1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
//! WebAssembly trap handling, which is built on top of the lower-level
//! signalhandling mechanisms.

use crate::VMContext;
use backtrace::Backtrace;
use std::any::Any;
use std::cell::Cell;
use std::error::Error;
use std::io;
use std::ptr;
use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
use std::sync::Once;
use wasmtime_environ::ir;

extern "C" {
    fn RegisterSetjmp(
        jmp_buf: *mut *const u8,
        callback: extern "C" fn(*mut u8),
        payload: *mut u8,
    ) -> i32;
    fn Unwind(jmp_buf: *const u8) -> !;
}

cfg_if::cfg_if! {
    if #[cfg(unix)] {
        use std::mem::{self, MaybeUninit};

        /// Function which may handle custom signals while processing traps.
        pub type SignalHandler<'a> = dyn Fn(libc::c_int, *const libc::siginfo_t, *const libc::c_void) -> bool + 'a;

        static mut PREV_SIGSEGV: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
        static mut PREV_SIGBUS: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
        static mut PREV_SIGILL: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();
        static mut PREV_SIGFPE: MaybeUninit<libc::sigaction> = MaybeUninit::uninit();

        unsafe fn platform_init() {
            let register = |slot: &mut MaybeUninit<libc::sigaction>, signal: i32| {
                let mut handler: libc::sigaction = mem::zeroed();
                // The flags here are relatively careful, and they are...
                //
                // SA_SIGINFO gives us access to information like the program
                // counter from where the fault happened.
                //
                // SA_ONSTACK allows us to handle signals on an alternate stack,
                // so that the handler can run in response to running out of
                // stack space on the main stack. Rust installs an alternate
                // stack with sigaltstack, so we rely on that.
                //
                // SA_NODEFER allows us to reenter the signal handler if we
                // crash while handling the signal, and fall through to the
                // Breakpad handler by testing handlingSegFault.
                handler.sa_flags = libc::SA_SIGINFO | libc::SA_NODEFER | libc::SA_ONSTACK;
                handler.sa_sigaction = trap_handler as usize;
                libc::sigemptyset(&mut handler.sa_mask);
                if libc::sigaction(signal, &handler, slot.as_mut_ptr()) != 0 {
                    panic!(
                        "unable to install signal handler: {}",
                        io::Error::last_os_error(),
                    );
                }
            };

            // Allow handling OOB with signals on all architectures
            register(&mut PREV_SIGSEGV, libc::SIGSEGV);

            // Handle `unreachable` instructions which execute `ud2` right now
            register(&mut PREV_SIGILL, libc::SIGILL);

            // x86 uses SIGFPE to report division by zero
            if cfg!(target_arch = "x86") || cfg!(target_arch = "x86_64") {
                register(&mut PREV_SIGFPE, libc::SIGFPE);
            }

            // On ARM, handle Unaligned Accesses.
            // On Darwin, guard page accesses are raised as SIGBUS.
            if cfg!(target_arch = "arm") || cfg!(target_os = "macos") || cfg!(target_os = "freebsd") {
                register(&mut PREV_SIGBUS, libc::SIGBUS);
            }
        }

        unsafe extern "C" fn trap_handler(
            signum: libc::c_int,
            siginfo: *mut libc::siginfo_t,
            context: *mut libc::c_void,
        ) {
            let previous = match signum {
                libc::SIGSEGV => &PREV_SIGSEGV,
                libc::SIGBUS => &PREV_SIGBUS,
                libc::SIGFPE => &PREV_SIGFPE,
                libc::SIGILL => &PREV_SIGILL,
                _ => panic!("unknown signal: {}", signum),
            };
            let handled = tls::with(|info| {
                // If no wasm code is executing, we don't handle this as a wasm
                // trap.
                let info = match info {
                    Some(info) => info,
                    None => return false,
                };

                // If we hit an exception while handling a previous trap, that's
                // quite bad, so bail out and let the system handle this
                // recursive segfault.
                //
                // Otherwise flag ourselves as handling a trap, do the trap
                // handling, and reset our trap handling flag. Then we figure
                // out what to do based on the result of the trap handling.
                let jmp_buf = info.handle_trap(
                    get_pc(context),
                    |handler| handler(signum, siginfo, context),
                );

