1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
// This file is part of Substrate.
// Copyright (C) 2017-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Proc macro of Support code for the runtime.
#![recursion_limit="512"]
mod storage;
mod construct_runtime;
mod pallet;
mod pallet_version;
mod transactional;
mod debug_no_bound;
mod clone_no_bound;
mod partial_eq_no_bound;
pub(crate) use storage::INHERENT_INSTANCE_NAME;
use proc_macro::TokenStream;
/// Declares strongly-typed wrappers around codec-compatible types in storage.
///
/// ## Example
///
/// ```nocompile
/// decl_storage! {
/// trait Store for Module<T: Config> as Example {
/// Foo get(fn foo) config(): u32=12;
/// Bar: map hasher(identity) u32 => u32;
/// pub Zed build(|config| vec![(0, 0)]): map hasher(identity) u32 => u32;
/// }
/// }
/// ```
///
/// Declaration is set with the header `(pub) trait Store for Module<T: Config> as Example`,
/// with `Store` a (pub) trait generated associating each storage item to the `Module` and
/// `as Example` setting the prefix used for storage items of this module. `Example` must be unique:
/// another module with the same name and the same inner storage item name will conflict.
/// `Example` is called the module prefix.
///
/// note: For instantiable modules the module prefix is prepended with instance
/// prefix. Instance prefix is "" for default instance and "Instance$n" for instance number $n.
/// Thus, instance 3 of module Example has a module prefix of `Instance3Example`
///
/// Basic storage consists of a name and a type; supported types are:
///
/// * Value: `Foo: type`: Implements the
/// [`StorageValue`](../frame_support/storage/trait.StorageValue.html) trait using the
/// [`StorageValue generator`](../frame_support/storage/generator/trait.StorageValue.html).
///
/// The generator is implemented with:
/// * `module_prefix`: module_prefix
/// * `storage_prefix`: storage_name
///
/// Thus the storage value is finally stored at:
/// ```nocompile
/// Twox128(module_prefix) ++ Twox128(storage_prefix)
/// ```
///
/// * Map: `Foo: map hasher($hash) type => type`: Implements the
/// [`StorageMap`](../frame_support/storage/trait.StorageMap.html) trait using the
/// [`StorageMap generator`](../frame_support/storage/generator/trait.StorageMap.html).
/// And [`StoragePrefixedMap`](../frame_support/storage/trait.StoragePrefixedMap.html).
///
/// `$hash` representing a choice of hashing algorithms available in the
/// [`Hashable`](../frame_support/trait.Hashable.html) trait. You will generally want to use one
/// of three hashers:
/// * `blake2_128_concat`: The default, safe choice. Use if you are unsure or don't care. It is
/// secure against user-tainted keys, fairly fast and memory-efficient and supports
/// iteration over its keys and values. This must be used if the keys of your map can be
/// selected *en masse* by untrusted users.
/// * `twox_64_concat`: This is an insecure hasher and can only be used safely if you know that
/// the preimages cannot be chosen at will by untrusted users. It is memory-efficient, extremely
/// performant and supports iteration over its keys and values. You can safely use this is the
/// key is:
/// - A (slowly) incrementing index.
/// - Known to be the result of a cryptographic hash (though `identity` is a better choice here).
/// - Known to be the public key of a cryptographic key pair in existence.
/// * `identity`: This is not a hasher at all, and just uses the key material directly. Since it
/// does no hashing or appending, it's the fastest possible hasher, however, it's also the least
/// secure. It can be used only if you know that the key will be cryptographically/securely
/// randomly distributed over the binary encoding space. In most cases this will not be true.
/// One case where it is true, however, if where the key is itself the result of a cryptographic
/// hash of some existent data.
///
/// Other hashers will tend to be "opaque" and not support iteration over the keys in the
/// map. It is not recommended to use these.
