1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! This crate provides the [`RwStreamSink`] type. It wraps around a [`Stream`]
//! and [`Sink`] that produces and accepts byte arrays, and implements
//! [`AsyncRead`] and [`AsyncWrite`].
//!
//! Each call to [`AsyncWrite::poll_write`] will send one packet to the sink.
//! Calls to [`AsyncRead::read`] will read from the stream's incoming packets.

use futures::{prelude::*, ready};
use std::{io::{self, Read}, pin::Pin, task::{Context, Poll}};

static_assertions::const_assert!(std::mem::size_of::<usize>() <= std::mem::size_of::<u64>());

/// Wraps a [`Stream`] and [`Sink`] whose items are buffers.
/// Implements [`AsyncRead`] and [`AsyncWrite`].
#[pin_project::pin_project]
pub struct RwStreamSink<S: TryStream> {
    #[pin]
    inner: S,
    current_item: Option<std::io::Cursor<<S as TryStream>::Ok>>
}

impl<S: TryStream> RwStreamSink<S> {
    /// Wraps around `inner`.
    pub fn new(inner: S) -> Self {
        RwStreamSink { inner, current_item: None }
    }
}

impl<S> AsyncRead for RwStreamSink<S>
where
    S: TryStream<Error = io::Error>,
    <S as TryStream>::Ok: AsRef<[u8]>
{
    fn poll_read(self: Pin<&mut Self>, cx: &mut Context, buf: &mut [u8]) -> Poll<io::Result<usize>> {
        let mut this = self.project();

        // Grab the item to copy from.
        let item_to_copy = loop {
            if let Some(ref mut i) = this.current_item {
                if i.position() < i.get_ref().as_ref().len() as u64 {
                    break i
                }
            }
            *this.current_item = Some(match ready!(this.inner.as_mut().try_poll_next(cx)) {
                Some(Ok(i)) => std::io::Cursor::new(i),
                Some(Err(e)) => return Poll::Ready(Err(e)),
                None => return Poll::Ready(Ok(0)) // EOF
            });
        };

        // Copy it!
        Poll::Ready(Ok(item_to_copy.read(buf)?))
    }
}

impl<S> AsyncWrite for RwStreamSink<S>
where
    S: TryStream + Sink<<S as TryStream>::Ok, Error = io::Error>,
    <S as TryStream>::Ok: for<'r> From<&'r [u8]>
{
    fn poll_write(self: Pin<&mut Self>, cx: &mut Context, buf: &[u8]) -> Poll<io::Result<usize>> {
        let mut this = self.project();
        ready!(this.inner.as_mut().poll_ready(cx)?);
        let n = buf.len();
        if let Err(e) = this.inner.start_send(buf.into()) {
            return Poll::Ready(Err(e))
        }
        Poll::Ready(Ok(n))
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context) -> Poll<io::Result<()>> {
        let this = self.project();
        this.inner.poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context) -> Poll<io::Result<()>> {
        let this = self.project();
        this.inner.poll_close(cx)
    }
}

#[cfg(test)]
mod tests {
    use async_std::task;
    use futures::{channel::mpsc, prelude::*, stream};
    use std::{pin::Pin, task::{Context, Poll}};
    use super::RwStreamSink;

    // This struct merges a stream and a sink and is quite useful for tests.
    struct Wrapper<St, Si>(St, Si);

    impl<St, Si> Stream for Wrapper<St, Si>
    where
        St: Stream + Unpin,
        Si: Unpin
    {
        type Item = St::Item;

        fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<Self::Item>> {
            self.0.poll_next_unpin(cx)
        }
    }

    impl<St, Si, T> Sink<T> for Wrapper<St, Si>
    where
        St: Unpin,
        Si: Sink<T> + Unpin,
    {
        type Error = Si::Error;

        fn poll_ready(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
            Pin::new(&mut self.1).poll_ready(cx)
        }

        fn start_send(mut self: Pin<&mut Self>, item: T) -> Result<(), Self::Error> {
            Pin::new(&mut self.1).start_send(item)
        }

        fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
            Pin::new(&mut self.1).poll_flush(cx)
        }

        fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
            Pin::new(&mut self.1).poll_close(cx)
        }
    }

    #[test]
    fn basic_reading() {
        let (tx1, _) = mpsc::channel::<Vec<u8>>(10);
        let (mut tx2, rx2) = mpsc::channel(10);

        let mut wrapper = RwStreamSink::new(Wrapper(rx2.map(Ok), tx1));

        task::block_on(async move {
            tx2.send(Vec::from("hel")).await.unwrap();
            tx2.send(Vec::from("lo wor")).await.unwrap();
            tx2.send(Vec::from("ld")).await.unwrap();
            tx2.close().await.unwrap();

            let mut data = Vec::new();
            wrapper.read_to_end(&mut data).await.unwrap();
            assert_eq!(data, b"hello world");
        })
    }

    #[test]
    fn skip_empty_stream_items() {
        let data: Vec<&[u8]> = vec![b"", b"foo", b"", b"bar", b"", b"baz", b""];
        let mut rws = RwStreamSink::new(stream::iter(data).map(Ok));
        let mut buf = [0; 9];
        task::block_on(async move {
            assert_eq!(3, rws.read(&mut buf).await.unwrap());
            assert_eq!(3, rws.read(&mut buf[3..]).await.unwrap());
            assert_eq!(3, rws.read(&mut buf[6..]).await.unwrap());
            assert_eq!(0, rws.read(&mut buf).await.unwrap());
            assert_eq!(b"foobarbaz", &buf[..])
        })
    }

    #[test]
    fn partial_read() {
        let data: Vec<&[u8]> = vec![b"hell", b"o world"];
        let mut rws = RwStreamSink::new(stream::iter(data).map(Ok));
        let mut buf = [0; 3];
        task::block_on(async move {
            assert_eq!(3, rws.read(&mut buf).await.unwrap());
            assert_eq!(b"hel", &buf[..3]);
            assert_eq!(0, rws.read(&mut buf[..0]).await.unwrap());
            assert_eq!(1, rws.read(&mut buf).await.unwrap());
            assert_eq!(b"l", &buf[..1]);
            assert_eq!(3, rws.read(&mut buf).await.unwrap());
            assert_eq!(b"o w", &buf[..3]);
            assert_eq!(0, rws.read(&mut buf[..0]).await.unwrap());
            assert_eq!(3, rws.read(&mut buf).await.unwrap());
            assert_eq!(b"orl", &buf[..3]);
            assert_eq!(1, rws.read(&mut buf).await.unwrap());
            assert_eq!(b"d", &buf[..1]);
            assert_eq!(0, rws.read(&mut buf).await.unwrap());
        })
    }
}