1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
//! Time driver
mod atomic_stack;
use self::atomic_stack::AtomicStack;
mod entry;
pub(super) use self::entry::Entry;
mod handle;
pub(crate) use self::handle::Handle;
mod registration;
pub(crate) use self::registration::Registration;
mod stack;
use self::stack::Stack;
use crate::loom::sync::atomic::{AtomicU64, AtomicUsize};
use crate::park::{Park, Unpark};
use crate::time::{wheel, Error};
use crate::time::{Clock, Duration, Instant};
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};
use std::sync::Arc;
use std::usize;
use std::{cmp, fmt};
/// Time implementation that drives [`Delay`][delay], [`Interval`][interval], and [`Timeout`][timeout].
///
/// A `Driver` instance tracks the state necessary for managing time and
/// notifying the [`Delay`][delay] instances once their deadlines are reached.
///
/// It is expected that a single instance manages many individual [`Delay`][delay]
/// instances. The `Driver` implementation is thread-safe and, as such, is able
/// to handle callers from across threads.
///
/// After creating the `Driver` instance, the caller must repeatedly call `park`
/// or `park_timeout`. The time driver will perform no work unless `park` or
/// `park_timeout` is called repeatedly.
///
/// The driver has a resolution of one millisecond. Any unit of time that falls
/// between milliseconds are rounded up to the next millisecond.
///
/// When an instance is dropped, any outstanding [`Delay`][delay] instance that has not
/// elapsed will be notified with an error. At this point, calling `poll` on the
/// [`Delay`][delay] instance will result in panic.
///
/// # Implementation
///
/// The time driver is based on the [paper by Varghese and Lauck][paper].
///
/// A hashed timing wheel is a vector of slots, where each slot handles a time
/// slice. As time progresses, the timer walks over the slot for the current
/// instant, and processes each entry for that slot. When the timer reaches the
/// end of the wheel, it starts again at the beginning.
///
/// The implementation maintains six wheels arranged in a set of levels. As the
/// levels go up, the slots of the associated wheel represent larger intervals
/// of time. At each level, the wheel has 64 slots. Each slot covers a range of
/// time equal to the wheel at the lower level. At level zero, each slot
/// represents one millisecond of time.
///
/// The wheels are:
///
/// * Level 0: 64 x 1 millisecond slots.
/// * Level 1: 64 x 64 millisecond slots.
/// * Level 2: 64 x ~4 second slots.
/// * Level 3: 64 x ~4 minute slots.
/// * Level 4: 64 x ~4 hour slots.
/// * Level 5: 64 x ~12 day slots.
///
/// When the timer processes entries at level zero, it will notify all the
/// `Delay` instances as their deadlines have been reached. For all higher
/// levels, all entries will be redistributed across the wheel at the next level
/// down. Eventually, as time progresses, entries will [`Delay`][delay] instances will
/// either be canceled (dropped) or their associated entries will reach level
/// zero and be notified.
///
/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
/// [delay]: crate::time::Delay
/// [timeout]: crate::time::Timeout
/// [interval]: crate::time::Interval
#[derive(Debug)]
pub(crate) struct Driver<T: Park> {
/// Shared state
inner: Arc<Inner>,
/// Timer wheel
wheel: wheel::Wheel<Stack>,
/// Thread parker. The `Driver` park implementation delegates to this.
park: T,
/// Source of "now" instances
clock: Clock,
/// True if the driver is being shutdown
is_shutdown: bool,
}
/// Timer state shared between `Driver`, `Handle`, and `Registration`.
pub(crate) struct Inner {
/// The instant at which the timer started running.
start: Instant,
/// The last published timer `elapsed` value.
elapsed: AtomicU64,
/// Number of active timeouts
num: AtomicUsize,
/// Head of the "process" linked list.
process: AtomicStack,
/// Unparks the timer thread.
unpark: Box<dyn Unpark>,
}
/// Maximum number of timeouts the system can handle concurrently.
const MAX_TIMEOUTS: usize = usize::MAX >> 1;
// ===== impl Driver =====
impl<T> Driver<T>
where
T: Park,
{
/// Creates a new `Driver` instance that uses `park` to block the current
/// thread and `clock` to get the current `Instant`.
///
/// Specifying the source of time is useful when testing.
pub(crate) fn new(park: T, clock: Clock) -> Driver<T> {
let unpark = Box::new(park.unpark());
Driver {
inner: Arc::new(Inner::new(clock.now(), unpark)),
wheel: wheel::Wheel::new(),
park,
clock,
is_shutdown: false,
}
}
/// Returns a handle to the timer.
