1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// This file is part of Substrate.

// Copyright (C) 2017-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Proc macro of Support code for the runtime.

#![recursion_limit="512"]

mod storage;
mod construct_runtime;
mod pallet;
mod pallet_version;
mod transactional;
mod debug_no_bound;
mod clone_no_bound;
mod partial_eq_no_bound;

pub(crate) use storage::INHERENT_INSTANCE_NAME;
use proc_macro::TokenStream;

/// Declares strongly-typed wrappers around codec-compatible types in storage.
///
/// ## Example
///
/// ```nocompile
/// decl_storage! {
/// 	trait Store for Module<T: Config> as Example {
/// 		Foo get(fn foo) config(): u32=12;
/// 		Bar: map hasher(identity) u32 => u32;
/// 		pub Zed build(|config| vec![(0, 0)]): map hasher(identity) u32 => u32;
/// 	}
/// }
/// ```
///
/// Declaration is set with the header `(pub) trait Store for Module<T: Config> as Example`,
/// with `Store` a (pub) trait generated associating each storage item to the `Module` and
/// `as Example` setting the prefix used for storage items of this module. `Example` must be unique:
/// another module with the same name and the same inner storage item name will conflict.
/// `Example` is called the module prefix.
///
/// note: For instantiable modules the module prefix is prepended with instance
/// prefix. Instance prefix is "" for default instance and "Instance$n" for instance number $n.
/// Thus, instance 3 of module Example has a module prefix of `Instance3Example`
///
/// Basic storage consists of a name and a type; supported types are:
///
/// * Value: `Foo: type`: Implements the
///   [`StorageValue`](../frame_support/storage/trait.StorageValue.html) trait using the
///   [`StorageValue generator`](../frame_support/storage/generator/trait.StorageValue.html).
///
///   The generator is implemented with:
///   * `module_prefix`: module_prefix
///   * `storage_prefix`: storage_name
///
///   Thus the storage value is finally stored at:
///   ```nocompile
///   Twox128(module_prefix) ++ Twox128(storage_prefix)
///   ```
///
/// * Map: `Foo: map hasher($hash) type => type`: Implements the
///   [`StorageMap`](../frame_support/storage/trait.StorageMap.html) trait using the
///   [`StorageMap generator`](../frame_support/storage/generator/trait.StorageMap.html).
///   And [`StoragePrefixedMap`](../frame_support/storage/trait.StoragePrefixedMap.html).
///
///   `$hash` representing a choice of hashing algorithms available in the
///   [`Hashable`](../frame_support/trait.Hashable.html) trait. You will generally want to use one
///   of three hashers:
///   * `blake2_128_concat`: The default, safe choice. Use if you are unsure or don't care. It is
///     secure against user-tainted keys, fairly fast and memory-efficient and supports
///     iteration over its keys and values. This must be used if the keys of your map can be
///     selected *en masse* by untrusted users.
///   * `twox_64_concat`: This is an insecure hasher and can only be used safely if you know that
///     the preimages cannot be chosen at will by untrusted users. It is memory-efficient, extremely
///     performant and supports iteration over its keys and values. You can safely use this is the
///     key is:
///     - A (slowly) incrementing index.
///     - Known to be the result of a cryptographic hash (though `identity` is a better choice here).
///     - Known to be the public key of a cryptographic key pair in existence.
///   * `identity`: This is not a hasher at all, and just uses the key material directly. Since it
///     does no hashing or appending, it's the fastest possible hasher, however, it's also the least
///     secure. It can be used only if you know that the key will be cryptographically/securely
///     randomly distributed over the binary encoding space. In most cases this will not be true.
///     One case where it is true, however, if where the key is itself the result of a cryptographic
///     hash of some existent data.
///
///   Other hashers will tend to be "opaque" and not support iteration over the keys in the
///   map. It is not recommended to use these.
///
///   The generator is implemented with:
///   * `module_prefix`: $module_prefix
///   * `storage_prefix`: storage_name
///   * `Hasher`: $hash
///
///   Thus the keys are stored at:
///   ```nocompile
///   twox128(module_prefix) ++ twox128(storage_prefix) ++ hasher(encode(key))
///   ```
///
/// * Double map: `Foo: double_map hasher($hash1) u32, hasher($hash2) u32 => u32`: Implements the
///   [`StorageDoubleMap`](../frame_support/storage/trait.StorageDoubleMap.html) trait using the
///   [`StorageDoubleMap generator`](../frame_support/storage/generator/trait.StorageDoubleMap.html).
