1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
//! WebAssembly trap handling, which is built on top of the lower-level
//! signalhandling mechanisms.
use crate::VMContext;
use backtrace::Backtrace;
use std::any::Any;
use std::cell::Cell;
use std::error::Error;
use std::io;
use std::ptr;
use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
use std::sync::Once;
use wasmtime_environ::ir;
extern "C" {
fn RegisterSetjmp(
jmp_buf: *mut *const u8,
callback: extern "C" fn(*mut u8),
payload: *mut u8,
) -> i32;
fn Unwind(jmp_buf: *const u8) -> !;
}
cfg_if::cfg_if! {
if #[cfg(unix)] {
use std::mem::{self, MaybeUninit};
/// Function which may handle custom signals while processing traps.
pub type SignalHandler<'a> = dyn Fn(libc::c_int, *const libc::siginfo_t, *const libc::c_void) -> bool + 'a;
static mut PREV_SIGSEGV: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
static mut PREV_SIGBUS: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
static mut PREV_SIGILL: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
static mut PREV_SIGFPE: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
unsafe fn platform_init() {
let register = |slot: &mut MaybeUninit<libc::sigaction>, signal: i32| {
let mut handler: libc::sigaction = mem::zeroed();
// The flags here are relatively careful, and they are...
//
// SA_SIGINFO gives us access to information like the program
// counter from where the fault happened.
//
// SA_ONSTACK allows us to handle signals on an alternate stack,
// so that the handler can run in response to running out of
// stack space on the main stack. Rust installs an alternate
// stack with sigaltstack, so we rely on that.
//
// SA_NODEFER allows us to reenter the signal handler if we
// crash while handling the signal, and fall through to the
// Breakpad handler by testing handlingSegFault.
handler.sa_flags = libc::SA_SIGINFO | libc::SA_NODEFER | libc::SA_ONSTACK;
handler.sa_sigaction = trap_handler as usize;
libc::sigemptyset(&mut handler.sa_mask);
if libc::sigaction(signal, &handler, slot.as_mut_ptr()) != 0 {
panic!(
"unable to install signal handler: {}",
io::Error::last_os_error(),
);
}
};
// Allow handling OOB with signals on all architectures
register(&mut PREV_SIGSEGV, libc::SIGSEGV);
// Handle `unreachable` instructions which execute `ud2` right now
register(&mut PREV_SIGILL, libc::SIGILL);
// x86 uses SIGFPE to report division by zero
if cfg!(target_arch = "x86") || cfg!(target_arch = "x86_64") {
register(&mut PREV_SIGFPE, libc::SIGFPE);
}
// On ARM, handle Unaligned Accesses.
// On Darwin, guard page accesses are raised as SIGBUS.
if cfg!(target_arch = "arm") || cfg!(target_os = "macos") || cfg!(target_os = "freebsd") {
register(&mut PREV_SIGBUS, libc::SIGBUS);
}
}
unsafe extern "C" fn trap_handler(
signum: libc::c_int,
siginfo: *mut libc::siginfo_t,
context: *mut libc::c_void,
) {
let previous = match signum {
libc::SIGSEGV => &PREV_SIGSEGV,
libc::SIGBUS => &PREV_SIGBUS,
libc::SIGFPE => &PREV_SIGFPE,
libc::SIGILL => &PREV_SIGILL,
_ => panic!("unknown signal: {}", signum),
};
let handled = tls::with(|info| {
// If no wasm code is executing, we don't handle this as a wasm
// trap.
let info = match info {
Some(info) => info,
None => return false,
};
// If we hit an exception while handling a previous trap, that's
// quite bad, so bail out and let the system handle this
// recursive segfault.
