1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
// Copyright 2020 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use super::*;
use crate::kbucket::{Key, KeyBytes};
use libp2p_core::PeerId;
use std::{
    collections::HashMap,
    iter::{Cycle, Map, Peekable},
    ops::{Index, IndexMut, Range},
};
use wasm_timer::Instant;

/// Wraps around a set of [`ClosestPeersIter`], enforcing a disjoint discovery
/// path per configured parallelism according to the S/Kademlia paper.
pub struct ClosestDisjointPeersIter {
    config: ClosestPeersIterConfig,
    target: KeyBytes,

    /// The set of wrapped [`ClosestPeersIter`].
    iters: Vec<ClosestPeersIter>,
    /// Order in which to query the iterators ensuring fairness across
    /// [`ClosestPeersIter::next`] calls.
    iter_order: Cycle<Map<Range<usize>, fn(usize) -> IteratorIndex>>,

    /// Mapping of contacted peers by their [`PeerId`] to [`PeerState`]
    /// containing the corresponding iterator indices as well as the response
    /// state.
    ///
    /// Used to track which iterator contacted which peer. See [`PeerState`]
    /// for details.
    contacted_peers: HashMap<PeerId, PeerState>,
}

impl ClosestDisjointPeersIter {
    /// Creates a new iterator with a default configuration.
    pub fn new<I>(target: KeyBytes, known_closest_peers: I) -> Self
    where
        I: IntoIterator<Item = Key<PeerId>>,
    {
        Self::with_config(
            ClosestPeersIterConfig::default(),
            target,
            known_closest_peers,
        )
    }

    /// Creates a new iterator with the given configuration.
    pub fn with_config<I, T>(
        config: ClosestPeersIterConfig,
        target: T,
        known_closest_peers: I,
    ) -> Self
    where
        I: IntoIterator<Item = Key<PeerId>>,
        T: Into<KeyBytes> + Clone,
    {
        let peers = known_closest_peers.into_iter().take(K_VALUE.get()).collect::<Vec<_>>();
        let iters = (0..config.parallelism.get())
            // NOTE: All [`ClosestPeersIter`] share the same set of peers at
            // initialization. The [`ClosestDisjointPeersIter.contacted_peers`]
            // mapping ensures that a successful response from a peer is only
            // ever passed to a single [`ClosestPeersIter`]. See
            // [`ClosestDisjointPeersIter::on_success`] for details.
            .map(|_| ClosestPeersIter::with_config(config.clone(), target.clone(), peers.clone()))
            .collect::<Vec<_>>();

        let iters_len = iters.len();

        ClosestDisjointPeersIter {
            config,
            target: target.into(),
            iters,
            iter_order: (0..iters_len).map(IteratorIndex as fn(usize) -> IteratorIndex).cycle(),
            contacted_peers: HashMap::new(),
        }
    }

    /// Callback for informing the iterator about a failed request to a peer.
    ///
    /// If the iterator is currently waiting for a result from `peer`,
    /// the iterator state is updated and `true` is returned. In that
    /// case, after calling this function, `next` should eventually be
    /// called again to obtain the new state of the iterator.
    ///
    /// If the iterator is finished, it is not currently waiting for a
    /// result from `peer`, or a result for `peer` has already been reported,
    /// calling this function has no effect and `false` is returned.
    pub fn on_failure(&mut self, peer: &PeerId) -> bool {
        let mut updated = false;

        if let Some(PeerState{ initiated_by, response }) = self.contacted_peers.get_mut(peer) {
            updated = self.iters[*initiated_by].on_failure(peer);

            if updated {
                *response = ResponseState::Failed;
            }

            for (i, iter) in &mut self.iters.iter_mut().enumerate() {
                if IteratorIndex(i) != *initiated_by {
                    // This iterator never triggered an actual request to the
                    // given peer - thus ignore the returned boolean.
                    iter.on_failure(peer);
                }
            }
        }