                // Figure out what to do based on the result of this handling of
                // the trap. Note that our sentinel value of 1 means that the
                // exception was handled by a custom exception handler, so we
                // keep executing.
                if jmp_buf.is_null() {
                    return false;
                } else if jmp_buf as usize == 1 {
                    return true;
                } else {
                    Unwind(jmp_buf)
                }
            });

            if handled {
                return;
            }

            // This signal is not for any compiled wasm code we expect, so we
            // need to forward the signal to the next handler. If there is no
            // next handler (SIG_IGN or SIG_DFL), then it's time to crash. To do
            // this, we set the signal back to its original disposition and
            // return. This will cause the faulting op to be re-executed which
            // will crash in the normal way. If there is a next handler, call
            // it. It will either crash synchronously, fix up the instruction
            // so that execution can continue and return, or trigger a crash by
            // returning the signal to it's original disposition and returning.
            let previous = &*previous.as_ptr();
            if previous.sa_flags & libc::SA_SIGINFO != 0 {
                mem::transmute::<
                    usize,
                    extern "C" fn(libc::c_int, *mut libc::siginfo_t, *mut libc::c_void),
                >(previous.sa_sigaction)(signum, siginfo, context)
            } else if previous.sa_sigaction == libc::SIG_DFL ||
                previous.sa_sigaction == libc::SIG_IGN
            {
                libc::sigaction(signum, previous, ptr::null_mut());
            } else {
                mem::transmute::<usize, extern "C" fn(libc::c_int)>(
                    previous.sa_sigaction
                )(signum)
            }
        }

        unsafe fn get_pc(cx: *mut libc::c_void) -> *const u8 {
            cfg_if::cfg_if! {
                if #[cfg(all(target_os = "linux", target_arch = "x86_64"))] {
                    let cx = &*(cx as *const libc::ucontext_t);
                    cx.uc_mcontext.gregs[libc::REG_RIP as usize] as *const u8
                } else if #[cfg(all(target_os = "linux", target_arch = "x86"))] {
                    let cx = &*(cx as *const libc::ucontext_t);
                    cx.uc_mcontext.gregs[libc::REG_EIP as usize] as *const u8
                } else if #[cfg(all(any(target_os = "linux", target_os = "android"), target_arch = "aarch64"))] {
                    let cx = &*(cx as *const libc::ucontext_t);
                    cx.uc_mcontext.pc as *const u8
                } else if #[cfg(target_os = "macos")] {
                    let cx = &*(cx as *const libc::ucontext_t);
                    (*cx.uc_mcontext).__ss.__rip as *const u8
                } else if #[cfg(all(target_os = "freebsd", target_arch = "x86_64"))] {
                    let cx = &*(cx as *const libc::ucontext_t);
                    cx.uc_mcontext.mc_rip as *const u8
                } else {
                    compile_error!("unsupported platform");
                }
            }
        }
    } else if #[cfg(target_os = "windows")] {
        use winapi::um::errhandlingapi::*;
        use winapi::um::winnt::*;
        use winapi::um::minwinbase::*;
        use winapi::vc::excpt::*;

        /// Function which may handle custom signals while processing traps.
        pub type SignalHandler<'a> = dyn Fn(winapi::um::winnt::PEXCEPTION_POINTERS) -> bool + 'a;

        unsafe fn platform_init() {
            // our trap handler needs to go first, so that we can recover from
            // wasm faults and continue execution, so pass `1` as a true value
            // here.
            if AddVectoredExceptionHandler(1, Some(exception_handler)).is_null() {
                panic!("failed to add exception handler: {}", io::Error::last_os_error());
            }
        }

        unsafe extern "system" fn exception_handler(
            exception_info: PEXCEPTION_POINTERS
        ) -> LONG {
            // Check the kind of exception, since we only handle a subset within
            // wasm code. If anything else happens we want to defer to whatever
            // the rest of the system wants to do for this exception.
            let record = &*(*exception_info).ExceptionRecord;
            if record.ExceptionCode != EXCEPTION_ACCESS_VIOLATION &&
                record.ExceptionCode != EXCEPTION_ILLEGAL_INSTRUCTION &&
                record.ExceptionCode != EXCEPTION_INT_DIVIDE_BY_ZERO &&
                record.ExceptionCode != EXCEPTION_INT_OVERFLOW
            {
                return EXCEPTION_CONTINUE_SEARCH;
            }

