1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//! Time driver

mod atomic_stack;
use self::atomic_stack::AtomicStack;

mod entry;
pub(super) use self::entry::Entry;

mod handle;
pub(crate) use self::handle::Handle;

mod registration;
pub(crate) use self::registration::Registration;

mod stack;
use self::stack::Stack;

use crate::loom::sync::atomic::{AtomicU64, AtomicUsize};
use crate::park::{Park, Unpark};
use crate::time::{wheel, Error};
use crate::time::{Clock, Duration, Instant};

use std::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};

use std::sync::Arc;
use std::usize;
use std::{cmp, fmt};

/// Time implementation that drives [`Delay`][delay], [`Interval`][interval], and [`Timeout`][timeout].
///
/// A `Driver` instance tracks the state necessary for managing time and
/// notifying the [`Delay`][delay] instances once their deadlines are reached.
///
/// It is expected that a single instance manages many individual [`Delay`][delay]
/// instances. The `Driver` implementation is thread-safe and, as such, is able
/// to handle callers from across threads.
///
/// After creating the `Driver` instance, the caller must repeatedly call `park`
/// or `park_timeout`. The time driver will perform no work unless `park` or
/// `park_timeout` is called repeatedly.
///
/// The driver has a resolution of one millisecond. Any unit of time that falls
/// between milliseconds are rounded up to the next millisecond.
///
/// When an instance is dropped, any outstanding [`Delay`][delay] instance that has not
/// elapsed will be notified with an error. At this point, calling `poll` on the
/// [`Delay`][delay] instance will result in panic.
///
/// # Implementation
///
/// The time driver is based on the [paper by Varghese and Lauck][paper].
///
/// A hashed timing wheel is a vector of slots, where each slot handles a time
/// slice. As time progresses, the timer walks over the slot for the current
/// instant, and processes each entry for that slot. When the timer reaches the
/// end of the wheel, it starts again at the beginning.
///
/// The implementation maintains six wheels arranged in a set of levels. As the
/// levels go up, the slots of the associated wheel represent larger intervals
/// of time. At each level, the wheel has 64 slots. Each slot covers a range of
/// time equal to the wheel at the lower level. At level zero, each slot
/// represents one millisecond of time.
///
/// The wheels are:
///
/// * Level 0: 64 x 1 millisecond slots.
/// * Level 1: 64 x 64 millisecond slots.
/// * Level 2: 64 x ~4 second slots.
/// * Level 3: 64 x ~4 minute slots.
/// * Level 4: 64 x ~4 hour slots.
/// * Level 5: 64 x ~12 day slots.
///
/// When the timer processes entries at level zero, it will notify all the
/// `Delay` instances as their deadlines have been reached. For all higher
/// levels, all entries will be redistributed across the wheel at the next level
/// down. Eventually, as time progresses, entries will [`Delay`][delay] instances will
/// either be canceled (dropped) or their associated entries will reach level
/// zero and be notified.
///
/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
/// [delay]: crate::time::Delay
/// [timeout]: crate::time::Timeout
/// [interval]: crate::time::Interval
#[derive(Debug)]
pub(crate) struct Driver<T: Park> {
    /// Shared state
    inner: Arc<Inner>,

    /// Timer wheel
    wheel: wheel::Wheel<Stack>,

    /// Thread parker. The `Driver` park implementation delegates to this.
    park: T,

    /// Source of "now" instances
    clock: Clock,

    /// True if the driver is being shutdown
    is_shutdown: bool,
}

/// Timer state shared between `Driver`, `Handle`, and `Registration`.
pub(crate) struct Inner {
    /// The instant at which the timer started running.
    start: Instant,

    /// The last published timer `elapsed` value.
    elapsed: AtomicU64,

    /// Number of active timeouts
    num: AtomicUsize,

    /// Head of the "process" linked list.
    process: AtomicStack,

    /// Unparks the timer thread.
    unpark: Box<dyn Unpark>,
}

/// Maximum number of timeouts the system can handle concurrently.
const MAX_TIMEOUTS: usize = usize::MAX >> 1;

// ===== impl Driver =====

impl<T> Driver<T>
where
    T: Park,
{
    /// Creates a new `Driver` instance that uses `park` to block the current
    /// thread and `clock` to get the current `Instant`.
    ///
    /// Specifying the source of time is useful when testing.
    pub(crate) fn new(park: T, clock: Clock) -> Driver<T> {
        let unpark = Box::new(park.unpark());

        Driver {
            inner: Arc::new(Inner::new(clock.now(), unpark)),
            wheel: wheel::Wheel::new(),
            park,
            clock,
            is_shutdown: false,
        }
    }

    /// Returns a handle to the timer.
    ///
    /// The `Handle` is how `Delay` instances are created. The `Delay` instances
    /// can either be created directly or the `Handle` instance can be passed to
    /// `with_default`, setting the timer as the default timer for the execution
    /// context.
    pub(crate) fn handle(&self) -> Handle {
        Handle::new(Arc::downgrade(&self.inner))
    }

    /// Converts an `Expiration` to an `Instant`.
    fn expiration_instant(&self, when: u64) -> Instant {
        self.inner.start + Duration::from_millis(when)
    }

    /// Runs timer related logic
    fn process(&mut self) {
        let now = crate::time::ms(
            self.clock.now() - self.inner.start,
            crate::time::Round::Down,
        );
        let mut poll = wheel::Poll::new(now);

        while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
            let when = entry.when_internal().expect("invalid internal entry state");

            // Fire the entry
            entry.fire(when);

            // Track that the entry has been fired
            entry.set_when_internal(None);
        }