//
// Otherwise flag ourselves as handling a trap, do the trap
// handling, and reset our trap handling flag. Then we figure
// out what to do based on the result of the trap handling.
let jmp_buf = info.handle_trap(
get_pc(context),
|handler| handler(signum, siginfo, context),
);
// Figure out what to do based on the result of this handling of
// the trap. Note that our sentinel value of 1 means that the
// exception was handled by a custom exception handler, so we
// keep executing.
if jmp_buf.is_null() {
return false;
} else if jmp_buf as usize == 1 {
return true;
} else {
Unwind(jmp_buf)
}
});
if handled {
return;
}
// This signal is not for any compiled wasm code we expect, so we
// need to forward the signal to the next handler. If there is no
// next handler (SIG_IGN or SIG_DFL), then it's time to crash. To do
// this, we set the signal back to its original disposition and
// return. This will cause the faulting op to be re-executed which
// will crash in the normal way. If there is a next handler, call
// it. It will either crash synchronously, fix up the instruction
// so that execution can continue and return, or trigger a crash by
// returning the signal to it's original disposition and returning.
let previous = &*previous.as_ptr();
if previous.sa_flags & libc::SA_SIGINFO != 0 {
mem::transmute::<
usize,
extern "C" fn(libc::c_int, *mut libc::siginfo_t, *mut libc::c_void),
>(previous.sa_sigaction)(signum, siginfo, context)
} else if previous.sa_sigaction == libc::SIG_DFL ||
previous.sa_sigaction == libc::SIG_IGN
{
libc::sigaction(signum, previous, ptr::null_mut());
} else {
mem::transmute::<usize, extern "C" fn(libc::c_int)>(
previous.sa_sigaction
)(signum)
}
}
unsafe fn get_pc(cx: *mut libc::c_void) -> *const u8 {
cfg_if::cfg_if! {
if #[cfg(all(target_os = "linux", target_arch = "x86_64"))] {
let cx = &*(cx as *const libc::ucontext_t);
cx.uc_mcontext.gregs[libc::REG_RIP as usize] as *const u8
} else if #[cfg(all(target_os = "linux", target_arch = "x86"))] {
let cx = &*(cx as *const libc::ucontext_t);
cx.uc_mcontext.gregs[libc::REG_EIP as usize] as *const u8
} else if #[cfg(all(any(target_os = "linux", target_os = "android"), target_arch = "aarch64"))] {
let cx = &*(cx as *const libc::ucontext_t);
cx.uc_mcontext.pc as *const u8
} else if #[cfg(target_os = "macos")] {
let cx = &*(cx as *const libc::ucontext_t);
(*cx.uc_mcontext).__ss.__rip as *const u8
} else if #[cfg(all(target_os = "freebsd", target_arch = "x86_64"))] {
let cx = &*(cx as *const libc::ucontext_t);
cx.uc_mcontext.mc_rip as *const u8
} else {
compile_error!("unsupported platform");
}
}
}
} else if #[cfg(target_os = "windows")] {
use winapi::um::errhandlingapi::*;
use winapi::um::winnt::*;
use winapi::um::minwinbase::*;
use winapi::vc::excpt::*;
/// Function which may handle custom signals while processing traps.
pub type SignalHandler<'a> = dyn Fn(winapi::um::winnt::PEXCEPTION_POINTERS) -> bool + 'a;
unsafe fn platform_init() {
// our trap handler needs to go first, so that we can recover from
// wasm faults and continue execution, so pass `1` as a true value
// here.
if AddVectoredExceptionHandler(1, Some(exception_handler)).is_null() {
panic!("failed to add exception handler: {}", io::Error::last_os_error());
}
}
unsafe extern "system" fn exception_handler(
exception_info: PEXCEPTION_POINTERS
) -> LONG {
// Check the kind of exception, since we only handle a subset within
// wasm code. If anything else happens we want to defer to whatever
// the rest of the system wants to do for this exception.
let record = &*(*exception_info).ExceptionRecord;
if record.ExceptionCode != EXCEPTION_ACCESS_VIOLATION &&
record.ExceptionCode != EXCEPTION_ILLEGAL_INSTRUCTION &&
record.ExceptionCode != EXCEPTION_INT_DIVIDE_BY_ZERO &&
record.ExceptionCode != EXCEPTION_INT_OVERFLOW
{
return EXCEPTION_CONTINUE_SEARCH;
}
// FIXME: this is what the previous C++ did to make sure that TLS
// works by the time we execute this trap handling code. This isn't
// exactly super easy to call from Rust though and it's not clear we
// necessarily need to do so. Leaving this here in case we need this
// in the future, but for now we can probably wait until we see a
// strange fault before figuring out how to reimplement this in
// Rust.