            // FIXME: this is what the previous C++ did to make sure that TLS
            // works by the time we execute this trap handling code. This isn't
            // exactly super easy to call from Rust though and it's not clear we
            // necessarily need to do so. Leaving this here in case we need this
            // in the future, but for now we can probably wait until we see a
            // strange fault before figuring out how to reimplement this in
            // Rust.
            //
            // if (!NtCurrentTeb()->Reserved1[sThreadLocalArrayPointerIndex]) {
            //     return EXCEPTION_CONTINUE_SEARCH;
            // }

            // This is basically the same as the unix version above, only with a
            // few parameters tweaked here and there.
            tls::with(|info| {
                let info = match info {
                    Some(info) => info,
                    None => return EXCEPTION_CONTINUE_SEARCH,
                };
                cfg_if::cfg_if! {
                    if #[cfg(target_arch = "x86_64")] {
                        let ip = (*(*exception_info).ContextRecord).Rip as *const u8;
                    } else if #[cfg(target_arch = "x86")] {
                        let ip = (*(*exception_info).ContextRecord).Eip as *const u8;
                    } else {
                        compile_error!("unsupported platform");
                    }
                }
                let jmp_buf = info.handle_trap(ip, |handler| handler(exception_info));
                if jmp_buf.is_null() {
                    EXCEPTION_CONTINUE_SEARCH
                } else if jmp_buf as usize == 1 {
                    EXCEPTION_CONTINUE_EXECUTION
                } else {
                    Unwind(jmp_buf)
                }
            })
        }
    }
}

/// This function performs the low-overhead signal handler initialization that
/// we want to do eagerly to ensure a more-deterministic global process state.
///
/// This is especially relevant for signal handlers since handler ordering
/// depends on installation order: the wasm signal handler must run *before*
/// the other crash handlers and since POSIX signal handlers work LIFO, this
/// function needs to be called at the end of the startup process, after other
/// handlers have been installed. This function can thus be called multiple
/// times, having no effect after the first call.
pub fn init_traps() {
    static INIT: Once = Once::new();
    INIT.call_once(real_init);
}

fn real_init() {
    unsafe {
        platform_init();
    }
}

/// Raises a user-defined trap immediately.
///
/// This function performs as-if a wasm trap was just executed, only the trap
/// has a dynamic payload associated with it which is user-provided. This trap
/// payload is then returned from `catch_traps` below.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
pub unsafe fn raise_user_trap(data: Box<dyn Error + Send + Sync>) -> ! {
    tls::with(|info| info.unwrap().unwind_with(UnwindReason::UserTrap(data)))
}

/// Raises a trap from inside library code immediately.
///
/// This function performs as-if a wasm trap was just executed. This trap
/// payload is then returned from `catch_traps` below.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
pub unsafe fn raise_lib_trap(trap: Trap) -> ! {
    tls::with(|info| info.unwrap().unwind_with(UnwindReason::LibTrap(trap)))
}

/// Carries a Rust panic across wasm code and resumes the panic on the other
/// side.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
pub unsafe fn resume_panic(payload: Box<dyn Any + Send>) -> ! {
    tls::with(|info| info.unwrap().unwind_with(UnwindReason::Panic(payload)))
}

/// Stores trace message with backtrace.
#[derive(Debug)]
pub enum Trap {
    /// A user-raised trap through `raise_user_trap`.
    User(Box<dyn Error + Send + Sync>),

    /// A trap raised from jit code
    Jit {
        /// The program counter in JIT code where this trap happened.
        pc: usize,
        /// Native stack backtrace at the time the trap occurred
        backtrace: Backtrace,
        /// An indicator for whether this may have been a trap generated from an
        /// interrupt, used for switching what would otherwise be a stack
        /// overflow trap to be an interrupt trap.
        maybe_interrupted: bool,
    },

    /// A trap raised from a wasm libcall
    Wasm {
        /// Code of the trap.
        trap_code: ir::TrapCode,
        /// Native stack backtrace at the time the trap occurred
        backtrace: Backtrace,
    },

