1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]

//! Allocation of spill slots for the backtracking allocator.

use crate::avl_tree::{AVLTree, AVL_NULL};
use crate::data_structures::{
    cmp_range_frags, InstPoint, RangeFrag, SortedRangeFrags, SpillSlot, TypedIxVec, VirtualRange,
    VirtualRangeIx,
};
use crate::union_find::UnionFindEquivClasses;
use crate::Function;

//=============================================================================
// A spill slot allocator.  This could be implemented more simply than it is.
// The reason for the extra complexity is to support copy-coalescing at the
// spill-slot level.  That is, it tries make it possible to allocate all
// members of a VirtualRange group to the same spill slot, so that moves
// between two spilled members of the same group can be turned into no-ops.
//
// All of the `size` metrics in this bit are in terms of "logical spill slot
// units", per the interface's description for `get_spillslot_size`.

// *** Important: to fully understand this allocator and how it interacts with
// coalescing analysis, you need to read the big block comment at the top of
// bt_coalescing_analysis.rs.

//=============================================================================
// Logical spill slots

// In the trees, we keep track of which frags are reftyped, so we can later create stackmaps by
// slicing all of the trees at some `InstPoint`.  Unfortunately this requires storing 65 bits of
// data in each node -- 64 bits for the RangeFrag and 1 bit for the reftype.  A TODO would be to
// steal one bit from the RangeFrag.  For now though, we do the simple thing.

#[derive(Clone, PartialEq, PartialOrd)]
struct RangeFragAndRefness {
    frag: RangeFrag,
    is_ref: bool,
}
impl RangeFragAndRefness {
    fn new(frag: RangeFrag, is_ref: bool) -> Self {
        Self { frag, is_ref }
    }
}

// We keep one of these for every "logical spill slot" in use.
enum LogicalSpillSlot {
    // This slot is in use and can hold values of size `size` (only).  Note that
    // `InUse` may only appear in `SpillSlotAllocator::slots` positions that
    // have indices that are 0 % `size`.  Furthermore, after such an entry in
    // `SpillSlotAllocator::slots`, the next `size` - 1 entries must be
    // `Unavail`.  This is a hard invariant, violation of which will cause
    // overlapping spill slots and potential chaos.
    InUse {
        size: u32,
        tree: AVLTree<RangeFragAndRefness>,
    },
    // This slot is unavailable, as described above.  It's unavailable because
    // it holds some part of the values associated with the nearest lower
    // numbered entry which isn't `Unavail`, and that entry must be an `InUse`
    // entry.
    Unavail,
}
impl LogicalSpillSlot {
    fn is_Unavail(&self) -> bool {
        match self {
            LogicalSpillSlot::Unavail => true,
            _ => false,
        }
    }
    fn is_InUse(&self) -> bool {
        !self.is_Unavail()
    }
    fn get_tree(&self) -> &AVLTree<RangeFragAndRefness> {
        match self {
            LogicalSpillSlot::InUse { ref tree, .. } => tree,
            LogicalSpillSlot::Unavail => panic!("LogicalSpillSlot::get_tree"),
        }
    }
    fn get_mut_tree(&mut self) -> &mut AVLTree<RangeFragAndRefness> {
        match self {
            LogicalSpillSlot::InUse { ref mut tree, .. } => tree,
            LogicalSpillSlot::Unavail => panic!("LogicalSpillSlot::get_mut_tree"),
        }
    }
    fn get_size(&self) -> u32 {
        match self {
            LogicalSpillSlot::InUse { size, .. } => *size,
            LogicalSpillSlot::Unavail => panic!("LogicalSpillSlot::get_size"),
        }
    }
    // If this spill slot is occupied at `pt`, return the refness of the value (VirtualRange)
    // stored in it.  This is conceptually equivalent to CommitmentMap::lookup_inst_point.
    fn get_refness_at_inst_point(&self, pt: InstPoint) -> Option<bool> {
        match self {
            LogicalSpillSlot::InUse { size: 1, tree } => {
                // Search the tree to see if a reffy commitment intersects `pt`.
                let mut root = tree.root;
                while root != AVL_NULL {
                    let root_node = &tree.pool[root as usize];
                    let root_item = &root_node.item;
                    if pt < root_item.frag.first {
                        // `pt` is to the left of the `root`.  So there's no
                        // overlap with `root`.  Continue by inspecting the left subtree.
                        root = root_node.left;
                    } else if root_item.frag.last < pt {
                        // Ditto for the right subtree.
                        root = root_node.right;
                    } else {
                        // `pt` overlaps the `root`, so we have what we want.
                        return Some(root_item.is_ref);
                    }
                }
                None
            }
            LogicalSpillSlot::InUse { .. } | LogicalSpillSlot::Unavail => {
                // Slot isn't is use, or is in use but for values of some non-ref size
                None
            }
        }
    }
}

