1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
use crate::park::{Park, Unpark};
use crate::runtime;
use crate::runtime::task::{self, JoinHandle, Schedule, Task};
use crate::util::linked_list::LinkedList;
use crate::util::{waker_ref, Wake};

use std::cell::RefCell;
use std::collections::VecDeque;
use std::fmt;
use std::future::Future;
use std::sync::{Arc, Mutex};
use std::task::Poll::Ready;
use std::time::Duration;

/// Executes tasks on the current thread
pub(crate) struct BasicScheduler<P>
where
    P: Park,
{
    /// Scheduler run queue
    ///
    /// When the scheduler is executed, the queue is removed from `self` and
    /// moved into `Context`.
    ///
    /// This indirection is to allow `BasicScheduler` to be `Send`.
    tasks: Option<Tasks>,

    /// Sendable task spawner
    spawner: Spawner,

    /// Current tick
    tick: u8,

    /// Thread park handle
    park: P,
}

#[derive(Clone)]
pub(crate) struct Spawner {
    shared: Arc<Shared>,
}

struct Tasks {
    /// Collection of all active tasks spawned onto this executor.
    owned: LinkedList<Task<Arc<Shared>>>,

    /// Local run queue.
    ///
    /// Tasks notified from the current thread are pushed into this queue.
    queue: VecDeque<task::Notified<Arc<Shared>>>,
}

/// Scheduler state shared between threads.
struct Shared {
    /// Remote run queue
    queue: Mutex<VecDeque<task::Notified<Arc<Shared>>>>,

    /// Unpark the blocked thread
    unpark: Box<dyn Unpark>,
}

/// Thread-local context
struct Context {
    /// Shared scheduler state
    shared: Arc<Shared>,

    /// Local queue
    tasks: RefCell<Tasks>,
}

/// Initial queue capacity
const INITIAL_CAPACITY: usize = 64;

/// Max number of tasks to poll per tick.
const MAX_TASKS_PER_TICK: usize = 61;

/// How often ot check the remote queue first
const REMOTE_FIRST_INTERVAL: u8 = 31;

// Tracks the current BasicScheduler
scoped_thread_local!(static CURRENT: Context);

impl<P> BasicScheduler<P>
where
    P: Park,
{
    pub(crate) fn new(park: P) -> BasicScheduler<P> {
        let unpark = Box::new(park.unpark());

        BasicScheduler {
            tasks: Some(Tasks {
                owned: LinkedList::new(),
                queue: VecDeque::with_capacity(INITIAL_CAPACITY),
            }),
            spawner: Spawner {
                shared: Arc::new(Shared {
                    queue: Mutex::new(VecDeque::with_capacity(INITIAL_CAPACITY)),
                    unpark: unpark as Box<dyn Unpark>,
                }),
            },
            tick: 0,
            park,
        }
    }

    pub(crate) fn spawner(&self) -> &Spawner {
        &self.spawner
    }

    /// Spawns a future onto the thread pool
    pub(crate) fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        self.spawner.spawn(future)
    }

    pub(crate) fn block_on<F>(&mut self, future: F) -> F::Output
    where
        F: Future,
    {
        enter(self, |scheduler, context| {
            let _enter = runtime::enter(false);
            let waker = waker_ref(&scheduler.spawner.shared);
            let mut cx = std::task::Context::from_waker(&waker);

            pin!(future);

            'outer: loop {
                if let Ready(v) = crate::coop::budget(|| future.as_mut().poll(&mut cx)) {
                    return v;
                }

                for _ in 0..MAX_TASKS_PER_TICK {
                    // Get and increment the current tick
                    let tick = scheduler.tick;
                    scheduler.tick = scheduler.tick.wrapping_add(1);

                    let next = if tick % REMOTE_FIRST_INTERVAL == 0 {
                        scheduler
                            .spawner
                            .pop()
                            .or_else(|| context.tasks.borrow_mut().queue.pop_front())
                    } else {
                        context
                            .tasks
                            .borrow_mut()
                            .queue
                            .pop_front()
                            .or_else(|| scheduler.spawner.pop())
                    };

                    match next {
                        Some(task) => crate::coop::budget(|| task.run()),
                        None => {
                            // Park until the thread is signaled
                            scheduler.park.park().ok().expect("failed to park");

