invalid() {
                    SourceLoc::default()
                } else {
                    self.srclocs[orig_iix.get() as usize]
                };

                // Whenever encountering a return instruction, replace it
                // with the epilogue.
                let is_ret = insn.is_term() == MachTerminator::Ret;
                if is_ret {
                    let epilogue_start = final_insns.len() as InsnIndex;
                    let epilogue = self.abi.gen_epilogue();
                    let len = epilogue.len();
                    final_insns.extend(epilogue.into_iter());
                    final_srclocs.extend(iter::repeat(srcloc).take(len));
                    epilogue_islands.push(epilogue_start..final_insns.len() as InsnIndex);
                } else {
                    final_insns.push(insn.clone());
                    final_srclocs.push(srcloc);
                }

                // Was this instruction a safepoint instruction? Add its final
                // index to the safepoint insn-index list if so.
                if safept_idx < result.new_safepoint_insns.len()
                    && (result.new_safepoint_insns[safept_idx].get() as usize) == i
                {
                    let idx = final_insns.len() - 1;
                    final_safepoint_insns.push(idx as InsnIndex);
                    safept_idx += 1;
                }
            }

            let final_end = final_insns.len() as InsnIndex;
            final_block_ranges[block as usize] = (final_start, final_end);
        }

        debug_assert!(final_insns.len() == final_srclocs.len());

        self.insts = final_insns;
        self.srclocs = final_srclocs;
        self.block_ranges = final_block_ranges;
        self.safepoint_insns = final_safepoint_insns;

        // Save safepoint slot-lists. These will be passed to the `EmitState`
        // for the machine backend during emission so that it can do
        // target-specific translations of slot numbers to stack offsets.
        self.safepoint_slots = result.stackmaps;

        self.prologue_epilogue_ranges = Some((
            prologue_start.unwrap()..prologue_end.unwrap(),
            epilogue_islands.into_boxed_slice(),
        ));
    }

    /// Emit the instructions to a `MachBuffer`, containing fixed-up code and external
    /// reloc/trap/etc. records ready for use.
    pub fn emit(&self) -> MachBuffer<I>
    where
        I: MachInstEmit,
    {
        let _tt = timing::vcode_emit();
        let mut buffer = MachBuffer::new();
        let mut state = I::State::new(&*self.abi);

        // The first M MachLabels are reserved for block indices, the next N MachLabels for
        // constants.
        buffer.reserve_labels_for_blocks(self.num_blocks() as BlockIndex);
        buffer.reserve_labels_for_constants(&self.constants);

        let mut insts_layout = vec![0; self.insts.len()];

        let mut safepoint_idx = 0;
        let mut cur_srcloc = None;
        for block in 0..self.num_blocks() {
            let block = block as BlockIndex;
            let new_offset = I::align_basic_block(buffer.cur_offset());
            while new_offset > buffer.cur_offset() {
                // Pad with NOPs up to the aligned block offset.
                let nop = I::gen_nop((new_offset - buffer.cur_offset()) as usize);
                nop.emit(&mut buffer, &self.emit_info, &mut Default::default());
            }
            assert_eq!(buffer.cur_offset(), new_offset);

            let (start, end) = self.block_ranges[block as usize];
            buffer.bind_label(MachLabel::from_block(block));
            for iix in start..end {
                let srcloc = self.srclocs[iix as usize];
                if cur_srcloc != Some(srcloc) {
                    if cur_srcloc.is_some() {
                        buffer.end_srcloc();
                    }
                    buffer.start_srcloc(srcloc);
                    cur_srcloc = Some(srcloc);
                }
                state.pre_sourceloc(cur_srcloc.unwrap_or(SourceLoc::default()));

                if safepoint_idx < self.safepoint_insns.len()
                    && self.safepoint_insns[safepoint_idx] == iix
                {
                    if self.safepoint_slots[safepoint_idx].len() > 0 {
                        let stack_map = self.abi.spillslots_to_stack_map(
                            &self.safepoint_slots[safepoint_idx][..],
                            &state,
                        );
                        state.pre_safepoint(stack_map);
                    }
                    safepoint_idx += 1;
                }

                self.insts[iix as usize].emit(&mut buffer, &self.emit_info, &mut state);

                insts_layout[iix as usize] = buffer.cur_offset();
            }

            if cur_srcloc.is_some() {
                buffer.end_srcloc();
                cur_srcloc = None;
            }

