1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
//! A concurrent, lock-free, FIFO list.
use crate::loom::{
sync::atomic::{AtomicPtr, AtomicUsize},
thread,
};
use crate::sync::mpsc::block::{self, Block};
use std::fmt;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release};
/// List queue transmit handle
pub(crate) struct Tx<T> {
/// Tail in the `Block` mpmc list.
block_tail: AtomicPtr<Block<T>>,
/// Position to push the next message. This reference a block and offset
/// into the block.
tail_position: AtomicUsize,
}
/// List queue receive handle
pub(crate) struct Rx<T> {
/// Pointer to the block being processed
head: NonNull<Block<T>>,
/// Next slot index to process
index: usize,
/// Pointer to the next block pending release
free_head: NonNull<Block<T>>,
}
pub(crate) fn channel<T>() -> (Tx<T>, Rx<T>) {
// Create the initial block shared between the tx and rx halves.
let initial_block = Box::new(Block::new(0));
let initial_block_ptr = Box::into_raw(initial_block);
let tx = Tx {
block_tail: AtomicPtr::new(initial_block_ptr),
tail_position: AtomicUsize::new(0),
};
let head = NonNull::new(initial_block_ptr).unwrap();
let rx = Rx {
head,
index: 0,
free_head: head,
};
(tx, rx)
}
impl<T> Tx<T> {
/// Pushes a value into the list.
pub(crate) fn push(&self, value: T) {
// First, claim a slot for the value. `Acquire` is used here to
// synchronize with the `fetch_add` in `reclaim_blocks`.
let slot_index = self.tail_position.fetch_add(1, Acquire);
// Load the current block and write the value
let block = self.find_block(slot_index);
unsafe {
// Write the value to the block
block.as_ref().write(slot_index, value);
}
}
/// Closes the send half of the list
///
/// Similar process as pushing a value, but instead of writing the value &
/// setting the ready flag, the TX_CLOSED flag is set on the block.
pub(crate) fn close(&self) {
// First, claim a slot for the value. This is the last slot that will be
// claimed.
let slot_index = self.tail_position.fetch_add(1, Acquire);
let block = self.find_block(slot_index);
unsafe { block.as_ref().tx_close() }
}
fn find_block(&self, slot_index: usize) -> NonNull<Block<T>> {
// The start index of the block that contains `index`.
let start_index = block::start_index(slot_index);
// The index offset into the block
let offset = block::offset(slot_index);
// Load the current head of the block
let mut block_ptr = self.block_tail.load(Acquire);
let block = unsafe { &*block_ptr };
// Calculate the distance between the tail ptr and the target block
let distance = block.distance(start_index);
// Decide if this call to `find_block` should attempt to update the
// `block_tail` pointer.
//
// Updating `block_tail` is not always performed in order to reduce
// contention.
//
// When set, as the routine walks the linked list, it attempts to update
// `block_tail`. If the update cannot be performed, `try_updating_tail`
// is unset.
let mut try_updating_tail = distance > offset;
// Walk the linked list of blocks until the block with `start_index` is
// found.
loop {
let block = unsafe { &(*block_ptr) };
if block.is_at_index(start_index) {
return unsafe { NonNull::new_unchecked(block_ptr) };
}
let next_block = block
.load_next(Acquire)
// There is no allocated next block, grow the linked list.
.unwrap_or_else(|| block.grow());
// If the block is **not** final, then the tail pointer cannot be
// advanced any more.
try_updating_tail &= block.is_final();
if try_updating_tail {
// Advancing `block_tail` must happen when walking the linked
// list. `block_tail` may not advance passed any blocks that are
// not "final". At the point a block is finalized, it is unknown
// if there are any prior blocks that are unfinalized, which
// makes it impossible to advance `block_tail`.
//
// While walking the linked list, `block_tail` can be advanced
// as long as finalized blocks are traversed.
//
// Release ordering is used to ensure that any subsequent reads
// are able to see the memory pointed to by `block_tail`.
//
// Acquire is not needed as any "actual" value is not accessed.