///
/// The generator is implemented with:
/// * `module_prefix`: $module_prefix
/// * `storage_prefix`: storage_name
/// * `Hasher`: $hash
///
/// Thus the keys are stored at:
/// ```nocompile
/// twox128(module_prefix) ++ twox128(storage_prefix) ++ hasher(encode(key))
/// ```
///
/// * Double map: `Foo: double_map hasher($hash1) u32, hasher($hash2) u32 => u32`: Implements the
/// [`StorageDoubleMap`](../frame_support/storage/trait.StorageDoubleMap.html) trait using the
/// [`StorageDoubleMap generator`](../frame_support/storage/generator/trait.StorageDoubleMap.html).
/// And [`StoragePrefixedMap`](../frame_support/storage/trait.StoragePrefixedMap.html).
///
/// `$hash1` and `$hash2` representing choices of hashing algorithms available in the
/// [`Hashable`](../frame_support/trait.Hashable.html) trait. They must be chosen with care, see
/// generator documentation.
///
/// The generator is implemented with:
/// * `module_prefix`: $module_prefix
/// * `storage_prefix`: storage_name
/// * `Hasher1`: $hash1
/// * `Hasher2`: $hash2
///
/// Thus keys are stored at:
/// ```nocompile
/// Twox128(module_prefix) ++ Twox128(storage_prefix) ++ Hasher1(encode(key1)) ++ Hasher2(encode(key2))
/// ```
///
/// Supported hashers (ordered from least to best security):
///
/// * `identity` - Just the unrefined key material. Use only when it is known to be a secure hash
/// already. The most efficient and iterable over keys.
/// * `twox_64_concat` - TwoX with 64bit + key concatenated. Use only when an untrusted source
/// cannot select and insert key values. Very efficient and iterable over keys.
/// * `blake2_128_concat` - Blake2 with 128bit + key concatenated. Slower but safe to use in all
/// circumstances. Iterable over keys.
///
/// Deprecated hashers, which do not support iteration over keys include:
/// * `twox_128` - TwoX with 128bit.
/// * `twox_256` - TwoX with with 256bit.
/// * `blake2_128` - Blake2 with 128bit.
/// * `blake2_256` - Blake2 with 256bit.
///
/// Basic storage can be extended as such:
///
/// `#vis #name get(fn #getter) config(#field_name) build(#closure): #type = #default;`
///
/// * `#vis`: Set the visibility of the structure. `pub` or nothing.
/// * `#name`: Name of the storage item, used as a prefix in storage.
/// * \[optional\] `get(fn #getter)`: Implements the function #getter to `Module`.
/// * \[optional\] `config(#field_name)`: `field_name` is optional if get is set.
/// Will include the item in `GenesisConfig`.
/// * \[optional\] `build(#closure)`: Closure called with storage overlays.
/// * `#type`: Storage type.
/// * \[optional\] `#default`: Value returned when none.
///
/// Storage items are accessible in multiple ways:
///
/// * The structure: `Foo` or `Foo::<T>` depending if the value type is generic or not.
/// * The `Store` trait structure: `<Module<T> as Store>::Foo`
/// * The getter on the module that calls get on the structure: `Module::<T>::foo()`
///
/// ## GenesisConfig
///
/// An optional `GenesisConfig` struct for storage initialization can be defined, either
/// when at least one storage field requires default initialization
/// (both `get` and `config` or `build`), or specifically as in:
///
/// ```nocompile
/// decl_storage! {
/// trait Store for Module<T: Config> as Example {
///
/// // Your storage items
/// }
/// add_extra_genesis {
/// config(genesis_field): GenesisFieldType;
/// config(genesis_field2): GenesisFieldType;
/// ...
/// build(|_: &Self| {
/// // Modification of storage
/// })
/// }
/// }
/// ```
///
/// This struct can be exposed as `ExampleConfig` by the `construct_runtime!` macro like follows:
///
/// ```nocompile
/// construct_runtime!(
/// pub enum Runtime with ... {
/// ...,
/// Example: example::{Module, Storage, ..., Config<T>},
/// ...,
/// }
/// );
/// ```
///
/// ### Module with Instances
///
/// The `decl_storage!` macro supports building modules with instances with the following syntax
/// (`DefaultInstance` type is optional):
///
/// ```nocompile
/// trait Store for Module<T: Config<I>, I: Instance=DefaultInstance> as Example {}
/// ```
///
/// Accessing the structure no requires the instance as generic parameter:
/// * `Foo::<I>` if the value type is not generic
/// * `Foo::<T, I>` if the value type is generic
///
/// ## Where clause
///
/// This macro supports a where clause which will be replicated to all generated types.