            // Do we need an island? Get the worst-case size of the next BB and see if, having
            // emitted that many bytes, we will be beyond the deadline.
            if block < (self.num_blocks() - 1) as BlockIndex {
                let next_block = block + 1;
                let next_block_range = self.block_ranges[next_block as usize];
                let next_block_size = next_block_range.1 - next_block_range.0;
                let worst_case_next_bb = I::worst_case_size() * next_block_size;
                if buffer.island_needed(worst_case_next_bb) {
                    buffer.emit_island();
                }
            }
        }

        // Emit the constants used by the function.
        for (constant, data) in self.constants.iter() {
            let label = buffer.get_label_for_constant(constant);
            buffer.defer_constant(label, data.alignment(), data.as_slice(), u32::max_value());
        }

        *self.insts_layout.borrow_mut() = (insts_layout, buffer.cur_offset());

        buffer
    }

    /// Generates unwind info.
    pub fn unwind_info(
        &self,
    ) -> crate::result::CodegenResult<Option<crate::isa::unwind::input::UnwindInfo<Reg>>> {
        let layout = &self.insts_layout.borrow();
        let (prologue, epilogues) = self.prologue_epilogue_ranges.as_ref().unwrap();
        let context = UnwindInfoContext {
            insts: &self.insts,
            insts_layout: &layout.0,
            len: layout.1,
            prologue: prologue.clone(),
            epilogues,
        };
        I::UnwindInfo::create_unwind_info(context)
    }

    /// Get the IR block for a BlockIndex, if one exists.
    pub fn bindex_to_bb(&self, block: BlockIndex) -> Option<ir::Block> {
        self.block_order.lowered_order()[block as usize].orig_block()
    }
}

impl<I: VCodeInst> RegallocFunction for VCode<I> {
    type Inst = I;

    fn insns(&self) -> &[I] {
        &self.insts[..]
    }

    fn insns_mut(&mut self) -> &mut [I] {
        &mut self.insts[..]
    }

    fn get_insn(&self, insn: InstIx) -> &I {
        &self.insts[insn.get() as usize]
    }

    fn get_insn_mut(&mut self, insn: InstIx) -> &mut I {
        &mut self.insts[insn.get() as usize]
    }

    fn blocks(&self) -> Range<BlockIx> {
        Range::new(BlockIx::new(0), self.block_ranges.len())
    }

    fn entry_block(&self) -> BlockIx {
        BlockIx::new(self.entry)
    }

    fn block_insns(&self, block: BlockIx) -> Range<InstIx> {
        let (start, end) = self.block_ranges[block.get() as usize];
        Range::new(InstIx::new(start), (end - start) as usize)
    }

    fn block_succs(&self, block: BlockIx) -> Cow<[BlockIx]> {
        let (start, end) = self.block_succ_range[block.get() as usize];
        Cow::Borrowed(&self.block_succs[start..end])
    }

    fn is_ret(&self, insn: InstIx) -> bool {
        match self.insts[insn.get() as usize].is_term() {
            MachTerminator::Ret => true,
            _ => false,
        }
    }

    fn is_included_in_clobbers(&self, insn: &I) -> bool {
        insn.is_included_in_clobbers()
    }

    fn get_regs(insn: &I, collector: &mut RegUsageCollector) {
        insn.get_regs(collector)
    }

    fn map_regs<RUM: RegUsageMapper>(insn: &mut I, mapper: &RUM) {
        insn.map_regs(mapper);
    }

    fn is_move(&self, insn: &I) -> Option<(Writable<Reg>, Reg)> {
        insn.is_move()
    }

    fn get_num_vregs(&self) -> usize {
        self.vreg_types.len()
    }

    fn get_spillslot_size(&self, regclass: RegClass, vreg: VirtualReg) -> u32 {
        let ty = self.vreg_type(vreg);
        self.abi.get_spillslot_size(regclass, ty)
    }

    fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg, vreg: Option<VirtualReg>) -> I {
        let ty = vreg.map(|v| self.vreg_type(v));
        self.abi.gen_spill(to_slot, from_reg, ty)
    }