        // Update the elapsed cache
        self.inner.elapsed.store(self.wheel.elapsed(), SeqCst);
    }

    /// Processes the entry queue
    ///
    /// This handles adding and canceling timeouts.
    fn process_queue(&mut self) {
        for entry in self.inner.process.take() {
            match (entry.when_internal(), entry.load_state()) {
                (None, None) => {
                    // Nothing to do
                }
                (Some(_), None) => {
                    // Remove the entry
                    self.clear_entry(&entry);
                }
                (None, Some(when)) => {
                    // Queue the entry
                    self.add_entry(entry, when);
                }
                (Some(_), Some(next)) => {
                    self.clear_entry(&entry);
                    self.add_entry(entry, next);
                }
            }
        }
    }

    fn clear_entry(&mut self, entry: &Arc<Entry>) {
        self.wheel.remove(entry, &mut ());
        entry.set_when_internal(None);
    }

    /// Fires the entry if it needs to, otherwise queue it to be processed later.
    ///
    /// Returns `None` if the entry was fired.
    fn add_entry(&mut self, entry: Arc<Entry>, when: u64) {
        use crate::time::wheel::InsertError;

        entry.set_when_internal(Some(when));

        match self.wheel.insert(when, entry, &mut ()) {
            Ok(_) => {}
            Err((entry, InsertError::Elapsed)) => {
                // The entry's deadline has elapsed, so fire it and update the
                // internal state accordingly.
                entry.set_when_internal(None);
                entry.fire(when);
            }
            Err((entry, InsertError::Invalid)) => {
                // The entry's deadline is invalid, so error it and update the
                // internal state accordingly.
                entry.set_when_internal(None);
                entry.error(Error::invalid());
            }
        }
    }
}

impl<T> Park for Driver<T>
where
    T: Park,
{
    type Unpark = T::Unpark;
    type Error = T::Error;

    fn unpark(&self) -> Self::Unpark {
        self.park.unpark()
    }

    fn park(&mut self) -> Result<(), Self::Error> {
        self.process_queue();

        match self.wheel.poll_at() {
            Some(when) => {
                let now = self.clock.now();
                let deadline = self.expiration_instant(when);

                if deadline > now {
                    let dur = deadline - now;

                    if self.clock.is_paused() {
                        self.park.park_timeout(Duration::from_secs(0))?;
                        self.clock.advance(dur);
                    } else {
                        self.park.park_timeout(dur)?;
                    }
                } else {
                    self.park.park_timeout(Duration::from_secs(0))?;
                }
            }
            None => {
                self.park.park()?;
            }
        }

        self.process();

        Ok(())
    }

    fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
        self.process_queue();

        match self.wheel.poll_at() {
            Some(when) => {
                let now = self.clock.now();
                let deadline = self.expiration_instant(when);

                if deadline > now {
                    let duration = cmp::min(deadline - now, duration);

                    if self.clock.is_paused() {
                        self.park.park_timeout(Duration::from_secs(0))?;
                        self.clock.advance(duration);
                    } else {
                        self.park.park_timeout(duration)?;
                    }
                } else {
                    self.park.park_timeout(Duration::from_secs(0))?;
                }
            }
            None => {
                self.park.park_timeout(duration)?;
            }
        }

        self.process();

        Ok(())
    }

    fn shutdown(&mut self) {
        if self.is_shutdown {
            return;
        }

        use std::u64;

        // Shutdown the stack of entries to process, preventing any new entries
        // from being pushed.
        self.inner.process.shutdown();

        // Clear the wheel, using u64::MAX allows us to drain everything
        let mut poll = wheel::Poll::new(u64::MAX);

        while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
            entry.error(Error::shutdown());
        }

        self.park.shutdown();

        self.is_shutdown = true;
    }
}

impl<T> Drop for Driver<T>
where
    T: Park,
{
    fn drop(&mut self) {
        self.shutdown();
    }
}

// ===== impl Inner =====

impl Inner {
    fn new(start: Instant, unpark: Box<dyn Unpark>) -> Inner {
        Inner {
            num: AtomicUsize::new(0),
            elapsed: AtomicU64::new(0),
            process: AtomicStack::new(),
            start,
            unpark,
        }
    }

    fn elapsed(&self) -> u64 {
        self.elapsed.load(SeqCst)
    }

    #[cfg(all(test, loom))]
    fn num(&self, ordering: std::sync::atomic::Ordering) -> usize {
        self.num.load(ordering)
    }

    /// Increments the number of active timeouts
    fn increment(&self) -> Result<(), Error> {
        let mut curr = self.num.load(Relaxed);
        loop {
            if curr == MAX_TIMEOUTS {
                return Err(Error::at_capacity());
            }

            match self
                .num
                .compare_exchange_weak(curr, curr + 1, Release, Relaxed)
            {
                Ok(_) => return Ok(()),
                Err(next) => curr = next,
            }
        }
    }

    /// Decrements the number of active timeouts
    fn decrement(&self) {
        let prev = self.num.fetch_sub(1, Acquire);
        debug_assert!(prev <= MAX_TIMEOUTS);
    }

    fn queue(&self, entry: &Arc<Entry>) -> Result<(), Error> {
        if self.process.push(entry)? {
            // The timer is notified so that it can process the timeout
            self.unpark.unpark();
        }

        Ok(())
    }

    fn normalize_deadline(&self, deadline: Instant) -> u64 {
        if deadline < self.start {
            return 0;
        }

        crate::time::ms(deadline - self.start, crate::time::Round::Up)
    }
}

impl fmt::Debug for Inner {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Inner").finish()
    }
}

#[cfg(all(test, loom))]
mod tests;