// HELPER FUNCTION
// Find out whether it is possible to add `frag` to `tree`.
#[inline(always)]
fn ssal_is_add_frag_possible(tree: &AVLTree<RangeFragAndRefness>, frag: &RangeFrag) -> bool {
    // BEGIN check `frag` for any overlap against `tree`.
    let mut root = tree.root;
    while root != AVL_NULL {
        let root_node = &tree.pool[root as usize];
        let root_item = &root_node.item;
        if frag.last < root_item.frag.first {
            // `frag` is entirely to the left of the `root`.  So there's no
            // overlap with root.  Continue by inspecting the left subtree.
            root = root_node.left;
        } else if root_item.frag.last < frag.first {
            // Ditto for the right subtree.
            root = root_node.right;
        } else {
            // `frag` overlaps the `root`.  Give up.
            return false;
        }
    }
    // END check `frag` for any overlap against `tree`.
    // `frag` doesn't overlap.
    true
}

// HELPER FUNCTION
// Find out whether it is possible to add all of `frags` to `tree`.  Returns
// true if possible, false if not.  This routine relies on the fact that
// SortedFrags is non-overlapping.  However, this is a bit subtle.  We know
// that both `tree` and `frags` individually are non-overlapping, but there's
// no guarantee that elements of `frags` don't overlap `tree`.  Hence we have
// to do a custom walk of `tree` to check for overlap; we can't just use
// `AVLTree::contains`.
fn ssal_is_add_possible(tree: &AVLTree<RangeFragAndRefness>, frags: &SortedRangeFrags) -> bool {
    // Figure out whether all the frags will go in.
    for frag in &frags.frags {
        if !ssal_is_add_frag_possible(&tree, frag) {
            return false;
        }
        // `frag` doesn't overlap.  Move on to the next one.
    }
    true
}

// HELPER FUNCTION
// Try to add all of `frags` to `tree`.  Return `true` if possible, `false` if not possible.  If
// `false` is returned, `tree` is unchanged (this is important).  This routine relies on the
// fact that SortedFrags is non-overlapping.  They are initially all marked as non-reffy.  That
// may later be changed by calls to `SpillSlotAllocator::notify_spillage_of_reftyped_vlr`.
fn ssal_add_if_possible(tree: &mut AVLTree<RangeFragAndRefness>, frags: &SortedRangeFrags) -> bool {
    // Check if all the frags will go in.
    if !ssal_is_add_possible(tree, frags) {
        return false;
    }
    // They will.  So now insert them.
    for frag in &frags.frags {
        let inserted = tree.insert(
            RangeFragAndRefness::new(frag.clone(), /*is_ref=*/ false),
            Some(&|item1: RangeFragAndRefness, item2: RangeFragAndRefness| {
                cmp_range_frags(&item1.frag, &item2.frag)
            }),
        );
        // This can't fail
        assert!(inserted);
    }
    true
}

// HELPER FUNCTION
// Let `frags` be the RangeFrags for some VirtualRange, that have already been allocated in
// `tree`.  Mark each such RangeFrag as reffy.
fn ssal_mark_frags_as_reftyped(tree: &mut AVLTree<RangeFragAndRefness>, frags: &SortedRangeFrags) {
    for frag in &frags.frags {
        // Be paranoid.  (1) `frag` must already exist in `tree`.  (2) it must not be marked as
        // reffy.
        let del_this = RangeFragAndRefness::new(frag.clone(), /*is_ref=*/ false);
        let add_this = RangeFragAndRefness::new(frag.clone(), /*is_ref=*/ true);
        let replaced_ok = tree.find_and_replace(
            del_this,
            add_this,
            &|item1: RangeFragAndRefness, item2: RangeFragAndRefness| {
                cmp_range_frags(&item1.frag, &item2.frag)
            },
        );
        // This assertion effectively encompasses both (1) and (2) above.
        assert!(replaced_ok);
    }
}