// At this point, the linked list is walked to acquire blocks.
let actual =
self.block_tail
.compare_and_swap(block_ptr, next_block.as_ptr(), Release);
if actual == block_ptr {
// Synchronize with any senders
let tail_position = self.tail_position.fetch_add(0, Release);
unsafe {
block.tx_release(tail_position);
}
} else {
// A concurrent sender is also working on advancing
// `block_tail` and this thread is falling behind.
//
// Stop trying to advance the tail pointer
try_updating_tail = false;
}
}
block_ptr = next_block.as_ptr();
thread::yield_now();
}
}
pub(crate) unsafe fn reclaim_block(&self, mut block: NonNull<Block<T>>) {
// The block has been removed from the linked list and ownership
// is reclaimed.
//
// Before dropping the block, see if it can be reused by
// inserting it back at the end of the linked list.
//
// First, reset the data
block.as_mut().reclaim();
let mut reused = false;
// Attempt to insert the block at the end
//
// Walk at most three times
//
let curr_ptr = self.block_tail.load(Acquire);
// The pointer can never be null
debug_assert!(!curr_ptr.is_null());
let mut curr = NonNull::new_unchecked(curr_ptr);
// TODO: Unify this logic with Block::grow
for _ in 0..3 {
match curr.as_ref().try_push(&mut block, AcqRel) {
Ok(_) => {
reused = true;
break;
}
Err(next) => {
curr = next;
}
}
}
if !reused {
let _ = Box::from_raw(block.as_ptr());
}
}
}
impl<T> fmt::Debug for Tx<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Tx")
.field("block_tail", &self.block_tail.load(Relaxed))
.field("tail_position", &self.tail_position.load(Relaxed))
.finish()
}
}
impl<T> Rx<T> {
/// Pops the next value off the queue
pub(crate) fn pop(&mut self, tx: &Tx<T>) -> Option<block::Read<T>> {
// Advance `head`, if needed
if !self.try_advancing_head() {
return None;
}
self.reclaim_blocks(tx);
unsafe {
let block = self.head.as_ref();
let ret = block.read(self.index);
if let Some(block::Read::Value(..)) = ret {
self.index = self.index.wrapping_add(1);
}
ret
}
}
/// Tries advancing the block pointer to the block referenced by `self.index`.
///
/// Returns `true` if successful, `false` if there is no next block to load.
fn try_advancing_head(&mut self) -> bool {
let block_index = block::start_index(self.index);
loop {
let next_block = {
let block = unsafe { self.head.as_ref() };
if block.is_at_index(block_index) {
return true;
}
block.load_next(Acquire)
};
let next_block = match next_block {
Some(next_block) => next_block,
None => {
return false;
}
};
self.head = next_block;
thread::yield_now();
}
}
fn reclaim_blocks(&mut self, tx: &Tx<T>) {
while self.free_head != self.head {
unsafe {
// Get a handle to the block that will be freed and update
// `free_head` to point to the next block.
let block = self.free_head;
let observed_tail_position = block.as_ref().observed_tail_position();
let required_index = match observed_tail_position {
Some(i) => i,
None => return,
};
if required_index > self.index {
return;
}
// We may read the next pointer with `Relaxed` ordering as it is
// guaranteed that the `reclaim_blocks` routine trails the `recv`
// routine. Any memory accessed by `reclaim_blocks` has already
// been acquired by `recv`.
let next_block = block.as_ref().load_next(Relaxed);
// Update the free list head
self.free_head = next_block.unwrap();
// Push the emptied block onto the back of the queue, making it
// available to senders.
tx.reclaim_block(block);
}
thread::yield_now();
}
}
/// Effectively `Drop` all the blocks. Should only be called once, when
/// the list is dropping.
pub(super) unsafe fn free_blocks(&mut self) {
debug_assert_ne!(self.free_head, NonNull::dangling());
let mut cur = Some(self.free_head);
#[cfg(debug_assertions)]
{
// to trigger the debug assert above so as to catch that we
// don't call `free_blocks` more than once.
self.free_head = NonNull::dangling();
self.head = NonNull::dangling();
}
while let Some(block) = cur {
cur = block.as_ref().load_next(Relaxed);
drop(Box::from_raw(block.as_ptr()));
}
}
}
impl<T> fmt::Debug for Rx<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Rx")
.field("head", &self.head)
.field("index", &self.index)
.field("free_head", &self.free_head)
.finish()
}
}