        updated
    }

    /// Callback for delivering the result of a successful request to a peer.
    ///
    /// Delivering results of requests back to the iterator allows the iterator
    /// to make progress. The iterator is said to make progress either when the
    /// given `closer_peers` contain a peer closer to the target than any peer
    /// seen so far, or when the iterator did not yet accumulate `num_results`
    /// closest peers and `closer_peers` contains a new peer, regardless of its
    /// distance to the target.
    ///
    /// If the iterator is currently waiting for a result from `peer`,
    /// the iterator state is updated and `true` is returned. In that
    /// case, after calling this function, `next` should eventually be
    /// called again to obtain the new state of the iterator.
    ///
    /// If the iterator is finished, it is not currently waiting for a
    /// result from `peer`, or a result for `peer` has already been reported,
    /// calling this function has no effect and `false` is returned.
    pub fn on_success<I>(&mut self, peer: &PeerId, closer_peers: I) -> bool
    where
        I: IntoIterator<Item = PeerId>,
    {
        let mut updated = false;

        if let Some(PeerState{ initiated_by, response }) = self.contacted_peers.get_mut(peer) {
            // Pass the new `closer_peers` to the iterator that first yielded
            // the peer.
            updated = self.iters[*initiated_by].on_success(peer, closer_peers);

            if updated {
                // Mark the response as succeeded for future iterators yielding
                // this peer. There is no need to keep the `closer_peers`
                // around, given that they are only passed to the first
                // iterator.
                *response = ResponseState::Succeeded;
            }

            for (i, iter) in &mut self.iters.iter_mut().enumerate() {
                if IteratorIndex(i) != *initiated_by {
                    // Only report the success to all remaining not-first
                    // iterators. Do not pass the `closer_peers` in order to
                    // uphold the S/Kademlia disjoint paths guarantee.
                    //
                    // This iterator never triggered an actual request to the
                    // given peer - thus ignore the returned boolean.
                    iter.on_success(peer, std::iter::empty());
                }
            }
        }

        updated
    }

    pub fn is_waiting(&self, peer: &PeerId) -> bool {
        self.iters.iter().any(|i| i.is_waiting(peer))
    }

    pub fn next(&mut self, now: Instant) -> PeersIterState<'_> {
        let mut state = None;

        // Ensure querying each iterator at most once.
        for _ in 0 .. self.iters.len() {
            let i = self.iter_order.next().expect("Cycle never ends.");
            let iter = &mut self.iters[i];

            loop {
                match iter.next(now) {
                    PeersIterState::Waiting(None) => {
                        match state {
                            Some(PeersIterState::Waiting(Some(_))) => {
                                // [`ClosestDisjointPeersIter::next`] returns immediately once a
                                // [`ClosestPeersIter`] yielded a peer. Thus this state is
                                // unreachable.
                                unreachable!();
                            },
                            Some(PeersIterState::Waiting(None)) => {}
                            Some(PeersIterState::WaitingAtCapacity) => {
                                // At least one ClosestPeersIter is no longer at capacity, thus the
                                // composite ClosestDisjointPeersIter is no longer at capacity.
                                state = Some(PeersIterState::Waiting(None))
                            }
                            Some(PeersIterState::Finished) => {
                                // `state` is never set to `Finished`.
                                unreachable!();
                            }
                            None => state = Some(PeersIterState::Waiting(None)),

                        };

                        break;
                    }
                    PeersIterState::Waiting(Some(peer)) => {
                        match self.contacted_peers.get_mut(&*peer) {
                            Some(PeerState{ response, .. }) => {
                                // Another iterator already contacted this peer.
                                let peer = peer.into_owned();