//
// if (!NtCurrentTeb()->Reserved1[sThreadLocalArrayPointerIndex]) {
// return EXCEPTION_CONTINUE_SEARCH;
// }
// This is basically the same as the unix version above, only with a
// few parameters tweaked here and there.
tls::with(|info| {
let info = match info {
Some(info) => info,
None => return EXCEPTION_CONTINUE_SEARCH,
};
cfg_if::cfg_if! {
if #[cfg(target_arch = "x86_64")] {
let ip = (*(*exception_info).ContextRecord).Rip as *const u8;
} else if #[cfg(target_arch = "x86")] {
let ip = (*(*exception_info).ContextRecord).Eip as *const u8;
} else {
compile_error!("unsupported platform");
}
}
let jmp_buf = info.handle_trap(ip, |handler| handler(exception_info));
if jmp_buf.is_null() {
EXCEPTION_CONTINUE_SEARCH
} else if jmp_buf as usize == 1 {
EXCEPTION_CONTINUE_EXECUTION
} else {
Unwind(jmp_buf)
}
})
}
}
}
/// This function performs the low-overhead signal handler initialization that
/// we want to do eagerly to ensure a more-deterministic global process state.
///
/// This is especially relevant for signal handlers since handler ordering
/// depends on installation order: the wasm signal handler must run *before*
/// the other crash handlers and since POSIX signal handlers work LIFO, this
/// function needs to be called at the end of the startup process, after other
/// handlers have been installed. This function can thus be called multiple
/// times, having no effect after the first call.
pub fn init_traps() {
static INIT: Once = Once::new();
INIT.call_once(real_init);
}
fn real_init() {
unsafe {
platform_init();
}
}
/// Raises a user-defined trap immediately.
///
/// This function performs as-if a wasm trap was just executed, only the trap
/// has a dynamic payload associated with it which is user-provided. This trap
/// payload is then returned from `catch_traps` below.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
pub unsafe fn raise_user_trap(data: Box<dyn Error + Send + Sync>) -> ! {
tls::with(|info| info.unwrap().unwind_with(UnwindReason::UserTrap(data)))
}
/// Raises a trap from inside library code immediately.
///
/// This function performs as-if a wasm trap was just executed. This trap
/// payload is then returned from `catch_traps` below.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
pub unsafe fn raise_lib_trap(trap: Trap) -> ! {
tls::with(|info| info.unwrap().unwind_with(UnwindReason::LibTrap(trap)))
}
/// Carries a Rust panic across wasm code and resumes the panic on the other
/// side.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
pub unsafe fn resume_panic(payload: Box<dyn Any + Send>) -> ! {
tls::with(|info| info.unwrap().unwind_with(UnwindReason::Panic(payload)))
}
/// Stores trace message with backtrace.
#[derive(Debug)]
pub enum Trap {
/// A user-raised trap through `raise_user_trap`.
User(Box<dyn Error + Send + Sync>),
/// A trap raised from jit code
Jit {
/// The program counter in JIT code where this trap happened.
pc: usize,
/// Native stack backtrace at the time the trap occurred
backtrace: Backtrace,
/// An indicator for whether this may have been a trap generated from an
/// interrupt, used for switching what would otherwise be a stack
/// overflow trap to be an interrupt trap.
maybe_interrupted: bool,
},
/// A trap raised from a wasm libcall
Wasm {
/// Code of the trap.
trap_code: ir::TrapCode,
/// Native stack backtrace at the time the trap occurred
backtrace: Backtrace,
},
/// A trap indicating that the runtime was unable to allocate sufficient memory.