//=============================================================================
// SpillSlotAllocator: public interface

pub struct SpillSlotAllocator {
    slots: Vec<LogicalSpillSlot>,
}
impl SpillSlotAllocator {
    pub fn new() -> Self {
        Self { slots: vec![] }
    }

    pub fn num_slots_in_use(&self) -> usize {
        self.slots.len()
    }

    // This adds a new, empty slot, for items of the given size, and returns
    // its index.  This isn't clever, in the sense that it fails to use some
    // slots that it could use, but at least it's simple.  Note, this is a
    // private method.
    fn add_new_slot(&mut self, req_size: u32) -> u32 {
        assert!(req_size == 1 || req_size == 2 || req_size == 4 || req_size == 8);
        // Satisfy alignment constraints.  These entries will unfortunately be
        // wasted (never used).
        while self.slots.len() % (req_size as usize) != 0 {
            self.slots.push(LogicalSpillSlot::Unavail);
        }
        // And now the new slot.  The `dflt` value is needed by `AVLTree` to initialise storage
        // slots for tree nodes, but we will never actually see those values.  So it doesn't
        // matter what they are.
        let dflt = RangeFragAndRefness::new(RangeFrag::invalid_value(), false);
        let tree = AVLTree::<RangeFragAndRefness>::new(dflt);
        let res = self.slots.len() as u32;
        self.slots.push(LogicalSpillSlot::InUse {
            size: req_size,
            tree,
        });
        // And now "block out subsequent slots that `req_size` implies.
        // viz: req_size == 1  ->  block out 0 more
        // viz: req_size == 2  ->  block out 1 more
        // viz: req_size == 4  ->  block out 3 more
        // viz: req_size == 8  ->  block out 7 more
        for _ in 1..req_size {
            self.slots.push(LogicalSpillSlot::Unavail);
        }
        assert!(self.slots.len() % (req_size as usize) == 0);

        res
    }

    // THE MAIN FUNCTION
    // Allocate spill slots for all the VirtualRanges in `vlrix`s eclass,
    // including `vlrix` itself.  Since we are allocating spill slots for
    // complete eclasses at once, none of the members of the class should
    // currently have any allocation.  This routine will try to allocate all
    // class members the same slot, but it can only guarantee to do so if the
    // class members are mutually non-overlapping.  Hence it can't guarantee that
    // in general.
    pub fn alloc_spill_slots<F: Function>(
        &mut self,
        vlr_slot_env: &mut TypedIxVec<VirtualRangeIx, Option<SpillSlot>>,
        func: &F,
        vlr_env: &TypedIxVec<VirtualRangeIx, VirtualRange>,
        vlrEquivClasses: &UnionFindEquivClasses<VirtualRangeIx>,
        vlrix: VirtualRangeIx,
    ) {
        let is_ref = vlr_env[vlrix].is_ref;
        for cand_vlrix in vlrEquivClasses.equiv_class_elems_iter(vlrix) {
            // "None of the VLRs in this equivalence class have an allocated spill slot."
            // This should be true because we allocate spill slots for all of the members of an
            // eclass at once.
            assert!(vlr_slot_env[cand_vlrix].is_none());

            // "All of the VLRs in this eclass have the same ref-ness as this VLR."
            // Why this is true is a bit subtle.  The equivalence classes are computed by
            // `do_coalescing_analysis`, fundamentally by looking at all the move instructions
            // and computing the transitive closure induced by them.  The ref-ness annotations
            // on each VLR are computed in `do_reftypes_analysis`, and they are also computed
            // as a transitive closure on the same move instructions.  Hence the results should
            // be identical.
            //
            // With all that said, note that these equivalence classes are *not* guaranteed to
            // be internally non-overlapping.  This is explained in the big block comment at the
            // top of bt_coalescing_analysis.rs.
            assert!(vlr_env[cand_vlrix].is_ref == is_ref);
        }