                                match response {
                                    // The iterator will be notified later whether the given node
                                    // was successfully contacted or not. See
                                    // [`ClosestDisjointPeersIter::on_success`] for details.
                                    ResponseState::Waiting => {},
                                    ResponseState::Succeeded => {
                                        // Given that iterator was not the first to contact the peer
                                        // it will not be made aware of the closer peers discovered
                                        // to uphold the S/Kademlia disjoint paths guarantee. See
                                        // [`ClosestDisjointPeersIter::on_success`] for details.
                                        iter.on_success(&peer, std::iter::empty());
                                    },
                                    ResponseState::Failed => {
                                        iter.on_failure(&peer);
                                    },
                                }
                            },
                            None => {
                                // The iterator is the first to contact this peer.
                                self.contacted_peers.insert(
                                    peer.clone().into_owned(),
                                    PeerState::new(i),
                                );
                                return PeersIterState::Waiting(Some(Cow::Owned(peer.into_owned())));
                            },
                        }
                    }
                    PeersIterState::WaitingAtCapacity => {
                        match state {
                            Some(PeersIterState::Waiting(Some(_))) => {
                                // [`ClosestDisjointPeersIter::next`] returns immediately once a
                                // [`ClosestPeersIter`] yielded a peer. Thus this state is
                                // unreachable.
                                unreachable!();
                            },
                            Some(PeersIterState::Waiting(None)) => {}
                            Some(PeersIterState::WaitingAtCapacity) => {}
                            Some(PeersIterState::Finished) => {
                                // `state` is never set to `Finished`.
                                unreachable!();
                            },
                            None => state = Some(PeersIterState::WaitingAtCapacity),
                        };

                        break;
                    }
                    PeersIterState::Finished => break,
                }
            }
        }

        state.unwrap_or(PeersIterState::Finished)
    }

    /// Finishes all paths containing one of the given peers.
    ///
    /// See [`crate::query::Query::try_finish`] for details.
    pub fn finish_paths<'a, I>(&mut self, peers: I) -> bool
    where
        I: IntoIterator<Item = &'a PeerId>
    {
        for peer in peers {
            if let Some(PeerState{ initiated_by, .. }) = self.contacted_peers.get_mut(peer) {
                self.iters[*initiated_by].finish();
            }
        }

        self.is_finished()
    }

    /// Immediately transitions the iterator to [`PeersIterState::Finished`].
    pub fn finish(&mut self) {
        for iter in &mut self.iters {
            iter.finish();
        }
    }

    /// Checks whether the iterator has finished.
    pub fn is_finished(&self) -> bool {
        self.iters.iter().all(|i| i.is_finished())
    }

    /// Note: In the case of no adversarial peers or connectivity issues along
    ///       any path, all paths return the same result, deduplicated through
    ///       the `ResultIter`, thus overall `into_result` returns
    ///       `num_results`. In the case of adversarial peers or connectivity
    ///       issues `ClosestDisjointPeersIter` tries to return the
    ///       `num_results` closest benign peers, but as it can not
    ///       differentiate benign from faulty paths it as well returns faulty
    ///       peers and thus overall returns more than `num_results` peers.
    pub fn into_result(self) -> impl Iterator<Item = PeerId> {
        let result_per_path= self.iters.into_iter()
            .map(|iter| iter.into_result().map(Key::from));

        ResultIter::new(self.target, result_per_path).map(Key::into_preimage)
    }
}

/// Index into the [`ClosestDisjointPeersIter`] `iters` vector.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct IteratorIndex(usize);

impl Index<IteratorIndex> for Vec<ClosestPeersIter> {
    type Output = ClosestPeersIter;

    fn index(&self, index: IteratorIndex) -> &Self::Output {
        &self[index.0]
    }
}

impl IndexMut<IteratorIndex> for Vec<ClosestPeersIter> {
    fn index_mut(&mut self, index: IteratorIndex) -> &mut Self::Output {
        &mut self[index.0]
    }
}

/// State tracking the iterator that yielded (i.e. tried to contact) a peer. See
/// [`ClosestDisjointPeersIter::on_success`] for details.
#[derive(Debug, PartialEq, Eq)]
struct PeerState {
    /// First iterator to yield the peer. Will be notified both of the outcome
    /// (success/failure) as well as the closer peers.
    initiated_by: IteratorIndex,
    /// Keeping track of the response state. In case other iterators later on
    /// yield the same peer, they can be notified of the response outcome.
    response: ResponseState,
}

impl PeerState {
    fn new(initiated_by: IteratorIndex) -> Self {
        PeerState {
            initiated_by,
            response: ResponseState::Waiting,
        }
    }
}