                            // Try polling the `block_on` future next
                            continue 'outer;
                        }
                    }
                }

                // Yield to the park, this drives the timer and pulls any pending
                // I/O events.
                scheduler
                    .park
                    .park_timeout(Duration::from_millis(0))
                    .ok()
                    .expect("failed to park");
            }
        })
    }
}

/// Enter the scheduler context. This sets the queue and other necessary
/// scheduler state in the thread-local
fn enter<F, R, P>(scheduler: &mut BasicScheduler<P>, f: F) -> R
where
    F: FnOnce(&mut BasicScheduler<P>, &Context) -> R,
    P: Park,
{
    // Ensures the run queue is placed back in the `BasicScheduler` instance
    // once `block_on` returns.`
    struct Guard<'a, P: Park> {
        context: Option<Context>,
        scheduler: &'a mut BasicScheduler<P>,
    }

    impl<P: Park> Drop for Guard<'_, P> {
        fn drop(&mut self) {
            let Context { tasks, .. } = self.context.take().expect("context missing");
            self.scheduler.tasks = Some(tasks.into_inner());
        }
    }

    // Remove `tasks` from `self` and place it in a `Context`.
    let tasks = scheduler.tasks.take().expect("invalid state");

    let guard = Guard {
        context: Some(Context {
            shared: scheduler.spawner.shared.clone(),
            tasks: RefCell::new(tasks),
        }),
        scheduler,
    };

    let context = guard.context.as_ref().unwrap();
    let scheduler = &mut *guard.scheduler;

    CURRENT.set(context, || f(scheduler, context))
}

impl<P> Drop for BasicScheduler<P>
where
    P: Park,
{
    fn drop(&mut self) {
        enter(self, |scheduler, context| {
            // Loop required here to ensure borrow is dropped between iterations
            #[allow(clippy::while_let_loop)]
            loop {
                let task = match context.tasks.borrow_mut().owned.pop_back() {
                    Some(task) => task,
                    None => break,
                };

                task.shutdown();
            }

            // Drain local queue
            for task in context.tasks.borrow_mut().queue.drain(..) {
                task.shutdown();
            }

            // Drain remote queue
            for task in scheduler.spawner.shared.queue.lock().unwrap().drain(..) {
                task.shutdown();
            }

            assert!(context.tasks.borrow().owned.is_empty());
        });
    }
}

impl<P: Park> fmt::Debug for BasicScheduler<P> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("BasicScheduler").finish()
    }
}

// ===== impl Spawner =====

impl Spawner {
    /// Spawns a future onto the thread pool
    pub(crate) fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        let (task, handle) = task::joinable(future);
        self.shared.schedule(task);
        handle
    }

    fn pop(&self) -> Option<task::Notified<Arc<Shared>>> {
        self.shared.queue.lock().unwrap().pop_front()
    }
}

impl fmt::Debug for Spawner {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Spawner").finish()
    }
}

// ===== impl Shared =====

impl Schedule for Arc<Shared> {
    fn bind(task: Task<Self>) -> Arc<Shared> {
        CURRENT.with(|maybe_cx| {
            let cx = maybe_cx.expect("scheduler context missing");
            cx.tasks.borrow_mut().owned.push_front(task);
            cx.shared.clone()
        })
    }

    fn release(&self, task: &Task<Self>) -> Option<Task<Self>> {
        use std::ptr::NonNull;

        CURRENT.with(|maybe_cx| {
            let cx = maybe_cx.expect("scheduler context missing");

            // safety: the task is inserted in the list in `bind`.
            unsafe {
                let ptr = NonNull::from(task.header());
                cx.tasks.borrow_mut().owned.remove(ptr)
            }
        })
    }

    fn schedule(&self, task: task::Notified<Self>) {
        CURRENT.with(|maybe_cx| match maybe_cx {
            Some(cx) if Arc::ptr_eq(self, &cx.shared) => {
                cx.tasks.borrow_mut().queue.push_back(task);
            }
            _ => {
                self.queue.lock().unwrap().push_back(task);
                self.unpark.unpark();
            }
        });
    }
}

impl Wake for Shared {
    fn wake(self: Arc<Self>) {
        Wake::wake_by_ref(&self)
    }

    /// Wake by reference
    fn wake_by_ref(arc_self: &Arc<Self>) {
        arc_self.unpark.unpark();
    }
}