///
/// The `Handle` is how `Delay` instances are created. The `Delay` instances
/// can either be created directly or the `Handle` instance can be passed to
/// `with_default`, setting the timer as the default timer for the execution
/// context.
pub(crate) fn handle(&self) -> Handle {
Handle::new(Arc::downgrade(&self.inner))
}
/// Converts an `Expiration` to an `Instant`.
fn expiration_instant(&self, when: u64) -> Instant {
self.inner.start + Duration::from_millis(when)
}
/// Runs timer related logic
fn process(&mut self) {
let now = crate::time::ms(
self.clock.now() - self.inner.start,
crate::time::Round::Down,
);
let mut poll = wheel::Poll::new(now);
while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
let when = entry.when_internal().expect("invalid internal entry state");
// Fire the entry
entry.fire(when);
// Track that the entry has been fired
entry.set_when_internal(None);
}
// Update the elapsed cache
self.inner.elapsed.store(self.wheel.elapsed(), SeqCst);
}
/// Processes the entry queue
///
/// This handles adding and canceling timeouts.
fn process_queue(&mut self) {
for entry in self.inner.process.take() {
match (entry.when_internal(), entry.load_state()) {
(None, None) => {
// Nothing to do
}
(Some(_), None) => {
// Remove the entry
self.clear_entry(&entry);
}
(None, Some(when)) => {
// Queue the entry
self.add_entry(entry, when);
}
(Some(_), Some(next)) => {
self.clear_entry(&entry);
self.add_entry(entry, next);
}
}
}
}
fn clear_entry(&mut self, entry: &Arc<Entry>) {
self.wheel.remove(entry, &mut ());
entry.set_when_internal(None);
}
/// Fires the entry if it needs to, otherwise queue it to be processed later.
///
/// Returns `None` if the entry was fired.
fn add_entry(&mut self, entry: Arc<Entry>, when: u64) {
use crate::time::wheel::InsertError;
entry.set_when_internal(Some(when));
match self.wheel.insert(when, entry, &mut ()) {
Ok(_) => {}
Err((entry, InsertError::Elapsed)) => {
// The entry's deadline has elapsed, so fire it and update the
// internal state accordingly.
entry.set_when_internal(None);
entry.fire(when);
}
Err((entry, InsertError::Invalid)) => {
// The entry's deadline is invalid, so error it and update the
// internal state accordingly.
entry.set_when_internal(None);
entry.error(Error::invalid());
}
}
}
}
impl<T> Park for Driver<T>
where
T: Park,
{
type Unpark = T::Unpark;
type Error = T::Error;
fn unpark(&self) -> Self::Unpark {
self.park.unpark()
}
fn park(&mut self) -> Result<(), Self::Error> {
self.process_queue();
match self.wheel.poll_at() {
Some(when) => {
let now = self.clock.now();
let deadline = self.expiration_instant(when);
if deadline > now {
let dur = deadline - now;
if self.clock.is_paused() {
self.park.park_timeout(Duration::from_secs(0))?;
self.clock.advance(dur);
} else {
self.park.park_timeout(dur)?;
}
} else {
self.park.park_timeout(Duration::from_secs(0))?;
}
}
None => {
self.park.park()?;
}
}
self.process();
Ok(())
}
fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
self.process_queue();
match self.wheel.poll_at() {
Some(when) => {
let now = self.clock.now();
let deadline = self.expiration_instant(when);
if deadline > now {
let duration = cmp::min(deadline - now, duration);
if self.clock.is_paused() {
self.park.park_timeout(Duration::from_secs(0))?;
self.clock.advance(duration);
} else {
self.park.park_timeout(duration)?;
}
} else {
self.park.park_timeout(Duration::from_secs(0))?;
}
}
None => {
self.park.park_timeout(duration)?;
}
}
self.process();
Ok(())
}
fn shutdown(&mut self) {
if self.is_shutdown {
return;
}
use std::u64;
// Shutdown the stack of entries to process, preventing any new entries
// from being pushed.
self.inner.process.shutdown();
// Clear the wheel, using u64::MAX allows us to drain everything
let mut poll = wheel::Poll::new(u64::MAX);
while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
entry.error(Error::shutdown());
}
self.park.shutdown();
self.is_shutdown = true;
}
}
impl<T> Drop for Driver<T>
where
T: Park,
{
fn drop(&mut self) {
self.shutdown();
}
}
// ===== impl Inner =====
impl Inner {
fn new(start: Instant, unpark: Box<dyn Unpark>) -> Inner {
Inner {
num: AtomicUsize::new(0),
elapsed: AtomicU64::new(0),
process: AtomicStack::new(),
start,
unpark,
}
}
fn elapsed(&self) -> u64 {
self.elapsed.load(SeqCst)
}
#[cfg(all(test, loom))]
fn num(&self, ordering: std::sync::atomic::Ordering) -> usize {
self.num.load(ordering)
}
/// Increments the number of active timeouts
fn increment(&self) -> Result<(), Error> {
let mut curr = self.num.load(Relaxed);
loop {
if curr == MAX_TIMEOUTS {
return Err(Error::at_capacity());
}
match self
.num
.compare_exchange_weak(curr, curr + 1, Release, Relaxed)
{
Ok(_) => return Ok(()),
Err(next) => curr = next,
}
}
}
/// Decrements the number of active timeouts
fn decrement(&self) {
let prev = self.num.fetch_sub(1, Acquire);
debug_assert!(prev <= MAX_TIMEOUTS);
}
fn queue(&self, entry: &Arc<Entry>) -> Result<(), Error> {
if self.process.push(entry)? {
// The timer is notified so that it can process the timeout
self.unpark.unpark();
}
Ok(())
}
fn normalize_deadline(&self, deadline: Instant) -> u64 {
if deadline < self.start {
return 0;
}
crate::time::ms(deadline - self.start, crate::time::Round::Up)
}
}
impl fmt::Debug for Inner {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Inner").finish()
}
}
#[cfg(all(test, loom))]
mod tests;