#[derive(Debug, PartialEq, Eq)]
enum ResponseState {
    Waiting,
    Succeeded,
    Failed,
}

/// Iterator combining the result of multiple [`ClosestPeersIter`] into a single
/// deduplicated ordered iterator.
//
// Note: This operates under the assumption that `I` is ordered.
#[derive(Clone, Debug)]
struct ResultIter<I> where
    I: Iterator<Item = Key<PeerId>>,
{
    target: KeyBytes,
    iters: Vec<Peekable<I>>,
}

impl<I: Iterator<Item = Key<PeerId>>> ResultIter<I> {
    fn new(target: KeyBytes, iters: impl Iterator<Item = I>) -> Self {
        ResultIter{
            target,
            iters: iters.map(Iterator::peekable).collect(),
        }
    }
}

impl<I: Iterator<Item = Key<PeerId>>> Iterator for ResultIter<I> {
    type Item = I::Item;

    fn next(&mut self) -> Option<Self::Item> {
        let target = &self.target;

        self.iters.iter_mut()
            // Find the iterator with the next closest peer.
            .fold(
                Option::<&mut Peekable<_>>::None,
                |iter_a, iter_b| {
                    let iter_a = match iter_a {
                        Some(iter_a) => iter_a,
                        None => return Some(iter_b),
                    };

                    match (iter_a.peek(), iter_b.peek()) {
                        (Some(next_a), Some(next_b)) => {
                            if next_a == next_b {
                                // Remove from one for deduplication.
                                iter_b.next();
                                return Some(iter_a)
                            }

                            if target.distance(next_a) < target.distance(next_b) {
                                Some(iter_a)
                            } else {
                                Some(iter_b)
                            }
                        },
                        (Some(_), None) => Some(iter_a),
                        (None, Some(_)) => Some(iter_b),
                        (None, None) => None,
                    }
                },
            )
            // Pop off the next closest peer from that iterator.
            .and_then(Iterator::next)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::K_VALUE;
    use libp2p_core::multihash::{Code, Multihash};
    use quickcheck::*;
    use rand::{Rng, seq::SliceRandom};
    use std::collections::HashSet;
    use std::iter;

    impl Arbitrary for ResultIter<std::vec::IntoIter<Key<PeerId>>> {
        fn arbitrary<G: Gen>(g: &mut G) -> Self {
            let target = Target::arbitrary(g).0;
            let num_closest_iters = g.gen_range(0, 20 + 1);
            let peers = random_peers(
                g.gen_range(0, 20 * num_closest_iters + 1),
                g,
            );

            let iters: Vec<_> = (0..num_closest_iters)
                .map(|_| {
                    let num_peers = g.gen_range(0, 20 + 1);
                    let mut peers = peers.choose_multiple(g, num_peers)
                        .cloned()
                        .map(Key::from)
                        .collect::<Vec<_>>();

                    peers.sort_unstable_by(|a, b| {
                        target.distance(a).cmp(&target.distance(b))
                    });

                    peers.into_iter()
                })
                .collect();

            ResultIter::new(target, iters.into_iter())
        }

        fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
            let peers = self.iters
                .clone()
                .into_iter()
                .flatten()
                .collect::<HashSet<_>>()
                .into_iter()
                .collect::<Vec<_>>();

            let iters = self.iters.clone()
                .into_iter()
                .map(|iter| iter.collect::<Vec<_>>())
                .collect();