OOM {
/// Native stack backtrace at the time the OOM occurred
backtrace: Backtrace,
},
}
impl Trap {
/// Construct a new Wasm trap with the given source location and trap code.
///
/// Internally saves a backtrace when constructed.
pub fn wasm(trap_code: ir::TrapCode) -> Self {
let backtrace = Backtrace::new_unresolved();
Trap::Wasm {
trap_code,
backtrace,
}
}
/// Construct a new OOM trap with the given source location and trap code.
///
/// Internally saves a backtrace when constructed.
pub fn oom() -> Self {
let backtrace = Backtrace::new_unresolved();
Trap::OOM { backtrace }
}
}
/// Catches any wasm traps that happen within the execution of `closure`,
/// returning them as a `Result`.
///
/// Highly unsafe since `closure` won't have any dtors run.
pub unsafe fn catch_traps<F>(
vmctx: *mut VMContext,
trap_info: &impl TrapInfo,
mut closure: F,
) -> Result<(), Trap>
where
F: FnMut(),
{
// Ensure that we have our sigaltstack installed.
#[cfg(unix)]
setup_unix_sigaltstack()?;
return CallThreadState::new(vmctx, trap_info).with(|cx| {
RegisterSetjmp(
cx.jmp_buf.as_ptr(),
call_closure::<F>,
&mut closure as *mut F as *mut u8,
)
});
extern "C" fn call_closure<F>(payload: *mut u8)
where
F: FnMut(),
{
unsafe { (*(payload as *mut F))() }
}
}
/// Runs `func` with the last `trap_info` object registered by `catch_traps`.
///
/// Calls `func` with `None` if `catch_traps` wasn't previously called from this
/// stack frame.
pub fn with_last_info<R>(func: impl FnOnce(Option<&dyn Any>) -> R) -> R {
tls::with(|state| func(state.map(|s| s.trap_info.as_any())))
}
/// Temporary state stored on the stack which is registered in the `tls` module
/// below for calls into wasm.
pub struct CallThreadState<'a> {
unwind: Cell<UnwindReason>,
jmp_buf: Cell<*const u8>,
vmctx: *mut VMContext,
handling_trap: Cell<bool>,
trap_info: &'a (dyn TrapInfo + 'a),
}
/// A package of functionality needed by `catch_traps` to figure out what to do
/// when handling a trap.
///
/// Note that this is an `unsafe` trait at least because it's being run in the
/// context of a synchronous signal handler, so it needs to be careful to not
/// access too much state in answering these queries.
pub unsafe trait TrapInfo {
/// Converts this object into an `Any` to dynamically check its type.
fn as_any(&self) -> &dyn Any;
/// Returns whether the given program counter lies within wasm code,
/// indicating whether we should handle a trap or not.
fn is_wasm_code(&self, pc: usize) -> bool;
/// Uses `call` to call a custom signal handler, if one is specified.
///
/// Returns `true` if `call` returns true, otherwise returns `false`.
fn custom_signal_handler(&self, call: &dyn Fn(&SignalHandler) -> bool) -> bool;
/// Returns the maximum size, in bytes, the wasm native stack is allowed to
/// grow to.