    /// A trap indicating that the runtime was unable to allocate sufficient memory.
    OOM {
        /// Native stack backtrace at the time the OOM occurred
        backtrace: Backtrace,
    },
}

impl Trap {
    /// Construct a new Wasm trap with the given source location and trap code.
    ///
    /// Internally saves a backtrace when constructed.
    pub fn wasm(trap_code: ir::TrapCode) -> Self {
        let backtrace = Backtrace::new_unresolved();
        Trap::Wasm {
            trap_code,
            backtrace,
        }
    }

    /// Construct a new OOM trap with the given source location and trap code.
    ///
    /// Internally saves a backtrace when constructed.
    pub fn oom() -> Self {
        let backtrace = Backtrace::new_unresolved();
        Trap::OOM { backtrace }
    }
}

/// Catches any wasm traps that happen within the execution of `closure`,
/// returning them as a `Result`.
///
/// Highly unsafe since `closure` won't have any dtors run.
pub unsafe fn catch_traps<F>(
    vmctx: *mut VMContext,
    trap_info: &impl TrapInfo,
    mut closure: F,
) -> Result<(), Trap>
where
    F: FnMut(),
{
    // Ensure that we have our sigaltstack installed.
    #[cfg(unix)]
    setup_unix_sigaltstack()?;

    return CallThreadState::new(vmctx, trap_info).with(|cx| {
        RegisterSetjmp(
            cx.jmp_buf.as_ptr(),
            call_closure::<F>,
            &mut closure as *mut F as *mut u8,
        )
    });

    extern "C" fn call_closure<F>(payload: *mut u8)
    where
        F: FnMut(),
    {
        unsafe { (*(payload as *mut F))() }
    }
}

/// Runs `func` with the last `trap_info` object registered by `catch_traps`.
///
/// Calls `func` with `None` if `catch_traps` wasn't previously called from this
/// stack frame.
pub fn with_last_info<R>(func: impl FnOnce(Option<&dyn Any>) -> R) -> R {
    tls::with(|state| func(state.map(|s| s.trap_info.as_any())))
}

/// Temporary state stored on the stack which is registered in the `tls` module
/// below for calls into wasm.
pub struct CallThreadState<'a> {
    unwind: Cell<UnwindReason>,
    jmp_buf: Cell<*const u8>,
    vmctx: *mut VMContext,
    handling_trap: Cell<bool>,
    trap_info: &'a (dyn TrapInfo + 'a),
}

/// A package of functionality needed by `catch_traps` to figure out what to do
/// when handling a trap.
///
/// Note that this is an `unsafe` trait at least because it's being run in the
/// context of a synchronous signal handler, so it needs to be careful to not
/// access too much state in answering these queries.
pub unsafe trait TrapInfo {
    /// Converts this object into an `Any` to dynamically check its type.
    fn as_any(&self) -> &dyn Any;

    /// Returns whether the given program counter lies within wasm code,
    /// indicating whether we should handle a trap or not.
    fn is_wasm_code(&self, pc: usize) -> bool;

    /// Uses `call` to call a custom signal handler, if one is specified.
    ///
    /// Returns `true` if `call` returns true, otherwise returns `false`.
    fn custom_signal_handler(&self, call: &dyn Fn(&SignalHandler) -> bool) -> bool;

    /// Returns the maximum size, in bytes, the wasm native stack is allowed to
    /// grow to.
    fn max_wasm_stack(&self) -> usize;
}

enum UnwindReason {
    None,
    Panic(Box<dyn Any + Send>),
    UserTrap(Box<dyn Error + Send + Sync>),
    LibTrap(Trap),
    JitTrap { backtrace: Backtrace, pc: usize },
}

impl<'a> CallThreadState<'a> {
    fn new(vmctx: *mut VMContext, trap_info: &'a (dyn TrapInfo + 'a)) -> CallThreadState<'a> {
        CallThreadState {
            unwind: Cell::new(UnwindReason::None),
            vmctx,
            jmp_buf: Cell::new(ptr::null()),
            handling_trap: Cell::new(false),
            trap_info,
        }
    }