            Box::new(ResultIterShrinker {
                target: self.target.clone(),
                peers,
                iters,
            })
        }
    }

    struct ResultIterShrinker {
        target: KeyBytes,
        peers: Vec<Key<PeerId>>,
        iters: Vec<Vec<Key<PeerId>>>,
    }

    impl Iterator for ResultIterShrinker {
        type Item = ResultIter<std::vec::IntoIter<Key<PeerId>>>;

        /// Return an iterator of [`ResultIter`]s with each of them missing a
        /// different peer from the original set.
        fn next(&mut self) -> Option<Self::Item> {
            // The peer that should not be included.
            let peer = self.peers.pop()?;

            let iters = self.iters.clone().into_iter()
                .filter_map(|mut iter| {
                    iter.retain(|p| p != &peer);
                    if iter.is_empty() {
                        return None;
                    }
                    Some(iter.into_iter())
                }).collect::<Vec<_>>();

            Some(ResultIter::new(self.target.clone(), iters.into_iter()))
        }
    }

    #[derive(Clone, Debug)]
    struct Target(KeyBytes);

    impl Arbitrary for Target {
        fn arbitrary<G: Gen>(g: &mut G) -> Self {
            Target(Key::from(random_peers(1, g).pop().unwrap()).into())
        }
    }

    fn random_peers<R: Rng>(n: usize, g: &mut R) -> Vec<PeerId> {
        (0 .. n).map(|_| PeerId::from_multihash(
            Multihash::wrap(Code::Sha2_256.into(), &g.gen::<[u8; 32]>()).unwrap()
        ).unwrap()).collect()
    }

    #[test]
    fn result_iter_returns_deduplicated_ordered_peer_id_stream() {
        fn prop(result_iter: ResultIter<std::vec::IntoIter<Key<PeerId>>>) {
            let expected = {
                let mut deduplicated = result_iter.clone()
                    .iters
                    .into_iter()
                    .flatten()
                    .collect::<HashSet<_>>()
                    .into_iter()
                    .map(Key::from)
                    .collect::<Vec<_>>();

                deduplicated.sort_unstable_by(|a, b| {
                    result_iter.target.distance(a).cmp(&result_iter.target.distance(b))
                });

                deduplicated
            };

            assert_eq!(expected, result_iter.collect::<Vec<_>>());
        }

        QuickCheck::new().quickcheck(prop as fn(_))
    }

    #[derive(Debug, Clone)]
    struct Parallelism(NonZeroUsize);

    impl Arbitrary for Parallelism{
        fn arbitrary<G: Gen>(g: &mut G) -> Self {
            Parallelism(NonZeroUsize::new(g.gen_range(1, 10)).unwrap())
        }
    }

    #[derive(Debug, Clone)]
    struct NumResults(NonZeroUsize);

    impl Arbitrary for NumResults{
        fn arbitrary<G: Gen>(g: &mut G) -> Self {
            NumResults(NonZeroUsize::new(g.gen_range(1, K_VALUE.get())).unwrap())
        }
    }

    impl Arbitrary for ClosestPeersIterConfig {
        fn arbitrary<G: Gen>(g: &mut G) -> Self {
            ClosestPeersIterConfig {
                parallelism: Parallelism::arbitrary(g).0,
                num_results: NumResults::arbitrary(g).0,
                peer_timeout: Duration::from_secs(1),
            }
        }
    }

    #[derive(Debug, Clone)]
    struct PeerVec(pub Vec<Key<PeerId>>);

    impl Arbitrary for PeerVec {
        fn arbitrary<G: Gen>(g: &mut G) -> Self {
            PeerVec(
                (0..g.gen_range(1, 60))
                    .map(|_| PeerId::random())
                    .map(Key::from)
                    .collect(),
            )
        }
    }