    fn gen_reload(
        &self,
        to_reg: Writable<RealReg>,
        from_slot: SpillSlot,
        vreg: Option<VirtualReg>,
    ) -> I {
        let ty = vreg.map(|v| self.vreg_type(v));
        self.abi.gen_reload(to_reg, from_slot, ty)
    }

    fn gen_move(&self, to_reg: Writable<RealReg>, from_reg: RealReg, vreg: VirtualReg) -> I {
        let ty = self.vreg_type(vreg);
        I::gen_move(to_reg.map(|r| r.to_reg()), from_reg.to_reg(), ty)
    }

    fn gen_zero_len_nop(&self) -> I {
        I::gen_zero_len_nop()
    }

    fn maybe_direct_reload(&self, insn: &I, reg: VirtualReg, slot: SpillSlot) -> Option<I> {
        insn.maybe_direct_reload(reg, slot)
    }

    fn func_liveins(&self) -> RegallocSet<RealReg> {
        self.liveins.clone()
    }

    fn func_liveouts(&self) -> RegallocSet<RealReg> {
        self.liveouts.clone()
    }
}

impl<I: VCodeInst> fmt::Debug for VCode<I> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeln!(f, "VCode_Debug {{")?;
        writeln!(f, "  Entry block: {}", self.entry)?;

        for block in 0..self.num_blocks() {
            writeln!(f, "Block {}:", block,)?;
            for succ in self.succs(block as BlockIndex) {
                writeln!(f, "  (successor: Block {})", succ.get())?;
            }
            let (start, end) = self.block_ranges[block];
            writeln!(f, "  (instruction range: {} .. {})", start, end)?;
            for inst in start..end {
                writeln!(f, "  Inst {}: {:?}", inst, self.insts[inst as usize])?;
            }
        }

        writeln!(f, "}}")?;
        Ok(())
    }
}

/// Pretty-printing with `RealRegUniverse` context.
impl<I: VCodeInst> PrettyPrint for VCode<I> {
    fn show_rru(&self, mb_rru: Option<&RealRegUniverse>) -> String {
        use std::fmt::Write;

        let mut s = String::new();
        write!(&mut s, "VCode_ShowWithRRU {{{{\n").unwrap();
        write!(&mut s, "  Entry block: {}\n", self.entry).unwrap();

        let mut state = Default::default();
        let mut safepoint_idx = 0;
        for i in 0..self.num_blocks() {
            let block = i as BlockIndex;

            write!(&mut s, "Block {}:\n", block).unwrap();
            if let Some(bb) = self.bindex_to_bb(block) {
                write!(&mut s, "  (original IR block: {})\n", bb).unwrap();
            }
            for succ in self.succs(block) {
                write!(&mut s, "  (successor: Block {})\n", succ.get()).unwrap();
            }
            let (start, end) = self.block_ranges[block as usize];
            write!(&mut s, "  (instruction range: {} .. {})\n", start, end).unwrap();
            for inst in start..end {
                if safepoint_idx < self.safepoint_insns.len()
                    && self.safepoint_insns[safepoint_idx] == inst
                {
                    write!(
                        &mut s,
                        "      (safepoint: slots {:?} with EmitState {:?})\n",
                        self.safepoint_slots[safepoint_idx], state,
                    )
                    .unwrap();
                    safepoint_idx += 1;
                }
                write!(
                    &mut s,
                    "  Inst {}:   {}\n",
                    inst,
                    self.insts[inst as usize].pretty_print(mb_rru, &mut state)
                )
                .unwrap();
            }
        }

        write!(&mut s, "}}}}\n").unwrap();

        s
    }
}

/// This structure tracks the large constants used in VCode that will be emitted separately by the
/// [MachBuffer].
///
/// First, during the lowering phase, constants are inserted using
/// [VCodeConstants.insert]; an intermediate handle, [VCodeConstant], tracks what constants are
/// used in this phase. Some deduplication is performed, when possible, as constant
/// values are inserted.
///
/// Secondly, during the emission phase, the [MachBuffer] assigns [MachLabel]s for each of the
/// constants so that instructions can refer to the value's memory location. The [MachBuffer]
/// then writes the constant values to the buffer.
#[derive(Default)]
pub struct VCodeConstants {
    constants: PrimaryMap<VCodeConstant, VCodeConstantData>,
    pool_uses: HashMap<Constant, VCodeConstant>,
    well_known_uses: HashMap<*const [u8], VCodeConstant>,
}
impl VCodeConstants {
    /// Initialize the structure with the expected number of constants.
    pub fn with_capacity(expected_num_constants: usize) -> Self {
        Self {
            constants: PrimaryMap::with_capacity(expected_num_constants),
            pool_uses: HashMap::with_capacity(expected_num_constants),
            well_known_uses: HashMap::new(),
        }
    }