    fn with(self, closure: impl FnOnce(&CallThreadState) -> i32) -> Result<(), Trap> {
        let _reset = self.update_stack_limit()?;
        let ret = tls::set(&self, || closure(&self));
        match self.unwind.replace(UnwindReason::None) {
            UnwindReason::None => {
                debug_assert_eq!(ret, 1);
                Ok(())
            }
            UnwindReason::UserTrap(data) => {
                debug_assert_eq!(ret, 0);
                Err(Trap::User(data))
            }
            UnwindReason::LibTrap(trap) => Err(trap),
            UnwindReason::JitTrap { backtrace, pc } => {
                debug_assert_eq!(ret, 0);
                let maybe_interrupted = unsafe {
                    let interrupts = (*self.vmctx).instance().interrupts();
                    (**interrupts).stack_limit.load(SeqCst) == wasmtime_environ::INTERRUPTED
                };
                Err(Trap::Jit {
                    pc,
                    backtrace,
                    maybe_interrupted,
                })
            }
            UnwindReason::Panic(panic) => {
                debug_assert_eq!(ret, 0);
                std::panic::resume_unwind(panic)
            }
        }
    }

    /// Checks and/or initializes the wasm native call stack limit.
    ///
    /// This function will inspect the current state of the stack and calling
    /// context to determine which of three buckets we're in:
    ///
    /// 1. We are the first wasm call on the stack. This means that we need to
    ///    set up a stack limit where beyond which if the native wasm stack
    ///    pointer goes beyond forces a trap. For now we simply reserve an
    ///    arbitrary chunk of bytes (1 MB from roughly the current native stack
    ///    pointer). This logic will likely get tweaked over time.
    ///
    /// 2. We aren't the first wasm call on the stack. In this scenario the wasm
    ///    stack limit is already configured. This case of wasm -> host -> wasm
    ///    we assume that the native stack consumed by the host is accounted for
    ///    in the initial stack limit calculation. That means that in this
    ///    scenario we do nothing.
    ///
    /// 3. We were previously interrupted. In this case we consume the interrupt
    ///    here and return a trap, clearing the interrupt and allowing the next
    ///    wasm call to proceed.
    ///
    /// The return value here is a trap for case 3, a noop destructor in case 2,
    /// and a meaningful destructor in case 1
    ///
    /// For more information about interrupts and stack limits see
    /// `crates/environ/src/cranelift.rs`.
    ///
    /// Note that this function must be called with `self` on the stack, not the
    /// heap/etc.
    fn update_stack_limit(&self) -> Result<impl Drop + '_, Trap> {
        // Determine the stack pointer where, after which, any wasm code will
        // immediately trap. This is checked on the entry to all wasm functions.
        //
        // Note that this isn't 100% precise. We are requested to give wasm
        // `max_wasm_stack` bytes, but what we're actually doing is giving wasm
        // probably a little less than `max_wasm_stack` because we're
        // calculating the limit relative to this function's approximate stack
        // pointer. Wasm will be executed on a frame beneath this one (or next
        // to it). In any case it's expected to be at most a few hundred bytes
        // of slop one way or another. When wasm is typically given a MB or so
        // (a million bytes) the slop shouldn't matter too much.
        let wasm_stack_limit = psm::stack_pointer() as usize - self.trap_info.max_wasm_stack();

        let interrupts = unsafe { &**(&*self.vmctx).instance().interrupts() };
        let reset_stack_limit = match interrupts.stack_limit.compare_exchange(
            usize::max_value(),
            wasm_stack_limit,
            SeqCst,
            SeqCst,
        ) {
            Ok(_) => {
                // We're the first wasm on the stack so we've now reserved the
                // `max_wasm_stack` bytes of native stack space for wasm.
                // Nothing left to do here now except reset back when we're
                // done.
                true
            }
            Err(n) if n == wasmtime_environ::INTERRUPTED => {
                // This means that an interrupt happened before we actually
                // called this function, which means that we're now
                // considered interrupted. Be sure to consume this interrupt
                // as part of this process too.
                interrupts.stack_limit.store(usize::max_value(), SeqCst);
                return Err(Trap::Wasm {
                    trap_code: ir::TrapCode::Interrupt,
                    backtrace: Backtrace::new_unresolved(),
                });
            }
            Err(_) => {
                // The stack limit was previously set by a previous wasm
                // call on the stack. We leave the original stack limit for
                // wasm in place in that case, and don't reset the stack
                // limit when we're done.
                false
            }
        };

        struct Reset<'a>(bool, &'a AtomicUsize);

        impl Drop for Reset<'_> {
            fn drop(&mut self) {
                if self.0 {
                    self.1.store(usize::max_value(), SeqCst);
                }
            }
        }