        // Do this in two passes.  It's a bit cumbersome.
        //
        // In the first pass, find a spill slot which can take all of the
        // candidates when we try them *individually*, but don't update the tree
        // yet.  We will always find such a slot, because if none of the existing
        // slots can do it, we can always start a new one.
        //
        // Now, that doesn't guarantee that all the candidates can *together*
        // can be assigned to the chosen slot.  That's only possible when they
        // are non-overlapping.  Rather than laboriously try to determine
        // that, simply proceed with the second pass, the assignment pass, as
        // follows.  For each candidate, try to allocate it to the slot chosen
        // in the first pass.  If it goes in without interference, fine.  If
        // not, that means it overlaps with some other member of the class --
        // in which case we must find some other slot for it.  It's too bad.
        //
        // The result is: all members will get a valid spill slot.  And if they
        // were all non overlapping then we are guaranteed that they all get the
        // same slot.  Which is as good as we can hope for.
        //
        // In both passes, only the highest-numbered 8 slots are checked for
        // availability.  This is a heuristic hack which both reduces
        // allocation time and reduces the eventual resulting spilling:
        //
        // - It avoids lots of pointless repeated checking of low-numbered
        //   spill slots, that long ago became full(ish) and are unlikely to be
        //   able to take any new VirtualRanges
        //
        // - More subtly, it interacts with the question of whether or not
        //   each VirtualRange equivalence class is internally overlapping.
        //   When no overlaps are present, the spill slot allocator guarantees
        //   to find a slot which is free for the entire equivalence class,
        //   which is the ideal solution.  When there are overlaps present, the
        //   allocator is forced to allocate at least some of the VirtualRanges
        //   in the class to different slots.  By restricting the number of
        //   slots it can choose to 8 (+ extras if it needs them), we reduce the
        //   tendency for the VirtualRanges to be assigned a large number of
        //   different slots, which in turn reduces the amount of spilling in
        //   the end.

        // We need to know what regclass, and hence what slot size, we're looking
        // for.  Just look at the representative; all VirtualRanges in the eclass
        // must have the same regclass.  (If they don't, the client's is_move
        // function has been giving us wrong information.)
        let vlrix_vreg = vlr_env[vlrix].vreg;
        let req_size = func.get_spillslot_size(vlrix_vreg.get_class(), vlrix_vreg);
        assert!(req_size == 1 || req_size == 2 || req_size == 4 || req_size == 8);

        // Sanity check: if the VLR is reftyped, then it must need a 1-word slot
        // (anything else is nonsensical.)
        if is_ref {
            assert!(req_size == 1);
        }

        // Pass 1: find a slot which can take all VirtualRanges in `vlrix`s
        // eclass when tested individually.
        //
        // Pass 1a: search existing slots
        let search_start_slotno: u32 = {
            // We will only search from `search_start_slotno` upwards.  See
            // block comment above for significance of the value `8`.
            let window = 8;
            if self.slots.len() >= window {
                (self.slots.len() - window) as u32
            } else {
                0
            }
        };
        let mut mb_chosen_slotno: Option<u32> = None;
        // BEGIN search existing slots
        for cand_slot_no in search_start_slotno..self.slots.len() as u32 {
            let cand_slot = &self.slots[cand_slot_no as usize];
            if !cand_slot.is_InUse() {
                continue;
            }
            if cand_slot.get_size() != req_size {
                continue;
            }
            let tree = &cand_slot.get_tree();
            assert!(mb_chosen_slotno.is_none());

            // BEGIN see if `cand_slot` can hold all eclass members individually
            let mut all_cands_fit_individually = true;
            for cand_vlrix in vlrEquivClasses.equiv_class_elems_iter(vlrix) {
                let cand_vlr = &vlr_env[cand_vlrix];
                let this_cand_fits = ssal_is_add_possible(&tree, &cand_vlr.sorted_frags);
                if !this_cand_fits {
                    all_cands_fit_individually = false;
                    break;
                }
            }
            // END see if `cand_slot` can hold all eclass members individually
            if !all_cands_fit_individually {
                continue;
            }

            // Ok.  All eclass members will fit individually in `cand_slot_no`.
            mb_chosen_slotno = Some(cand_slot_no);
            break;
        }
        // END search existing slots

        // Pass 1b. If we didn't find a usable slot, allocate a new one.
        let chosen_slotno: u32 = if mb_chosen_slotno.is_none() {
            self.add_new_slot(req_size)
        } else {
            mb_chosen_slotno.unwrap()
        };

