1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
//! Allocation of spill slots for the backtracking allocator.
use crate::avl_tree::{AVLTree, AVL_NULL};
use crate::data_structures::{
cmp_range_frags, InstPoint, RangeFrag, SortedRangeFrags, SpillSlot, TypedIxVec, VirtualRange,
VirtualRangeIx,
};
use crate::union_find::UnionFindEquivClasses;
use crate::Function;
//=============================================================================
// A spill slot allocator. This could be implemented more simply than it is.
// The reason for the extra complexity is to support copy-coalescing at the
// spill-slot level. That is, it tries make it possible to allocate all
// members of a VirtualRange group to the same spill slot, so that moves
// between two spilled members of the same group can be turned into no-ops.
//
// All of the `size` metrics in this bit are in terms of "logical spill slot
// units", per the interface's description for `get_spillslot_size`.
// *** Important: to fully understand this allocator and how it interacts with
// coalescing analysis, you need to read the big block comment at the top of
// bt_coalescing_analysis.rs.
//=============================================================================
// Logical spill slots
// In the trees, we keep track of which frags are reftyped, so we can later create stackmaps by
// slicing all of the trees at some `InstPoint`. Unfortunately this requires storing 65 bits of
// data in each node -- 64 bits for the RangeFrag and 1 bit for the reftype. A TODO would be to
// steal one bit from the RangeFrag. For now though, we do the simple thing.
#[derive(Clone, PartialEq, PartialOrd)]
struct RangeFragAndRefness {
frag: RangeFrag,
is_ref: bool,
}
impl RangeFragAndRefness {
fn new(frag: RangeFrag, is_ref: bool) -> Self {
Self { frag, is_ref }
}
}
// We keep one of these for every "logical spill slot" in use.
enum LogicalSpillSlot {
// This slot is in use and can hold values of size `size` (only). Note that
// `InUse` may only appear in `SpillSlotAllocator::slots` positions that
// have indices that are 0 % `size`. Furthermore, after such an entry in
// `SpillSlotAllocator::slots`, the next `size` - 1 entries must be
// `Unavail`. This is a hard invariant, violation of which will cause
// overlapping spill slots and potential chaos.
InUse {
size: u32,
tree: AVLTree<RangeFragAndRefness>,
},
// This slot is unavailable, as described above. It's unavailable because
// it holds some part of the values associated with the nearest lower
// numbered entry which isn't `Unavail`, and that entry must be an `InUse`
// entry.
Unavail,
}
impl LogicalSpillSlot {
fn is_Unavail(&self) -> bool {
match self {
LogicalSpillSlot::Unavail => true,
_ => false,
}
}
fn is_InUse(&self) -> bool {
!self.is_Unavail()
}
fn get_tree(&self) -> &AVLTree<RangeFragAndRefness> {
match self {
LogicalSpillSlot::InUse { ref tree, .. } => tree,
LogicalSpillSlot::Unavail => panic!("LogicalSpillSlot::get_tree"),
}
}
fn get_mut_tree(&mut self) -> &mut AVLTree<RangeFragAndRefness> {
match self {
LogicalSpillSlot::InUse { ref mut tree, .. } => tree,
LogicalSpillSlot::Unavail => panic!("LogicalSpillSlot::get_mut_tree"),
}
}
fn get_size(&self) -> u32 {
match self {
LogicalSpillSlot::InUse { size, .. } => *size,
LogicalSpillSlot::Unavail => panic!("LogicalSpillSlot::get_size"),
}
}
// If this spill slot is occupied at `pt`, return the refness of the value (VirtualRange)
// stored in it. This is conceptually equivalent to CommitmentMap::lookup_inst_point.
fn get_refness_at_inst_point(&self, pt: InstPoint) -> Option<bool> {
match self {
LogicalSpillSlot::InUse { size: 1, tree } => {
// Search the tree to see if a reffy commitment intersects `pt`.
let mut root = tree.root;
while root != AVL_NULL {
let root_node = &tree.pool[root as usize];
let root_item = &root_node.item;
if pt < root_item.frag.first {
// `pt` is to the left of the `root`. So there's no
// overlap with `root`. Continue by inspecting the left subtree.
root = root_node.left;
} else if root_item.frag.last < pt {
// Ditto for the right subtree.
root = root_node.right;
} else {
// `pt` overlaps the `root`, so we have what we want.
return Some(root_item.is_ref);
}
}
None
}
LogicalSpillSlot::InUse { .. } | LogicalSpillSlot::Unavail => {
// Slot isn't is use, or is in use but for values of some non-ref size
None
}
}
}
}
// HELPER FUNCTION
// Find out whether it is possible to add `frag` to `tree`.