fn max_wasm_stack(&self) -> usize;
}
enum UnwindReason {
None,
Panic(Box<dyn Any + Send>),
UserTrap(Box<dyn Error + Send + Sync>),
LibTrap(Trap),
JitTrap { backtrace: Backtrace, pc: usize },
}
impl<'a> CallThreadState<'a> {
fn new(vmctx: *mut VMContext, trap_info: &'a (dyn TrapInfo + 'a)) -> CallThreadState<'a> {
CallThreadState {
unwind: Cell::new(UnwindReason::None),
vmctx,
jmp_buf: Cell::new(ptr::null()),
handling_trap: Cell::new(false),
trap_info,
}
}
fn with(self, closure: impl FnOnce(&CallThreadState) -> i32) -> Result<(), Trap> {
let _reset = self.update_stack_limit()?;
let ret = tls::set(&self, || closure(&self));
match self.unwind.replace(UnwindReason::None) {
UnwindReason::None => {
debug_assert_eq!(ret, 1);
Ok(())
}
UnwindReason::UserTrap(data) => {
debug_assert_eq!(ret, 0);
Err(Trap::User(data))
}
UnwindReason::LibTrap(trap) => Err(trap),
UnwindReason::JitTrap { backtrace, pc } => {
debug_assert_eq!(ret, 0);
let maybe_interrupted = unsafe {
let interrupts = (*self.vmctx).instance().interrupts();
(**interrupts).stack_limit.load(SeqCst) == wasmtime_environ::INTERRUPTED
};
Err(Trap::Jit {
pc,
backtrace,
maybe_interrupted,
})
}
UnwindReason::Panic(panic) => {
debug_assert_eq!(ret, 0);
std::panic::resume_unwind(panic)
}
}
}
/// Checks and/or initializes the wasm native call stack limit.
///
/// This function will inspect the current state of the stack and calling
/// context to determine which of three buckets we're in:
///
/// 1. We are the first wasm call on the stack. This means that we need to
/// set up a stack limit where beyond which if the native wasm stack
/// pointer goes beyond forces a trap. For now we simply reserve an
/// arbitrary chunk of bytes (1 MB from roughly the current native stack
/// pointer). This logic will likely get tweaked over time.
///
/// 2. We aren't the first wasm call on the stack. In this scenario the wasm
/// stack limit is already configured. This case of wasm -> host -> wasm
/// we assume that the native stack consumed by the host is accounted for
/// in the initial stack limit calculation. That means that in this
/// scenario we do nothing.
///
/// 3. We were previously interrupted. In this case we consume the interrupt
/// here and return a trap, clearing the interrupt and allowing the next
/// wasm call to proceed.
///
/// The return value here is a trap for case 3, a noop destructor in case 2,
/// and a meaningful destructor in case 1
///
/// For more information about interrupts and stack limits see
/// `crates/environ/src/cranelift.rs`.
///
/// Note that this function must be called with `self` on the stack, not the
/// heap/etc.
fn update_stack_limit(&self) -> Result<impl Drop + '_, Trap> {
// Determine the stack pointer where, after which, any wasm code will
// immediately trap. This is checked on the entry to all wasm functions.
//
// Note that this isn't 100% precise. We are requested to give wasm
// `max_wasm_stack` bytes, but what we're actually doing is giving wasm
// probably a little less than `max_wasm_stack` because we're
// calculating the limit relative to this function's approximate stack
// pointer. Wasm will be executed on a frame beneath this one (or next
// to it). In any case it's expected to be at most a few hundred bytes
// of slop one way or another. When wasm is typically given a MB or so
// (a million bytes) the slop shouldn't matter too much.
let wasm_stack_limit = psm::stack_pointer() as usize - self.trap_info.max_wasm_stack();
let interrupts = unsafe { &**(&*self.vmctx).instance().interrupts() };
let reset_stack_limit = match interrupts.stack_limit.compare_exchange(
usize::max_value(),
wasm_stack_limit,
SeqCst,
SeqCst,
) {
Ok(_) => {
// We're the first wasm on the stack so we've now reserved the
// `max_wasm_stack` bytes of native stack space for wasm.
// Nothing left to do here now except reset back when we're
// done.
true
}
Err(n) if n == wasmtime_environ::INTERRUPTED => {
// This means that an interrupt happened before we actually
// called this function, which means that we're now
// considered interrupted. Be sure to consume this interrupt
// as part of this process too.
interrupts.stack_limit.store(usize::max_value(), SeqCst);
return Err(Trap::Wasm {
trap_code: ir::TrapCode::Interrupt,
backtrace: Backtrace::new_unresolved(),
});
}
Err(_) => {
// The stack limit was previously set by a previous wasm
// call on the stack. We leave the original stack limit for
// wasm in place in that case, and don't reset the stack
// limit when we're done.
false
}
};
struct Reset<'a>(bool, &'a AtomicUsize);
impl Drop for Reset<'_> {
fn drop(&mut self) {
if self.0 {
self.1.store(usize::max_value(), SeqCst);
}
}
}
Ok(Reset(reset_stack_limit, &interrupts.stack_limit))
}
fn unwind_with(&self, reason: UnwindReason) -> ! {
self.unwind.replace(reason);
unsafe {
Unwind(self.jmp_buf.get());
}
}
/// Trap handler using our thread-local state.