///
/// ```nocompile
/// trait Store for Module<T: Config> as Example where T::AccountId: std::fmt::Display {}
/// ```
///
/// ## Limitations
///
/// # Instancing and generic `GenesisConfig`
///
/// If your module supports instancing and you see an error like `parameter `I` is never used` for
/// your `decl_storage!`, you are hitting a limitation of the current implementation. You probably
/// try to use an associated type of a non-instantiable trait. To solve this, add the following to
/// your macro call:
///
/// ```nocompile
/// add_extra_genesis {
/// config(phantom): std::marker::PhantomData<I>,
/// }
/// ...
///
/// This adds a field to your `GenesisConfig` with the name `phantom` that you can initialize with
/// `Default::default()`.
///
#[proc_macro]
pub fn decl_storage(input: TokenStream) -> TokenStream {
storage::decl_storage_impl(input)
}
/// Construct a runtime, with the given name and the given modules.
///
/// The parameters here are specific types for `Block`, `NodeBlock`, and `UncheckedExtrinsic`
/// and the modules that are used by the runtime.
/// `Block` is the block type that is used in the runtime and `NodeBlock` is the block type
/// that is used in the node. For instance they can differ in the extrinsics type.
///
/// # Example:
///
/// ```nocompile
/// construct_runtime!(
/// pub enum Runtime where
/// Block = Block,
/// NodeBlock = runtime::Block,
/// UncheckedExtrinsic = UncheckedExtrinsic
/// {
/// System: system::{Module, Call, Event<T>, Config<T>} = 0,
/// Test: test::{Module, Call} = 1,
/// Test2: test_with_long_module::{Module, Event<T>},
///
/// // Module with instances
/// Test3_Instance1: test3::<Instance1>::{Module, Call, Storage, Event<T, I>, Config<T, I>, Origin<T, I>},
/// Test3_DefaultInstance: test3::{Module, Call, Storage, Event<T>, Config<T>, Origin<T>} = 4,
/// }
/// )
/// ```
///
/// The identifier `System` is the name of the pallet and the lower case identifier `system` is the
/// name of the Rust module/crate for this Substrate module. The identifiers between the braces are
/// the module parts provided by the pallet. It is important to list these parts here to export
/// them correctly in the metadata or to make the pallet usable in the runtime.
///
/// We provide support for the following module parts in a pallet:
///
/// - `Module`
/// - `Call`
/// - `Storage`
/// - `Event` or `Event<T>` (if the event is generic)
/// - `Origin` or `Origin<T>` (if the origin is generic)
/// - `Config` or `Config<T>` (if the config is generic)
/// - `Inherent` - If the module provides/can check inherents.
/// - `ValidateUnsigned` - If the module validates unsigned extrinsics.
///
/// `= $n` is an optional part allowing to define at which index the module variants in
/// `OriginCaller`, `Call` and `Event` are encoded, and to define the ModuleToIndex value.
///
/// if `= $n` is not given, then index is resolved same as fieldless enum in Rust
/// (i.e. incrementedly from previous index):
/// ```nocompile
/// module1 .. = 2,
/// module2 .., // Here module2 is given index 3
/// module3 .. = 0,
/// module4 .., // Here module4 is given index 1
/// ```
///
/// # Note
///
/// The population of the genesis storage depends on the order of modules. So, if one of your
/// modules depends on another module, the module that is depended upon needs to come before
/// the module depending on it.
///
/// # Type definitions
///
/// * The macro generates a type alias for each pallet to their `Module` (or `Pallet`).