#[inline(always)]
fn ssal_is_add_frag_possible(tree: &AVLTree<RangeFragAndRefness>, frag: &RangeFrag) -> bool {
// BEGIN check `frag` for any overlap against `tree`.
let mut root = tree.root;
while root != AVL_NULL {
let root_node = &tree.pool[root as usize];
let root_item = &root_node.item;
if frag.last < root_item.frag.first {
// `frag` is entirely to the left of the `root`. So there's no
// overlap with root. Continue by inspecting the left subtree.
root = root_node.left;
} else if root_item.frag.last < frag.first {
// Ditto for the right subtree.
root = root_node.right;
} else {
// `frag` overlaps the `root`. Give up.
return false;
}
}
// END check `frag` for any overlap against `tree`.
// `frag` doesn't overlap.
true
}
// HELPER FUNCTION
// Find out whether it is possible to add all of `frags` to `tree`. Returns
// true if possible, false if not. This routine relies on the fact that
// SortedFrags is non-overlapping. However, this is a bit subtle. We know
// that both `tree` and `frags` individually are non-overlapping, but there's
// no guarantee that elements of `frags` don't overlap `tree`. Hence we have
// to do a custom walk of `tree` to check for overlap; we can't just use
// `AVLTree::contains`.
fn ssal_is_add_possible(tree: &AVLTree<RangeFragAndRefness>, frags: &SortedRangeFrags) -> bool {
// Figure out whether all the frags will go in.
for frag in &frags.frags {
if !ssal_is_add_frag_possible(&tree, frag) {
return false;
}
// `frag` doesn't overlap. Move on to the next one.
}
true
}
// HELPER FUNCTION
// Try to add all of `frags` to `tree`. Return `true` if possible, `false` if not possible. If
// `false` is returned, `tree` is unchanged (this is important). This routine relies on the
// fact that SortedFrags is non-overlapping. They are initially all marked as non-reffy. That
// may later be changed by calls to `SpillSlotAllocator::notify_spillage_of_reftyped_vlr`.
fn ssal_add_if_possible(tree: &mut AVLTree<RangeFragAndRefness>, frags: &SortedRangeFrags) -> bool {
// Check if all the frags will go in.
if !ssal_is_add_possible(tree, frags) {
return false;
}
// They will. So now insert them.
for frag in &frags.frags {
let inserted = tree.insert(
RangeFragAndRefness::new(frag.clone(), /*is_ref=*/ false),
Some(&|item1: RangeFragAndRefness, item2: RangeFragAndRefness| {
cmp_range_frags(&item1.frag, &item2.frag)
}),
);
// This can't fail
assert!(inserted);
}
true
}
// HELPER FUNCTION
// Let `frags` be the RangeFrags for some VirtualRange, that have already been allocated in
// `tree`. Mark each such RangeFrag as reffy.
fn ssal_mark_frags_as_reftyped(tree: &mut AVLTree<RangeFragAndRefness>, frags: &SortedRangeFrags) {
for frag in &frags.frags {
// Be paranoid. (1) `frag` must already exist in `tree`. (2) it must not be marked as
// reffy.
let del_this = RangeFragAndRefness::new(frag.clone(), /*is_ref=*/ false);
let add_this = RangeFragAndRefness::new(frag.clone(), /*is_ref=*/ true);
let replaced_ok = tree.find_and_replace(
del_this,
add_this,
&|item1: RangeFragAndRefness, item2: RangeFragAndRefness| {
cmp_range_frags(&item1.frag, &item2.frag)
},
);
// This assertion effectively encompasses both (1) and (2) above.