///   And [`StoragePrefixedMap`](../frame_support/storage/trait.StoragePrefixedMap.html).
///
///   `$hash1` and `$hash2` representing choices of hashing algorithms available in the
///   [`Hashable`](../frame_support/trait.Hashable.html) trait. They must be chosen with care, see
///   generator documentation.
///
///   The generator is implemented with:
///   * `module_prefix`: $module_prefix
///   * `storage_prefix`: storage_name
///   * `Hasher1`: $hash1
///   * `Hasher2`: $hash2
///
///   Thus keys are stored at:
///   ```nocompile
///   Twox128(module_prefix) ++ Twox128(storage_prefix) ++ Hasher1(encode(key1)) ++ Hasher2(encode(key2))
///   ```
///
/// Supported hashers (ordered from least to best security):
///
/// * `identity` - Just the unrefined key material. Use only when it is known to be a secure hash
///   already. The most efficient and iterable over keys.
/// * `twox_64_concat` - TwoX with 64bit + key concatenated. Use only when an untrusted source
///   cannot select and insert key values. Very efficient and iterable over keys.
/// * `blake2_128_concat` - Blake2 with 128bit + key concatenated. Slower but safe to use in all
///   circumstances. Iterable over keys.
///
/// Deprecated hashers, which do not support iteration over keys include:
/// * `twox_128` - TwoX with 128bit.
/// * `twox_256` - TwoX with with 256bit.
/// * `blake2_128` - Blake2 with 128bit.
/// * `blake2_256` - Blake2 with 256bit.
///
/// Basic storage can be extended as such:
///
/// `#vis #name get(fn #getter) config(#field_name) build(#closure): #type = #default;`
///
/// * `#vis`: Set the visibility of the structure. `pub` or nothing.
/// * `#name`: Name of the storage item, used as a prefix in storage.
/// * \[optional\] `get(fn #getter)`: Implements the function #getter to `Module`.
/// * \[optional\] `config(#field_name)`: `field_name` is optional if get is set.
/// Will include the item in `GenesisConfig`.
/// * \[optional\] `build(#closure)`: Closure called with storage overlays.
/// * `#type`: Storage type.
/// * \[optional\] `#default`: Value returned when none.
///
/// Storage items are accessible in multiple ways:
///
/// * The structure: `Foo` or `Foo::<T>` depending if the value type is generic or not.
/// * The `Store` trait structure: `<Module<T> as Store>::Foo`
/// * The getter on the module that calls get on the structure: `Module::<T>::foo()`
///
/// ## GenesisConfig
///
/// An optional `GenesisConfig` struct for storage initialization can be defined, either
/// when at least one storage field requires default initialization
/// (both `get` and `config` or `build`), or specifically as in:
///
/// ```nocompile
/// decl_storage! {
/// 	trait Store for Module<T: Config> as Example {
///
/// 		// Your storage items
/// 	}
///		add_extra_genesis {
///			config(genesis_field): GenesisFieldType;
///			config(genesis_field2): GenesisFieldType;
///			...
///			build(|_: &Self| {
///				// Modification of storage
///			})
///		}
/// }
/// ```
///
/// This struct can be exposed as `ExampleConfig` by the `construct_runtime!` macro like follows:
///
/// ```nocompile
/// construct_runtime!(
/// 	pub enum Runtime with ... {
///         ...,
///         Example: example::{Module, Storage, ..., Config<T>},
///         ...,
///	}
/// );
/// ```
///
/// ### Module with Instances
///
/// The `decl_storage!` macro supports building modules with instances with the following syntax
/// (`DefaultInstance` type is optional):
///
/// ```nocompile
/// trait Store for Module<T: Config<I>, I: Instance=DefaultInstance> as Example {}
/// ```
///
/// Accessing the structure no requires the instance as generic parameter:
/// * `Foo::<I>` if the value type is not generic
/// * `Foo::<T, I>` if the value type is generic
///
/// ## Where clause
///
/// This macro supports a where clause which will be replicated to all generated types.
///
/// ```nocompile
/// trait Store for Module<T: Config> as Example where T::AccountId: std::fmt::Display {}
/// ```
///
/// ## Limitations
///
/// # Instancing and generic `GenesisConfig`
///
/// If your module supports instancing and you see an error like `parameter `I` is never used` for
/// your `decl_storage!`, you are hitting a limitation of the current implementation. You probably
/// try to use an associated type of a non-instantiable trait. To solve this, add the following to
/// your macro call:
///
/// ```nocompile
/// add_extra_genesis {
/// 	config(phantom): std::marker::PhantomData<I>,
/// }
/// ...
///
/// This adds a field to your `GenesisConfig` with the name `phantom` that you can initialize with
/// `Default::default()`.
///
#[proc_macro]
pub fn decl_storage(input: TokenStream) -> TokenStream {
	storage::decl_storage_impl(input)
}

