1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! Secp256k1 keys.

use asn1_der::{FromDerObject, DerObject};
use rand::RngCore;
use sha2::{Digest as ShaDigestTrait, Sha256};
use secp256k1::{Message, Signature};
use super::error::{DecodingError, SigningError};
use zeroize::Zeroize;
use core::fmt;

/// A Secp256k1 keypair.
#[derive(Clone)]
pub struct Keypair {
    secret: SecretKey,
    public: PublicKey
}

impl Keypair {
    /// Generate a new sec256k1 `Keypair`.
    pub fn generate() -> Keypair {
        Keypair::from(SecretKey::generate())
    }

    /// Get the public key of this keypair.
    pub fn public(&self) -> &PublicKey {
        &self.public
    }

    /// Get the secret key of this keypair.
    pub fn secret(&self) -> &SecretKey {
        &self.secret
    }
}

impl fmt::Debug for Keypair {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Keypair").field("public", &self.public).finish()
    }
}

/// Promote a Secp256k1 secret key into a keypair.
impl From<SecretKey> for Keypair {
    fn from(secret: SecretKey) -> Keypair {
        let public = PublicKey(secp256k1::PublicKey::from_secret_key(&secret.0));
        Keypair { secret, public }
    }
}

/// Demote a Secp256k1 keypair into a secret key.
impl From<Keypair> for SecretKey {
    fn from(kp: Keypair) -> SecretKey {
        kp.secret
    }
}

/// A Secp256k1 secret key.
#[derive(Clone)]
pub struct SecretKey(secp256k1::SecretKey);

impl fmt::Debug for SecretKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "SecretKey")
    }
}

impl SecretKey {
    /// Generate a new Secp256k1 secret key.
    pub fn generate() -> SecretKey {
        let mut r = rand::thread_rng();
        let mut b = [0; secp256k1::util::SECRET_KEY_SIZE];
        // This is how it is done in `secp256k1::SecretKey::random` which
        // we do not use here because it uses `rand::Rng` from rand-0.4.
        loop {
            r.fill_bytes(&mut b);
            if let Ok(k) = secp256k1::SecretKey::parse(&b) {
                return SecretKey(k)
            }
        }
    }

    /// Create a secret key from a byte slice, zeroing the slice on success.
    /// If the bytes do not constitute a valid Secp256k1 secret key, an
    /// error is returned.
    pub fn from_bytes(mut sk: impl AsMut<[u8]>) -> Result<SecretKey, DecodingError> {
        let sk_bytes = sk.as_mut();
        let secret = secp256k1::SecretKey::parse_slice(&*sk_bytes)
            .map_err(|_| DecodingError::new("failed to parse secp256k1 secret key"))?;
        sk_bytes.zeroize();
        Ok(SecretKey(secret))
    }

    /// Decode a DER-encoded Secp256k1 secret key in an ECPrivateKey
    /// structure as defined in [RFC5915].
    ///
    /// [RFC5915]: https://tools.ietf.org/html/rfc5915
    pub fn from_der(mut der: impl AsMut<[u8]>) -> Result<SecretKey, DecodingError> {
        // TODO: Stricter parsing.
        let der_obj = der.as_mut();
        let obj: Vec<DerObject> = FromDerObject::deserialize((&*der_obj).iter())
            .map_err(|e| DecodingError::new("Secp256k1 DER ECPrivateKey").source(e))?;
        der_obj.zeroize();
        let sk_obj = obj.into_iter().nth(1)
            .ok_or_else(|| DecodingError::new("Not enough elements in DER"))?;
        let mut sk_bytes: Vec<u8> = FromDerObject::from_der_object(sk_obj)
            .map_err(DecodingError::new)?;
        let sk = SecretKey::from_bytes(&mut sk_bytes)?;
        sk_bytes.zeroize();
        Ok(sk)
    }

    /// Sign a message with this secret key, producing a DER-encoded
    /// ECDSA signature, as defined in [RFC3278].
    ///
    /// [RFC3278]: https://tools.ietf.org/html/rfc3278#section-8.2
    pub fn sign(&self, msg: &[u8]) -> Result<Vec<u8>, SigningError> {
        self.sign_hash(Sha256::digest(msg).as_ref())
    }

    /// Returns the raw bytes of the secret key.
    pub fn to_bytes(&self) -> [u8; 32] {
        self.0.serialize()
    }

    /// Sign a raw message of length 256 bits with this secret key, produces a DER-encoded
    /// ECDSA signature.
    pub fn sign_hash(&self, msg: &[u8]) -> Result<Vec<u8>, SigningError> {
        let m = Message::parse_slice(msg)
            .map_err(|_| SigningError::new("failed to parse secp256k1 digest"))?;
        Ok(secp256k1::sign(&m, &self.0).0.serialize_der().as_ref().into())
    }
}

/// A Secp256k1 public key.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct PublicKey(secp256k1::PublicKey);

impl PublicKey {
    /// Verify the Secp256k1 signature on a message using the public key.
    pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
        self.verify_hash(Sha256::digest(msg).as_ref(), sig)
    }

    /// Verify the Secp256k1 DER-encoded signature on a raw 256-bit message using the public key.
    pub fn verify_hash(&self, msg: &[u8], sig: &[u8]) -> bool {
        Message::parse_slice(msg)
            .and_then(|m| Signature::parse_der(sig).map(|s| secp256k1::verify(&m, &s, &self.0)))
            .unwrap_or(false)
    }

    /// Encode the public key in compressed form, i.e. with one coordinate
    /// represented by a single bit.
    pub fn encode(&self) -> [u8; 33] {
        self.0.serialize_compressed()
    }

    /// Encode the public key in uncompressed form.
    pub fn encode_uncompressed(&self) -> [u8; 65] {
        self.0.serialize()
    }

    /// Decode a public key from a byte slice in the the format produced
    /// by `encode`.
    pub fn decode(k: &[u8]) -> Result<PublicKey, DecodingError> {
        secp256k1::PublicKey::parse_slice(k, Some(secp256k1::PublicKeyFormat::Compressed))
            .map_err(|_| DecodingError::new("failed to parse secp256k1 public key"))
            .map(PublicKey)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn secp256k1_secret_from_bytes() {
        let sk1 = SecretKey::generate();
        let mut sk_bytes = [0; 32];
        sk_bytes.copy_from_slice(&sk1.0.serialize()[..]);
        let sk2 = SecretKey::from_bytes(&mut sk_bytes).unwrap();
        assert_eq!(sk1.0.serialize(), sk2.0.serialize());
        assert_eq!(sk_bytes, [0; 32]);
    }
}