    #[test]
    fn s_kademlia_disjoint_paths() {
        let now = Instant::now();
        let target: KeyBytes = Key::from(PeerId::random()).into();

        let mut pool = [0; 12].iter()
            .map(|_| Key::from(PeerId::random()))
            .collect::<Vec<_>>();

        pool.sort_unstable_by(|a, b| {
            target.distance(a).cmp(&target.distance(b))
        });

        let known_closest_peers = pool.split_off(pool.len() - 3);

        let config = ClosestPeersIterConfig {
            parallelism: NonZeroUsize::new(3).unwrap(),
            num_results: NonZeroUsize::new(3).unwrap(),
            ..ClosestPeersIterConfig::default()
        };

        let mut peers_iter = ClosestDisjointPeersIter::with_config(
            config.clone(),
            target,
            known_closest_peers.clone(),
        );

        ////////////////////////////////////////////////////////////////////////
        // First round.

        for _ in 0..3 {
            if let PeersIterState::Waiting(Some(Cow::Owned(peer))) = peers_iter.next(now) {
                assert!(known_closest_peers.contains(&Key::from(peer)));
            } else {
                panic!("Expected iterator to return peer to query.");
            }
        }

        assert_eq!(
            PeersIterState::WaitingAtCapacity,
            peers_iter.next(now),
        );

        let response_2 = pool.split_off(pool.len() - 3);
        let response_3 = pool.split_off(pool.len() - 3);
        // Keys are closer than any of the previous two responses from honest
        // node 1 and 2.
        let malicious_response_1 = pool.split_off(pool.len() - 3);

        // Response from malicious peer 1.
        peers_iter.on_success(
            known_closest_peers[0].preimage(),
            malicious_response_1.clone().into_iter().map(|k| k.preimage().clone()),
        );

        // Response from peer 2.
        peers_iter.on_success(
            known_closest_peers[1].preimage(),
            response_2.clone().into_iter().map(|k| k.preimage().clone()),
        );

        // Response from peer 3.
        peers_iter.on_success(
            known_closest_peers[2].preimage(),
            response_3.clone().into_iter().map(|k| k.preimage().clone()),
        );

        ////////////////////////////////////////////////////////////////////////
        // Second round.

        let mut next_to_query = vec![];
        for _ in 0..3 {
            if let PeersIterState::Waiting(Some(Cow::Owned(peer))) = peers_iter.next(now) {
                next_to_query.push(peer)
            } else {
                panic!("Expected iterator to return peer to query.");
            }
        };

        // Expect a peer from each disjoint path.
        assert!(next_to_query.contains(malicious_response_1[0].preimage()));
        assert!(next_to_query.contains(response_2[0].preimage()));
        assert!(next_to_query.contains(response_3[0].preimage()));

        for peer in next_to_query {
            peers_iter.on_success(&peer, vec![]);
        }

        // Mark all remaining peers as succeeded.
        for _ in 0..6 {
            if let PeersIterState::Waiting(Some(Cow::Owned(peer))) = peers_iter.next(now) {
                peers_iter.on_success(&peer, vec![]);
            } else {
                panic!("Expected iterator to return peer to query.");
            }
        }

        assert_eq!(
            PeersIterState::Finished,
            peers_iter.next(now),
        );

        let final_peers: Vec<_> = peers_iter.into_result().collect();

        // Expect final result to contain peer from each disjoint path, even
        // though not all are among the best ones.
        assert!(final_peers.contains(malicious_response_1[0].preimage()));
        assert!(final_peers.contains(response_2[0].preimage()));
        assert!(final_peers.contains(response_3[0].preimage()));
    }

    #[derive(Clone)]
    struct Graph(HashMap<PeerId, Peer>);

    impl std::fmt::Debug for Graph {
        fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            fmt.debug_list().entries(self.0.iter().map(|(id, _)| id)).finish()
        }
    }

    impl Arbitrary for Graph {
        fn arbitrary<G: Gen>(g: &mut G) -> Self {
            let mut peer_ids = random_peers(g.gen_range(K_VALUE.get(), 200), g)
                .into_iter()
                .map(|peer_id| (peer_id.clone(), Key::from(peer_id)))
                .collect::<Vec<_>>();