/// E.g. `type System = frame_system::Module<Runtime>`
#[proc_macro]
pub fn construct_runtime(input: TokenStream) -> TokenStream {
construct_runtime::construct_runtime(input)
}
/// Macro to define a pallet. Docs are at `frame_support::pallet`.
#[proc_macro_attribute]
pub fn pallet(attr: TokenStream, item: TokenStream) -> TokenStream {
pallet::pallet(attr, item)
}
/// Execute the annotated function in a new storage transaction.
///
/// The return type of the annotated function must be `Result`. All changes to storage performed
/// by the annotated function are discarded if it returns `Err`, or committed if `Ok`.
///
/// # Example
///
/// ```nocompile
/// #[transactional]
/// fn value_commits(v: u32) -> result::Result<u32, &'static str> {
/// Value::set(v);
/// Ok(v)
/// }
///
/// #[transactional]
/// fn value_rollbacks(v: u32) -> result::Result<u32, &'static str> {
/// Value::set(v);
/// Err("nah")
/// }
/// ```
#[proc_macro_attribute]
pub fn transactional(attr: TokenStream, input: TokenStream) -> TokenStream {
transactional::transactional(attr, input).unwrap_or_else(|e| e.to_compile_error().into())
}
/// Derive [`Clone`] but do not bound any generic. Docs are at `frame_support::CloneNoBound`.
#[proc_macro_derive(CloneNoBound)]
pub fn derive_clone_no_bound(input: TokenStream) -> TokenStream {
clone_no_bound::derive_clone_no_bound(input)
}
/// Derive [`Debug`] but do not bound any generics. Docs are at `frame_support::DeriveNoBounds`.
#[proc_macro_derive(DebugNoBound)]
pub fn derive_debug_no_bound(input: TokenStream) -> TokenStream {
debug_no_bound::derive_debug_no_bound(input)
}
/// Derive [`Debug`], if `std` is enabled it uses `frame_support::DebugNoBound`, if `std` is not
/// enabled it just returns `"<stripped>"`.
/// This behaviour is useful to prevent bloating the runtime WASM blob from unneeded code.
#[proc_macro_derive(RuntimeDebugNoBound)]
pub fn derive_runtime_debug_no_bound(input: TokenStream) -> TokenStream {
#[cfg(not(feature = "std"))]
{
let input: syn::DeriveInput = match syn::parse(input) {
Ok(input) => input,
Err(e) => return e.to_compile_error().into(),
};
let name = &input.ident;
let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();
quote::quote!(
const _: () = {
impl #impl_generics core::fmt::Debug for #name #ty_generics #where_clause {
fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
fmt.write_str("<stripped>")
}
}
};
).into()
}
#[cfg(feature = "std")]
{
debug_no_bound::derive_debug_no_bound(input)
}
}
/// Derive [`PartialEq`] but do not bound any generic. Docs are at
/// `frame_support::PartialEqNoBound`.
#[proc_macro_derive(PartialEqNoBound)]
pub fn derive_partial_eq_no_bound(input: TokenStream) -> TokenStream {
partial_eq_no_bound::derive_partial_eq_no_bound(input)
}
/// derive Eq but do no bound any generic. Docs are at `frame_support::EqNoBound`.
#[proc_macro_derive(EqNoBound)]
pub fn derive_eq_no_bound(input: TokenStream) -> TokenStream {
let input: syn::DeriveInput = match syn::parse(input) {
Ok(input) => input,
Err(e) => return e.to_compile_error().into(),
};
let name = &input.ident;
let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();
quote::quote_spanned!(name.span() =>
const _: () = {
impl #impl_generics core::cmp::Eq for #name #ty_generics #where_clause {}
};
).into()
}
#[proc_macro_attribute]
pub fn require_transactional(attr: TokenStream, input: TokenStream) -> TokenStream {
transactional::require_transactional(attr, input).unwrap_or_else(|e| e.to_compile_error().into())
}
#[proc_macro]
pub fn crate_to_pallet_version(input: TokenStream) -> TokenStream {
pallet_version::crate_to_pallet_version(input).unwrap_or_else(|e| e.to_compile_error()).into()
}