///
/// * `pc` - the program counter the trap happened at
/// * `call_handler` - a closure used to invoke the platform-specific
/// signal handler for each instance, if available.
///
/// Attempts to handle the trap if it's a wasm trap. Returns a few
/// different things:
///
/// * null - the trap didn't look like a wasm trap and should continue as a
/// trap
/// * 1 as a pointer - the trap was handled by a custom trap handler on an
/// instance, and the trap handler should quickly return.
/// * a different pointer - a jmp_buf buffer to longjmp to, meaning that
/// the wasm trap was succesfully handled.
fn handle_trap(
&self,
pc: *const u8,
call_handler: impl Fn(&SignalHandler) -> bool,
) -> *const u8 {
// If we hit a fault while handling a previous trap, that's quite bad,
// so bail out and let the system handle this recursive segfault.
//
// Otherwise flag ourselves as handling a trap, do the trap handling,
// and reset our trap handling flag.
if self.handling_trap.replace(true) {
return ptr::null();
}
let _reset = ResetCell(&self.handling_trap, false);
// If we haven't even started to handle traps yet, bail out.
if self.jmp_buf.get().is_null() {
return ptr::null();
}
// First up see if any instance registered has a custom trap handler,
// in which case run them all. If anything handles the trap then we
// return that the trap was handled.
if self.trap_info.custom_signal_handler(&call_handler) {
return 1 as *const _;
}
// If this fault wasn't in wasm code, then it's not our problem
if !self.trap_info.is_wasm_code(pc as usize) {
return ptr::null();
}
// TODO: stack overflow can happen at any random time (i.e. in malloc()
// in memory.grow) and it's really hard to determine if the cause was
// stack overflow and if it happened in WebAssembly module.
//
// So, let's assume that any untrusted code called from WebAssembly
// doesn't trap. Then, if we have called some WebAssembly code, it
// means the trap is stack overflow.
if self.jmp_buf.get().is_null() {
return ptr::null();
}
let backtrace = Backtrace::new_unresolved();
self.unwind.replace(UnwindReason::JitTrap {
backtrace,
pc: pc as usize,
});
self.jmp_buf.get()
}
}
struct ResetCell<'a, T: Copy>(&'a Cell<T>, T);
impl<T: Copy> Drop for ResetCell<'_, T> {
fn drop(&mut self) {
self.0.set(self.1);
}
}
// A private inner module for managing the TLS state that we require across
// calls in wasm. The WebAssembly code is called from C++ and then a trap may
// happen which requires us to read some contextual state to figure out what to
// do with the trap. This `tls` module is used to persist that information from
// the caller to the trap site.
mod tls {
use super::CallThreadState;
use std::cell::Cell;
use std::mem;
use std::ptr;
thread_local!(static PTR: Cell<*const CallThreadState<'static>> = Cell::new(ptr::null()));
/// Configures thread local state such that for the duration of the
/// execution of `closure` any call to `with` will yield `ptr`, unless this
/// is recursively called again.
pub fn set<R>(ptr: &CallThreadState<'_>, closure: impl FnOnce() -> R) -> R {
struct Reset<'a, T: Copy>(&'a Cell<T>, T);
impl<T: Copy> Drop for Reset<'_, T> {
fn drop(&mut self) {
self.0.set(self.1);
}
}
PTR.with(|p| {
// Note that this extension of the lifetime to `'static` should be
// safe because we only ever access it below with an anonymous
// lifetime, meaning `'static` never leaks out of this module.