    /// Insert a constant; using this method indicates that a constant value will be used and thus
    /// will be emitted to the `MachBuffer`. The current implementation can deduplicate constants
    /// that are [VCodeConstantData::Pool] or [VCodeConstantData::WellKnown] but not
    /// [VCodeConstantData::Generated].
    pub fn insert(&mut self, data: VCodeConstantData) -> VCodeConstant {
        match data {
            VCodeConstantData::Generated(_) => self.constants.push(data),
            VCodeConstantData::Pool(constant, _) => match self.pool_uses.get(&constant) {
                None => {
                    let vcode_constant = self.constants.push(data);
                    self.pool_uses.insert(constant, vcode_constant);
                    vcode_constant
                }
                Some(&vcode_constant) => vcode_constant,
            },
            VCodeConstantData::WellKnown(data_ref) => {
                match self.well_known_uses.get(&(data_ref as *const [u8])) {
                    None => {
                        let vcode_constant = self.constants.push(data);
                        self.well_known_uses
                            .insert(data_ref as *const [u8], vcode_constant);
                        vcode_constant
                    }
                    Some(&vcode_constant) => vcode_constant,
                }
            }
        }
    }

    /// Retrieve a byte slice for the given [VCodeConstant], if available.
    pub fn get(&self, constant: VCodeConstant) -> Option<&[u8]> {
        self.constants.get(constant).map(|d| d.as_slice())
    }

    /// Return the number of constants inserted.
    pub fn len(&self) -> usize {
        self.constants.len()
    }

    /// Iterate over the [VCodeConstant] keys inserted in this structure.
    pub fn keys(&self) -> Keys<VCodeConstant> {
        self.constants.keys()
    }

    /// Iterate over the [VCodeConstant] keys and the data (as a byte slice) inserted in this
    /// structure.
    pub fn iter(&self) -> impl Iterator<Item = (VCodeConstant, &VCodeConstantData)> {
        self.constants.iter()
    }
}

/// A use of a constant by one or more VCode instructions; see [VCodeConstants].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct VCodeConstant(u32);
entity_impl!(VCodeConstant);

/// Identify the different types of constant that can be inserted into [VCodeConstants]. Tracking
/// these separately instead of as raw byte buffers allows us to avoid some duplication.
pub enum VCodeConstantData {
    /// A constant already present in the Cranelift IR
    /// [ConstantPool](crate::ir::constant::ConstantPool).
    Pool(Constant, ConstantData),
    /// A reference to a well-known constant value that is statically encoded within the compiler.
    WellKnown(&'static [u8]),
    /// A constant value generated during lowering; the value may depend on the instruction context
    /// which makes it difficult to de-duplicate--if possible, use other variants.
    Generated(ConstantData),
}
impl VCodeConstantData {
    /// Retrieve the constant data as a byte slice.
    pub fn as_slice(&self) -> &[u8] {
        match self {
            VCodeConstantData::Pool(_, d) | VCodeConstantData::Generated(d) => d.as_slice(),
            VCodeConstantData::WellKnown(d) => d,
        }
    }

    /// Calculate the alignment of the constant data.
    pub fn alignment(&self) -> u32 {
        if self.as_slice().len() <= 8 {
            8
        } else {
            16
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::mem::size_of;

    #[test]
    fn size_of_constant_structs() {
        assert_eq!(size_of::<Constant>(), 4);
        assert_eq!(size_of::<VCodeConstant>(), 4);
        assert_eq!(size_of::<ConstantData>(), 24);
        assert_eq!(size_of::<VCodeConstantData>(), 32);
        assert_eq!(
            size_of::<PrimaryMap<VCodeConstant, VCodeConstantData>>(),
            24
        );
        // TODO The VCodeConstants structure's memory size could be further optimized.
        // With certain versions of Rust, each `HashMap` in `VCodeConstants` occupied at
        // least 48 bytes, making an empty `VCodeConstants` cost 120 bytes.
    }
}