assert!(replaced_ok);
}
}
//=============================================================================
// SpillSlotAllocator: public interface
pub struct SpillSlotAllocator {
slots: Vec<LogicalSpillSlot>,
}
impl SpillSlotAllocator {
pub fn new() -> Self {
Self { slots: vec![] }
}
pub fn num_slots_in_use(&self) -> usize {
self.slots.len()
}
// This adds a new, empty slot, for items of the given size, and returns
// its index. This isn't clever, in the sense that it fails to use some
// slots that it could use, but at least it's simple. Note, this is a
// private method.
fn add_new_slot(&mut self, req_size: u32) -> u32 {
assert!(req_size == 1 || req_size == 2 || req_size == 4 || req_size == 8);
// Satisfy alignment constraints. These entries will unfortunately be
// wasted (never used).
while self.slots.len() % (req_size as usize) != 0 {
self.slots.push(LogicalSpillSlot::Unavail);
}
// And now the new slot. The `dflt` value is needed by `AVLTree` to initialise storage
// slots for tree nodes, but we will never actually see those values. So it doesn't
// matter what they are.
let dflt = RangeFragAndRefness::new(RangeFrag::invalid_value(), false);
let tree = AVLTree::<RangeFragAndRefness>::new(dflt);
let res = self.slots.len() as u32;
self.slots.push(LogicalSpillSlot::InUse {
size: req_size,
tree,
});
// And now "block out subsequent slots that `req_size` implies.
// viz: req_size == 1 -> block out 0 more
// viz: req_size == 2 -> block out 1 more
// viz: req_size == 4 -> block out 3 more
// viz: req_size == 8 -> block out 7 more
for _ in 1..req_size {
self.slots.push(LogicalSpillSlot::Unavail);
}
assert!(self.slots.len() % (req_size as usize) == 0);
res
}
// THE MAIN FUNCTION
// Allocate spill slots for all the VirtualRanges in `vlrix`s eclass,
// including `vlrix` itself. Since we are allocating spill slots for
// complete eclasses at once, none of the members of the class should
// currently have any allocation. This routine will try to allocate all
// class members the same slot, but it can only guarantee to do so if the
// class members are mutually non-overlapping. Hence it can't guarantee that
// in general.
pub fn alloc_spill_slots<F: Function>(
&mut self,
vlr_slot_env: &mut TypedIxVec<VirtualRangeIx, Option<SpillSlot>>,
func: &F,
vlr_env: &TypedIxVec<VirtualRangeIx, VirtualRange>,
vlrEquivClasses: &UnionFindEquivClasses<VirtualRangeIx>,
vlrix: VirtualRangeIx,
) {
let is_ref = vlr_env[vlrix].is_ref;
for cand_vlrix in vlrEquivClasses.equiv_class_elems_iter(vlrix) {
// "None of the VLRs in this equivalence class have an allocated spill slot."
// This should be true because we allocate spill slots for all of the members of an
// eclass at once.
assert!(vlr_slot_env[cand_vlrix].is_none());
// "All of the VLRs in this eclass have the same ref-ness as this VLR."
// Why this is true is a bit subtle. The equivalence classes are computed by
// `do_coalescing_analysis`, fundamentally by looking at all the move instructions
// and computing the transitive closure induced by them. The ref-ness annotations
// on each VLR are computed in `do_reftypes_analysis`, and they are also computed
// as a transitive closure on the same move instructions. Hence the results should
// be identical.
//
// With all that said, note that these equivalence classes are *not* guaranteed to
// be internally non-overlapping. This is explained in the big block comment at the
// top of bt_coalescing_analysis.rs.
assert!(vlr_env[cand_vlrix].is_ref == is_ref);
}
// Do this in two passes. It's a bit cumbersome.
//
// In the first pass, find a spill slot which can take all of the
// candidates when we try them *individually*, but don't update the tree
// yet. We will always find such a slot, because if none of the existing
// slots can do it, we can always start a new one.
//
// Now, that doesn't guarantee that all the candidates can *together*
// can be assigned to the chosen slot. That's only possible when they
// are non-overlapping. Rather than laboriously try to determine
// that, simply proceed with the second pass, the assignment pass, as
// follows. For each candidate, try to allocate it to the slot chosen
// in the first pass. If it goes in without interference, fine. If
// not, that means it overlaps with some other member of the class --
// in which case we must find some other slot for it. It's too bad.