        Ok(Reset(reset_stack_limit, &interrupts.stack_limit))
    }

    fn unwind_with(&self, reason: UnwindReason) -> ! {
        self.unwind.replace(reason);
        unsafe {
            Unwind(self.jmp_buf.get());
        }
    }

    /// Trap handler using our thread-local state.
    ///
    /// * `pc` - the program counter the trap happened at
    /// * `call_handler` - a closure used to invoke the platform-specific
    ///   signal handler for each instance, if available.
    ///
    /// Attempts to handle the trap if it's a wasm trap. Returns a few
    /// different things:
    ///
    /// * null - the trap didn't look like a wasm trap and should continue as a
    ///   trap
    /// * 1 as a pointer - the trap was handled by a custom trap handler on an
    ///   instance, and the trap handler should quickly return.
    /// * a different pointer - a jmp_buf buffer to longjmp to, meaning that
    ///   the wasm trap was succesfully handled.
    fn handle_trap(
        &self,
        pc: *const u8,
        call_handler: impl Fn(&SignalHandler) -> bool,
    ) -> *const u8 {
        // If we hit a fault while handling a previous trap, that's quite bad,
        // so bail out and let the system handle this recursive segfault.
        //
        // Otherwise flag ourselves as handling a trap, do the trap handling,
        // and reset our trap handling flag.
        if self.handling_trap.replace(true) {
            return ptr::null();
        }
        let _reset = ResetCell(&self.handling_trap, false);

        // If we haven't even started to handle traps yet, bail out.
        if self.jmp_buf.get().is_null() {
            return ptr::null();
        }

        // First up see if any instance registered has a custom trap handler,
        // in which case run them all. If anything handles the trap then we
        // return that the trap was handled.
        if self.trap_info.custom_signal_handler(&call_handler) {
            return 1 as *const _;
        }

        // If this fault wasn't in wasm code, then it's not our problem
        if !self.trap_info.is_wasm_code(pc as usize) {
            return ptr::null();
        }

        // TODO: stack overflow can happen at any random time (i.e. in malloc()
        // in memory.grow) and it's really hard to determine if the cause was
        // stack overflow and if it happened in WebAssembly module.
        //
        // So, let's assume that any untrusted code called from WebAssembly
        // doesn't trap. Then, if we have called some WebAssembly code, it
        // means the trap is stack overflow.
        if self.jmp_buf.get().is_null() {
            return ptr::null();
        }
        let backtrace = Backtrace::new_unresolved();
        self.unwind.replace(UnwindReason::JitTrap {
            backtrace,
            pc: pc as usize,
        });
        self.jmp_buf.get()
    }
}

struct ResetCell<'a, T: Copy>(&'a Cell<T>, T);

impl<T: Copy> Drop for ResetCell<'_, T> {
    fn drop(&mut self) {
        self.0.set(self.1);
    }
}

// A private inner module for managing the TLS state that we require across
// calls in wasm. The WebAssembly code is called from C++ and then a trap may
// happen which requires us to read some contextual state to figure out what to
// do with the trap. This `tls` module is used to persist that information from
// the caller to the trap site.
mod tls {
    use super::CallThreadState;
    use std::cell::Cell;
    use std::mem;
    use std::ptr;

    thread_local!(static PTR: Cell<*const CallThreadState<'static>> = Cell::new(ptr::null()));

    /// Configures thread local state such that for the duration of the
    /// execution of `closure` any call to `with` will yield `ptr`, unless this
    /// is recursively called again.
    pub fn set<R>(ptr: &CallThreadState<'_>, closure: impl FnOnce() -> R) -> R {
        struct Reset<'a, T: Copy>(&'a Cell<T>, T);

        impl<T: Copy> Drop for Reset<'_, T> {
            fn drop(&mut self) {
                self.0.set(self.1);
            }
        }