            // Make each peer aware of its direct neighborhood.
            let mut peers = peer_ids.clone().into_iter()
                .map(|(peer_id, key)| {
                    peer_ids.sort_unstable_by(|(_, a), (_, b)| {
                        key.distance(a).cmp(&key.distance(b))
                    });

                    assert_eq!(peer_id, peer_ids[0].0);

                    let known_peers = peer_ids.iter()
                        // Skip itself.
                        .skip(1)
                        .take(K_VALUE.get())
                        .cloned()
                        .collect::<Vec<_>>();

                    (peer_id, Peer{ known_peers })
                })
                .collect::<HashMap<_, _>>();

            // Make each peer aware of a random set of other peers within the graph.
            for (peer_id, peer) in peers.iter_mut() {
                peer_ids.shuffle(g);

                let num_peers = g.gen_range(K_VALUE.get(), peer_ids.len() + 1);
                let mut random_peer_ids = peer_ids.choose_multiple(g, num_peers)
                    // Make sure not to include itself.
                    .filter(|(id, _)| peer_id != id)
                    .cloned()
                    .collect::<Vec<_>>();

                peer.known_peers.append(&mut random_peer_ids);
                peer.known_peers = std::mem::replace(&mut peer.known_peers, vec![])
                    // Deduplicate peer ids.
                    .into_iter().collect::<HashSet<_>>().into_iter().collect();
            }

            Graph(peers)
        }
    }

    impl Graph {
        fn get_closest_peer(&self, target: &KeyBytes) -> PeerId {
            self.0.iter()
                .map(|(peer_id, _)| (target.distance(&Key::from(*peer_id)), peer_id))
                .fold(None, |acc, (distance_b, peer_id_b)| {
                    match acc {
                        None => Some((distance_b, peer_id_b)),
                        Some((distance_a, peer_id_a)) => if distance_a < distance_b {
                            Some((distance_a, peer_id_a))
                        } else {
                            Some((distance_b, peer_id_b))
                        }
                    }

                })
                .expect("Graph to have at least one peer.")
                .1.clone()
        }
    }

    #[derive(Debug, Clone)]
    struct Peer {
        known_peers: Vec<(PeerId, Key<PeerId>)>,
    }

    impl Peer {
        fn get_closest_peers(&mut self, target: &KeyBytes) -> Vec<PeerId> {
            self.known_peers.sort_unstable_by(|(_, a), (_, b)| {
                target.distance(a).cmp(&target.distance(b))
            });

            self.known_peers.iter().take(K_VALUE.get()).map(|(id, _)| id).cloned().collect()
        }
    }

    enum PeerIterator {
        Disjoint(ClosestDisjointPeersIter),
        Closest(ClosestPeersIter),
    }

    impl PeerIterator {
        fn next(&mut self, now: Instant) -> PeersIterState<'_> {
            match self {
                PeerIterator::Disjoint(iter) => iter.next(now),
                PeerIterator::Closest(iter) => iter.next(now),
            }
        }

        fn on_success(&mut self, peer: &PeerId, closer_peers: Vec<PeerId>) {
            match self {
                PeerIterator::Disjoint(iter) => iter.on_success(peer, closer_peers),
                PeerIterator::Closest(iter) => iter.on_success(peer, closer_peers),
            };
        }

        fn into_result(self) -> Vec<PeerId> {
            match self {
                PeerIterator::Disjoint(iter) => iter.into_result().collect(),
                PeerIterator::Closest(iter) => iter.into_result().collect(),
            }
        }
    }