//
// The result is: all members will get a valid spill slot. And if they
// were all non overlapping then we are guaranteed that they all get the
// same slot. Which is as good as we can hope for.
//
// In both passes, only the highest-numbered 8 slots are checked for
// availability. This is a heuristic hack which both reduces
// allocation time and reduces the eventual resulting spilling:
//
// - It avoids lots of pointless repeated checking of low-numbered
// spill slots, that long ago became full(ish) and are unlikely to be
// able to take any new VirtualRanges
//
// - More subtly, it interacts with the question of whether or not
// each VirtualRange equivalence class is internally overlapping.
// When no overlaps are present, the spill slot allocator guarantees
// to find a slot which is free for the entire equivalence class,
// which is the ideal solution. When there are overlaps present, the
// allocator is forced to allocate at least some of the VirtualRanges
// in the class to different slots. By restricting the number of
// slots it can choose to 8 (+ extras if it needs them), we reduce the
// tendency for the VirtualRanges to be assigned a large number of
// different slots, which in turn reduces the amount of spilling in
// the end.
// We need to know what regclass, and hence what slot size, we're looking
// for. Just look at the representative; all VirtualRanges in the eclass
// must have the same regclass. (If they don't, the client's is_move
// function has been giving us wrong information.)
let vlrix_vreg = vlr_env[vlrix].vreg;
let req_size = func.get_spillslot_size(vlrix_vreg.get_class(), vlrix_vreg);
assert!(req_size == 1 || req_size == 2 || req_size == 4 || req_size == 8);
// Sanity check: if the VLR is reftyped, then it must need a 1-word slot
// (anything else is nonsensical.)
if is_ref {
assert!(req_size == 1);
}
// Pass 1: find a slot which can take all VirtualRanges in `vlrix`s
// eclass when tested individually.
//
// Pass 1a: search existing slots
let search_start_slotno: u32 = {
// We will only search from `search_start_slotno` upwards. See
// block comment above for significance of the value `8`.
let window = 8;
if self.slots.len() >= window {
(self.slots.len() - window) as u32
} else {
0
}
};
let mut mb_chosen_slotno: Option<u32> = None;
// BEGIN search existing slots
for cand_slot_no in search_start_slotno..self.slots.len() as u32 {
let cand_slot = &self.slots[cand_slot_no as usize];
if !cand_slot.is_InUse() {
continue;
}
if cand_slot.get_size() != req_size {
continue;
}
let tree = &cand_slot.get_tree();
assert!(mb_chosen_slotno.is_none());
// BEGIN see if `cand_slot` can hold all eclass members individually
let mut all_cands_fit_individually = true;
for cand_vlrix in vlrEquivClasses.equiv_class_elems_iter(vlrix) {
let cand_vlr = &vlr_env[cand_vlrix];
let this_cand_fits = ssal_is_add_possible(&tree, &cand_vlr.sorted_frags);
if !this_cand_fits {
all_cands_fit_individually = false;
break;
}
}
// END see if `cand_slot` can hold all eclass members individually
if !all_cands_fit_individually {
continue;
}
// Ok. All eclass members will fit individually in `cand_slot_no`.
mb_chosen_slotno = Some(cand_slot_no);
break;
}
// END search existing slots
// Pass 1b. If we didn't find a usable slot, allocate a new one.
let chosen_slotno: u32 = if mb_chosen_slotno.is_none() {
self.add_new_slot(req_size)
} else {
mb_chosen_slotno.unwrap()
};
// Pass 2. Try to allocate each eclass member individually to the chosen
// slot. If that fails, just allocate them anywhere.
let mut _all_in_chosen = true;
'pass2_per_equiv_class: for cand_vlrix in vlrEquivClasses.equiv_class_elems_iter(vlrix) {
let cand_vlr = &vlr_env[cand_vlrix];
let mut tree = self.slots[chosen_slotno as usize].get_mut_tree();
let added = ssal_add_if_possible(&mut tree, &cand_vlr.sorted_frags);
if added {
vlr_slot_env[cand_vlrix] = Some(SpillSlot::new(chosen_slotno));
continue 'pass2_per_equiv_class;
}
_all_in_chosen = false;
// It won't fit in `chosen_slotno`, so try somewhere (anywhere) else.