let ptr = unsafe {
mem::transmute::<*const CallThreadState<'_>, *const CallThreadState<'static>>(ptr)
};
let _r = Reset(p, p.replace(ptr));
closure()
})
}
/// Returns the last pointer configured with `set` above. Panics if `set`
/// has not been previously called.
pub fn with<R>(closure: impl FnOnce(Option<&CallThreadState<'_>>) -> R) -> R {
PTR.with(|ptr| {
let p = ptr.get();
unsafe { closure(if p.is_null() { None } else { Some(&*p) }) }
})
}
}
/// A module for registering a custom alternate signal stack (sigaltstack).
///
/// Rust's libstd installs an alternate stack with size `SIGSTKSZ`, which is not
/// always large enough for our signal handling code. Override it by creating
/// and registering our own alternate stack that is large enough and has a guard
/// page.
#[cfg(unix)]
fn setup_unix_sigaltstack() -> Result<(), Trap> {
use std::cell::RefCell;
use std::convert::TryInto;
use std::ptr::null_mut;
thread_local! {
/// Thread-local state is lazy-initialized on the first time it's used,
/// and dropped when the thread exits.
static TLS: RefCell<Tls> = RefCell::new(Tls::None);
}
/// The size of the sigaltstack (not including the guard, which will be
/// added). Make this large enough to run our signal handlers.
const MIN_STACK_SIZE: usize = 16 * 4096;
enum Tls {
None,
Allocated {
mmap_ptr: *mut libc::c_void,
mmap_size: usize,
},
BigEnough,
}
return TLS.with(|slot| unsafe {
let mut slot = slot.borrow_mut();
match *slot {
Tls::None => {}
// already checked
_ => return Ok(()),
}
// Check to see if the existing sigaltstack, if it exists, is big
// enough. If so we don't need to allocate our own.
let mut old_stack = mem::zeroed();
let r = libc::sigaltstack(ptr::null(), &mut old_stack);
assert_eq!(r, 0, "learning about sigaltstack failed");
if old_stack.ss_flags & libc::SS_DISABLE == 0 && old_stack.ss_size >= MIN_STACK_SIZE {
*slot = Tls::BigEnough;
return Ok(());
}
// ... but failing that we need to allocate our own, so do all that
// here.
let page_size: usize = libc::sysconf(libc::_SC_PAGESIZE).try_into().unwrap();
let guard_size = page_size;
let alloc_size = guard_size + MIN_STACK_SIZE;
let ptr = libc::mmap(
null_mut(),
alloc_size,
libc::PROT_NONE,
libc::MAP_PRIVATE | libc::MAP_ANON,
-1,
0,
);
if ptr == libc::MAP_FAILED {
return Err(Trap::oom());
}
// Prepare the stack with readable/writable memory and then register it
// with `sigaltstack`.
let stack_ptr = (ptr as usize + guard_size) as *mut libc::c_void;
let r = libc::mprotect(
stack_ptr,
MIN_STACK_SIZE,
libc::PROT_READ | libc::PROT_WRITE,
);
assert_eq!(r, 0, "mprotect to configure memory for sigaltstack failed");
let new_stack = libc::stack_t {
ss_sp: stack_ptr,
ss_flags: 0,
ss_size: MIN_STACK_SIZE,
};
let r = libc::sigaltstack(&new_stack, ptr::null_mut());
assert_eq!(r, 0, "registering new sigaltstack failed");
*slot = Tls::Allocated {
mmap_ptr: ptr,
mmap_size: alloc_size,
};
Ok(())
});
impl Drop for Tls {
fn drop(&mut self) {
let (ptr, size) = match self {
Tls::Allocated {
mmap_ptr,
mmap_size,
} => (*mmap_ptr, *mmap_size),
_ => return,
};
unsafe {
// Deallocate the stack memory.
let r = libc::munmap(ptr, size);
debug_assert_eq!(r, 0, "munmap failed during thread shutdown");
}
}
}
}