    /// Ensure [`ClosestPeersIter`] and [`ClosestDisjointPeersIter`] yield same closest peers.
    #[test]
    fn closest_and_disjoint_closest_yield_same_result() {
        fn prop(
            target: Target,
            graph: Graph,
            parallelism: Parallelism,
            num_results: NumResults,
        ) -> TestResult {
            if parallelism.0 > num_results.0 {
                return TestResult::discard();
            }

            let target: KeyBytes = target.0;
            let closest_peer = graph.get_closest_peer(&target);

            let mut known_closest_peers = graph.0.iter()
                .take(K_VALUE.get())
                .map(|(key, _peers)| Key::from(*key))
                .collect::<Vec<_>>();
            known_closest_peers.sort_unstable_by(|a, b| {
                target.distance(a).cmp(&target.distance(b))
            });

            let cfg = ClosestPeersIterConfig{
                parallelism: parallelism.0,
                num_results: num_results.0,
                ..ClosestPeersIterConfig::default()
            };

            let closest = drive_to_finish(
                PeerIterator::Closest(ClosestPeersIter::with_config(
                    cfg.clone(),
                    target.clone(),
                    known_closest_peers.clone(),
                )),
                graph.clone(),
                &target,
            );

            let disjoint = drive_to_finish(
                PeerIterator::Disjoint(ClosestDisjointPeersIter::with_config(
                    cfg,
                    target.clone(),
                    known_closest_peers.clone(),
                )),
                graph.clone(),
                &target,
            );

            assert!(
                closest.contains(&closest_peer),
                "Expected `ClosestPeersIter` to find closest peer.",
            );
            assert!(
                disjoint.contains(&closest_peer),
                "Expected `ClosestDisjointPeersIter` to find closest peer.",
            );

            assert!(
                closest.len() == num_results.0.get(),
                "Expected `ClosestPeersIter` to find `num_results` closest \
                 peers."
            );
            assert!(
                disjoint.len() >= num_results.0.get(),
                "Expected `ClosestDisjointPeersIter` to find at least \
                 `num_results` closest peers."
            );

            if closest.len() > disjoint.len() {
                let closest_only = closest.difference(&disjoint).collect::<Vec<_>>();

                panic!(
                    "Expected `ClosestDisjointPeersIter` to find all peers \
                     found by `ClosestPeersIter`, but it did not find {:?}.",
                    closest_only,
                );
            };

            TestResult::passed()
        }

        fn drive_to_finish(
            mut iter: PeerIterator,
            mut graph: Graph,
            target: &KeyBytes,
        ) -> HashSet<PeerId> {
            let now = Instant::now();
            loop {
                match iter.next(now) {
                    PeersIterState::Waiting(Some(peer_id)) => {
                        let peer_id = peer_id.clone().into_owned();
                        let closest_peers = graph.0.get_mut(&peer_id)
                            .unwrap()
                            .get_closest_peers(&target);
                        iter.on_success(&peer_id, closest_peers);
                    } ,
                    PeersIterState::WaitingAtCapacity | PeersIterState::Waiting(None) =>
                        panic!("There is never more than one request in flight."),
                    PeersIterState::Finished => break,
                }
            }

            let mut result = iter.into_result().into_iter().map(Key::from).collect::<Vec<_>>();
            result.sort_unstable_by(|a, b| {
                target.distance(a).cmp(&target.distance(b))
            });
            result.into_iter().map(|k| k.into_preimage()).collect()
        }

        QuickCheck::new().tests(10).quickcheck(prop as fn(_, _, _, _) -> _)
    }

    #[test]
    fn failure_can_not_overwrite_previous_success() {
        let now = Instant::now();
        let peer = PeerId::random();
        let mut iter = ClosestDisjointPeersIter::new(
            Key::from(PeerId::random()).into(),
            iter::once(Key::from(peer.clone())),
        );

        assert!(matches!(iter.next(now), PeersIterState::Waiting(Some(_))));

        // Expect peer to be marked as succeeded.
        assert!(iter.on_success(&peer, iter::empty()));
        assert_eq!(iter.contacted_peers.get(&peer), Some(&PeerState {
            initiated_by: IteratorIndex(0),
            response: ResponseState::Succeeded,
        }));

        // Expect peer to stay marked as succeeded.
        assert!(!iter.on_failure(&peer));
        assert_eq!(iter.contacted_peers.get(&peer), Some(&PeerState {
            initiated_by: IteratorIndex(0),
            response: ResponseState::Succeeded,
        }));
    }
}