/// Construct a runtime, with the given name and the given modules.
///
/// The parameters here are specific types for `Block`, `NodeBlock`, and `UncheckedExtrinsic`
/// and the modules that are used by the runtime.
/// `Block` is the block type that is used in the runtime and `NodeBlock` is the block type
/// that is used in the node. For instance they can differ in the extrinsics type.
///
/// # Example:
///
/// ```nocompile
/// construct_runtime!(
///     pub enum Runtime where
///         Block = Block,
///         NodeBlock = runtime::Block,
///         UncheckedExtrinsic = UncheckedExtrinsic
///     {
///         System: system::{Module, Call, Event<T>, Config<T>} = 0,
///         Test: test::{Module, Call} = 1,
///         Test2: test_with_long_module::{Module, Event<T>},
///
///         // Module with instances
///         Test3_Instance1: test3::<Instance1>::{Module, Call, Storage, Event<T, I>, Config<T, I>, Origin<T, I>},
///         Test3_DefaultInstance: test3::{Module, Call, Storage, Event<T>, Config<T>, Origin<T>} = 4,
///     }
/// )
/// ```
///
/// The identifier `System` is the name of the pallet and the lower case identifier `system` is the
/// name of the Rust module/crate for this Substrate module. The identifiers between the braces are
/// the module parts provided by the pallet. It is important to list these parts here to export
/// them correctly in the metadata or to make the pallet usable in the runtime.
///
/// We provide support for the following module parts in a pallet:
///
/// - `Module`
/// - `Call`
/// - `Storage`
/// - `Event` or `Event<T>` (if the event is generic)
/// - `Origin` or `Origin<T>` (if the origin is generic)
/// - `Config` or `Config<T>` (if the config is generic)
/// - `Inherent` - If the module provides/can check inherents.
/// - `ValidateUnsigned` - If the module validates unsigned extrinsics.
///
/// `= $n` is an optional part allowing to define at which index the module variants in
/// `OriginCaller`, `Call` and `Event` are encoded, and to define the ModuleToIndex value.
///
/// if `= $n` is not given, then index is resolved same as fieldless enum in Rust
/// (i.e. incrementedly from previous index):
/// ```nocompile
/// module1 .. = 2,
/// module2 .., // Here module2 is given index 3
/// module3 .. = 0,
/// module4 .., // Here module4 is given index 1
/// ```
///
/// # Note
///
/// The population of the genesis storage depends on the order of modules. So, if one of your
/// modules depends on another module, the module that is depended upon needs to come before
/// the module depending on it.
///
/// # Type definitions
///
/// * The macro generates a type alias for each pallet to their `Module` (or `Pallet`).
///   E.g. `type System = frame_system::Module<Runtime>`
#[proc_macro]
pub fn construct_runtime(input: TokenStream) -> TokenStream {
	construct_runtime::construct_runtime(input)
}