for alt_slotno in search_start_slotno..self.slots.len() as u32 {
let alt_slot = &self.slots[alt_slotno as usize];
if !alt_slot.is_InUse() {
continue;
}
if alt_slot.get_size() != req_size {
continue;
}
if alt_slotno == chosen_slotno {
// We already know this won't work.
continue;
}
let mut tree = self.slots[alt_slotno as usize].get_mut_tree();
let added = ssal_add_if_possible(&mut tree, &cand_vlr.sorted_frags);
if added {
vlr_slot_env[cand_vlrix] = Some(SpillSlot::new(alt_slotno));
continue 'pass2_per_equiv_class;
}
}
// If we get here, it means it won't fit in any slot we currently have.
// So allocate a new one and use that.
let new_slotno = self.add_new_slot(req_size);
let mut tree = self.slots[new_slotno as usize].get_mut_tree();
let added = ssal_add_if_possible(&mut tree, &cand_vlr.sorted_frags);
if added {
vlr_slot_env[cand_vlrix] = Some(SpillSlot::new(new_slotno));
continue 'pass2_per_equiv_class;
}
// We failed to allocate it to any empty slot! This can't happen.
panic!("SpillSlotAllocator: alloc_spill_slots: failed?!?!");
/*NOTREACHED*/
} /* 'pass2_per_equiv_class */
}
// STACKMAP SUPPORT
// Mark the `frags` for `slot_no` as being reftyped. They are expected to already exist in
// the relevant tree, and not currently be marked as reftyped.
pub fn notify_spillage_of_reftyped_vlr(
&mut self,
slot_no: SpillSlot,
frags: &SortedRangeFrags,
) {
let slot_ix = slot_no.get_usize();
assert!(slot_ix < self.slots.len());
let slot = &mut self.slots[slot_ix];
match slot {
LogicalSpillSlot::InUse { size, tree } if *size == 1 => {
ssal_mark_frags_as_reftyped(tree, frags)
}
_ => panic!("SpillSlotAllocator::notify_spillage_of_reftyped_vlr: invalid slot"),
}
}
// STACKMAP SUPPORT
// Allocate a size-1 (word!) spill slot for `frag` and return it. The slot is marked
// reftyped so that a later call to `get_reftyped_spillslots_at_inst_point` will return it.
pub fn alloc_reftyped_spillslot_for_frag(&mut self, frag: RangeFrag) -> SpillSlot {
for i in 0..self.slots.len() {
match &mut self.slots[i] {
LogicalSpillSlot::InUse { size: 1, tree } => {
if ssal_is_add_frag_possible(&tree, &frag) {
// We're in luck.
let inserted = tree.insert(
RangeFragAndRefness::new(frag, /*is_ref=*/ true),
Some(&|item1: RangeFragAndRefness, item2: RangeFragAndRefness| {
cmp_range_frags(&item1.frag, &item2.frag)
}),
);
// This can't fail -- we just checked for it!
assert!(inserted);
return SpillSlot::new(i as u32);
}
// Otherwise move on.
}
LogicalSpillSlot::InUse { .. } | LogicalSpillSlot::Unavail => {
// Slot isn't is use, or is in use but for values of some non-ref size.
// Move on.
}
}
}
// We tried all slots, but without success. Add a new one and try again. This time we
// must succeed. Calling recursively is a bit stupid in the sense that we then search
// again to find the slot we just allocated, but hey.
self.add_new_slot(1 /*word*/);
self.alloc_reftyped_spillslot_for_frag(frag) // \o/ tailcall \o/
}
// STACKMAP SUPPORT
// Examine all the spill slots at `pt` and return those that are reftyped. This is
// fundamentally what creates a stack map.
pub fn get_reftyped_spillslots_at_inst_point(&self, pt: InstPoint) -> Vec<SpillSlot> {
let mut res = Vec::<SpillSlot>::new();
for (i, slot) in self.slots.iter().enumerate() {
if slot.get_refness_at_inst_point(pt) == Some(true) {
res.push(SpillSlot::new(i as u32));
}
}
res
}
}