        PTR.with(|p| {
            // Note that this extension of the lifetime to `'static` should be
            // safe because we only ever access it below with an anonymous
            // lifetime, meaning `'static` never leaks out of this module.
            let ptr = unsafe {
                mem::transmute::<*const CallThreadState<'_>, *const CallThreadState<'static>>(ptr)
            };
            let _r = Reset(p, p.replace(ptr));
            closure()
        })
    }

    /// Returns the last pointer configured with `set` above. Panics if `set`
    /// has not been previously called.
    pub fn with<R>(closure: impl FnOnce(Option<&CallThreadState<'_>>) -> R) -> R {
        PTR.with(|ptr| {
            let p = ptr.get();
            unsafe { closure(if p.is_null() { None } else { Some(&*p) }) }
        })
    }
}

/// A module for registering a custom alternate signal stack (sigaltstack).
///
/// Rust's libstd installs an alternate stack with size `SIGSTKSZ`, which is not
/// always large enough for our signal handling code. Override it by creating
/// and registering our own alternate stack that is large enough and has a guard
/// page.
#[cfg(unix)]
fn setup_unix_sigaltstack() -> Result<(), Trap> {
    use std::cell::RefCell;
    use std::convert::TryInto;
    use std::ptr::null_mut;

    thread_local! {
        /// Thread-local state is lazy-initialized on the first time it's used,
        /// and dropped when the thread exits.
        static TLS: RefCell<Tls> = RefCell::new(Tls::None);
    }

    /// The size of the sigaltstack (not including the guard, which will be
    /// added). Make this large enough to run our signal handlers.
    const MIN_STACK_SIZE: usize = 16 * 4096;

    enum Tls {
        None,
        Allocated {
            mmap_ptr: *mut libc::c_void,
            mmap_size: usize,
        },
        BigEnough,
    }

    return TLS.with(|slot| unsafe {
        let mut slot = slot.borrow_mut();
        match *slot {
            Tls::None => {}
            // already checked
            _ => return Ok(()),
        }

        // Check to see if the existing sigaltstack, if it exists, is big
        // enough. If so we don't need to allocate our own.
        let mut old_stack = mem::zeroed();
        let r = libc::sigaltstack(ptr::null(), &mut old_stack);
        assert_eq!(r, 0, "learning about sigaltstack failed");
        if old_stack.ss_flags & libc::SS_DISABLE == 0 && old_stack.ss_size >= MIN_STACK_SIZE {
            *slot = Tls::BigEnough;
            return Ok(());
        }

        // ... but failing that we need to allocate our own, so do all that
        // here.
        let page_size: usize = libc::sysconf(libc::_SC_PAGESIZE).try_into().unwrap();
        let guard_size = page_size;
        let alloc_size = guard_size + MIN_STACK_SIZE;

        let ptr = libc::mmap(
            null_mut(),
            alloc_size,
            libc::PROT_NONE,
            libc::MAP_PRIVATE | libc::MAP_ANON,
            -1,
            0,
        );
        if ptr == libc::MAP_FAILED {
            return Err(Trap::oom());
        }

        // Prepare the stack with readable/writable memory and then register it
        // with `sigaltstack`.
        let stack_ptr = (ptr as usize + guard_size) as *mut libc::c_void;
        let r = libc::mprotect(
            stack_ptr,
            MIN_STACK_SIZE,
            libc::PROT_READ | libc::PROT_WRITE,
        );
        assert_eq!(r, 0, "mprotect to configure memory for sigaltstack failed");
        let new_stack = libc::stack_t {
            ss_sp: stack_ptr,
            ss_flags: 0,
            ss_size: MIN_STACK_SIZE,
        };
        let r = libc::sigaltstack(&new_stack, ptr::null_mut());
        assert_eq!(r, 0, "registering new sigaltstack failed");

        *slot = Tls::Allocated {
            mmap_ptr: ptr,
            mmap_size: alloc_size,
        };
        Ok(())
    });

    impl Drop for Tls {
        fn drop(&mut self) {
            let (ptr, size) = match self {
                Tls::Allocated {
                    mmap_ptr,
                    mmap_size,
                } => (*mmap_ptr, *mmap_size),
                _ => return,
            };
            unsafe {
                // Deallocate the stack memory.
                let r = libc::munmap(ptr, size);
                debug_assert_eq!(r, 0, "munmap failed during thread shutdown");
            }
        }
    }
}