        // Pass 2.  Try to allocate each eclass member individually to the chosen
        // slot.  If that fails, just allocate them anywhere.
        let mut _all_in_chosen = true;
        'pass2_per_equiv_class: for cand_vlrix in vlrEquivClasses.equiv_class_elems_iter(vlrix) {
            let cand_vlr = &vlr_env[cand_vlrix];
            let mut tree = self.slots[chosen_slotno as usize].get_mut_tree();
            let added = ssal_add_if_possible(&mut tree, &cand_vlr.sorted_frags);
            if added {
                vlr_slot_env[cand_vlrix] = Some(SpillSlot::new(chosen_slotno));
                continue 'pass2_per_equiv_class;
            }
            _all_in_chosen = false;
            // It won't fit in `chosen_slotno`, so try somewhere (anywhere) else.
            for alt_slotno in search_start_slotno..self.slots.len() as u32 {
                let alt_slot = &self.slots[alt_slotno as usize];
                if !alt_slot.is_InUse() {
                    continue;
                }
                if alt_slot.get_size() != req_size {
                    continue;
                }
                if alt_slotno == chosen_slotno {
                    // We already know this won't work.
                    continue;
                }
                let mut tree = self.slots[alt_slotno as usize].get_mut_tree();
                let added = ssal_add_if_possible(&mut tree, &cand_vlr.sorted_frags);
                if added {
                    vlr_slot_env[cand_vlrix] = Some(SpillSlot::new(alt_slotno));
                    continue 'pass2_per_equiv_class;
                }
            }
            // If we get here, it means it won't fit in any slot we currently have.
            // So allocate a new one and use that.
            let new_slotno = self.add_new_slot(req_size);
            let mut tree = self.slots[new_slotno as usize].get_mut_tree();
            let added = ssal_add_if_possible(&mut tree, &cand_vlr.sorted_frags);
            if added {
                vlr_slot_env[cand_vlrix] = Some(SpillSlot::new(new_slotno));
                continue 'pass2_per_equiv_class;
            }
            // We failed to allocate it to any empty slot!  This can't happen.
            panic!("SpillSlotAllocator: alloc_spill_slots: failed?!?!");
            /*NOTREACHED*/
        } /* 'pass2_per_equiv_class */
    }

    // STACKMAP SUPPORT
    // Mark the `frags` for `slot_no` as being reftyped.  They are expected to already exist in
    // the relevant tree, and not currently be marked as reftyped.
    pub fn notify_spillage_of_reftyped_vlr(
        &mut self,
        slot_no: SpillSlot,
        frags: &SortedRangeFrags,
    ) {
        let slot_ix = slot_no.get_usize();
        assert!(slot_ix < self.slots.len());
        let slot = &mut self.slots[slot_ix];
        match slot {
            LogicalSpillSlot::InUse { size, tree } if *size == 1 => {
                ssal_mark_frags_as_reftyped(tree, frags)
            }
            _ => panic!("SpillSlotAllocator::notify_spillage_of_reftyped_vlr: invalid slot"),
        }
    }

    // STACKMAP SUPPORT
    // Allocate a size-1 (word!) spill slot for `frag` and return it.  The slot is marked
    // reftyped so that a later call to `get_reftyped_spillslots_at_inst_point` will return it.
    pub fn alloc_reftyped_spillslot_for_frag(&mut self, frag: RangeFrag) -> SpillSlot {
        for i in 0..self.slots.len() {
            match &mut self.slots[i] {
                LogicalSpillSlot::InUse { size: 1, tree } => {
                    if ssal_is_add_frag_possible(&tree, &frag) {
                        // We're in luck.
                        let inserted = tree.insert(
                            RangeFragAndRefness::new(frag, /*is_ref=*/ true),
                            Some(&|item1: RangeFragAndRefness, item2: RangeFragAndRefness| {
                                cmp_range_frags(&item1.frag, &item2.frag)
                            }),
                        );
                        // This can't fail -- we just checked for it!
                        assert!(inserted);
                        return SpillSlot::new(i as u32);
                    }
                    // Otherwise move on.
                }
                LogicalSpillSlot::InUse { .. } | LogicalSpillSlot::Unavail => {
                    // Slot isn't is use, or is in use but for values of some non-ref size.
                    // Move on.
                }
            }
        }
        // We tried all slots, but without success.  Add a new one and try again.  This time we
        // must succeed.  Calling recursively is a bit stupid in the sense that we then search
        // again to find the slot we just allocated, but hey.
        self.add_new_slot(1 /*word*/);
        self.alloc_reftyped_spillslot_for_frag(frag) // \o/ tailcall \o/
    }

    // STACKMAP SUPPORT
    // Examine all the spill slots at `pt` and return those that are reftyped.  This is
    // fundamentally what creates a stack map.
    pub fn get_reftyped_spillslots_at_inst_point(&self, pt: InstPoint) -> Vec<SpillSlot> {
        let mut res = Vec::<SpillSlot>::new();
        for (i, slot) in self.slots.iter().enumerate() {
            if slot.get_refness_at_inst_point(pt) == Some(true) {
                res.push(SpillSlot::new(i as u32));
            }
        }
        res
    }
}