/// Macro to define a pallet. Docs are at `frame_support::pallet`.
#[proc_macro_attribute]
pub fn pallet(attr: TokenStream, item: TokenStream) -> TokenStream {
	pallet::pallet(attr, item)
}

/// Execute the annotated function in a new storage transaction.
///
/// The return type of the annotated function must be `Result`. All changes to storage performed
/// by the annotated function are discarded if it returns `Err`, or committed if `Ok`.
///
/// # Example
///
/// ```nocompile
/// #[transactional]
/// fn value_commits(v: u32) -> result::Result<u32, &'static str> {
/// 	Value::set(v);
/// 	Ok(v)
/// }
///
/// #[transactional]
/// fn value_rollbacks(v: u32) -> result::Result<u32, &'static str> {
/// 	Value::set(v);
/// 	Err("nah")
/// }
/// ```
#[proc_macro_attribute]
pub fn transactional(attr: TokenStream, input: TokenStream) -> TokenStream {
	transactional::transactional(attr, input).unwrap_or_else(|e| e.to_compile_error().into())
}

/// Derive [`Clone`] but do not bound any generic. Docs are at `frame_support::CloneNoBound`.
#[proc_macro_derive(CloneNoBound)]
pub fn derive_clone_no_bound(input: TokenStream) -> TokenStream {
	clone_no_bound::derive_clone_no_bound(input)
}

/// Derive [`Debug`] but do not bound any generics. Docs are at `frame_support::DeriveNoBounds`.
#[proc_macro_derive(DebugNoBound)]
pub fn derive_debug_no_bound(input: TokenStream) -> TokenStream {
	debug_no_bound::derive_debug_no_bound(input)
}

/// Derive [`Debug`], if `std` is enabled it uses `frame_support::DebugNoBound`, if `std` is not
/// enabled it just returns `"<stripped>"`.
/// This behaviour is useful to prevent bloating the runtime WASM blob from unneeded code.
#[proc_macro_derive(RuntimeDebugNoBound)]
pub fn derive_runtime_debug_no_bound(input: TokenStream) -> TokenStream {
	#[cfg(not(feature = "std"))]
	{
		let input: syn::DeriveInput = match syn::parse(input) {
			Ok(input) => input,
			Err(e) => return e.to_compile_error().into(),
		};

		let name = &input.ident;
		let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();

		quote::quote!(
			const _: () = {
				impl #impl_generics core::fmt::Debug for #name #ty_generics #where_clause {
					fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
						fmt.write_str("<stripped>")
					}
				}
			};
		).into()
	}

	#[cfg(feature = "std")]
	{
		debug_no_bound::derive_debug_no_bound(input)
	}
}

/// Derive [`PartialEq`] but do not bound any generic. Docs are at
/// `frame_support::PartialEqNoBound`.
#[proc_macro_derive(PartialEqNoBound)]
pub fn derive_partial_eq_no_bound(input: TokenStream) -> TokenStream {
	partial_eq_no_bound::derive_partial_eq_no_bound(input)
}

/// derive Eq but do no bound any generic. Docs are at `frame_support::EqNoBound`.
#[proc_macro_derive(EqNoBound)]
pub fn derive_eq_no_bound(input: TokenStream) -> TokenStream {
	let input: syn::DeriveInput = match syn::parse(input) {
		Ok(input) => input,
		Err(e) => return e.to_compile_error().into(),
	};

	let name = &input.ident;
	let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();

	quote::quote_spanned!(name.span() =>
		const _: () = {
			impl #impl_generics core::cmp::Eq for #name #ty_generics #where_clause {}
		};
	).into()
}

#[proc_macro_attribute]
pub fn require_transactional(attr: TokenStream, input: TokenStream) -> TokenStream {
	transactional::require_transactional(attr, input).unwrap_or_else(|e| e.to_compile_error().into())
}

#[proc_macro]
pub fn crate_to_pallet_version(input: TokenStream) -> TokenStream {
	pallet_version::crate_to_pallet_version(input).unwrap_or_else(|e| e.to_compile_error()).into()
}