1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use futures::{
    io::{self, AsyncWrite},
    ready,
    task::{Context, Poll},
};
use log::trace;
use pin_project::pin_project;
use salsa20::{cipher::SyncStreamCipher, XSalsa20};
use std::{fmt, pin::Pin};

/// A writer that encrypts and forwards to an inner writer
#[pin_project]
pub struct CryptWriter<W> {
    #[pin]
    inner: W,
    buf: Vec<u8>,
    cipher: XSalsa20,
}

impl<W: AsyncWrite> CryptWriter<W> {
    /// Creates a new `CryptWriter` with the specified buffer capacity.
    pub fn with_capacity(capacity: usize, inner: W, cipher: XSalsa20) -> CryptWriter<W> {
        CryptWriter {
            inner,
            buf: Vec::with_capacity(capacity),
            cipher,
        }
    }

    /// Gets a pinned mutable reference to the inner writer.
    ///
    /// It is inadvisable to directly write to the inner writer.
    pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut W> {
        self.project().inner
    }
}

/// Write the contents of a Vec<u8> into an AsyncWrite.
///
/// The handling 0 byte progress and the Interrupted error was taken from BufWriter in async_std.
///
/// If this fn returns Ready(Ok(())), the buffer has been completely flushed and is empty.
fn poll_flush_buf<W: AsyncWrite>(
    inner: &mut Pin<&mut W>,
    buf: &mut Vec<u8>,
    cx: &mut Context<'_>,
) -> Poll<io::Result<()>> {
    let mut ret = Poll::Ready(Ok(()));
    let mut written = 0;
    let len = buf.len();
    while written < len {
        match inner.as_mut().poll_write(cx, &buf[written..]) {
            Poll::Ready(Ok(n)) => {
                if n > 0 {
                    // we made progress, so try again
                    written += n;
                } else {
                    // we got Ok but got no progress whatsoever, so bail out so we don't spin writing 0 bytes.
                    ret = Poll::Ready(Err(io::Error::new(
                        io::ErrorKind::WriteZero,
                        "Failed to write buffered data",
                    )));
                    break;
                }
            }
            Poll::Ready(Err(e)) => {
                // Interrupted is the only error that we consider to be recoverable by trying again
                if e.kind() != io::ErrorKind::Interrupted {
                    // for any other error, don't try again
                    ret = Poll::Ready(Err(e));
                    break;
                }
            }
            Poll::Pending => {
                ret = Poll::Pending;
                break;
            }
        }
    }
    if written > 0 {
        buf.drain(..written);
    }
    if let Poll::Ready(Ok(())) = ret { debug_assert!(buf.is_empty()); }
    ret
}

impl<W: AsyncWrite> AsyncWrite for CryptWriter<W> {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        let mut this = self.project();
        // completely flush the buffer, returning pending if not possible
        ready!(poll_flush_buf(&mut this.inner, this.buf, cx))?;
        // if we get here, the buffer is empty
        debug_assert!(this.buf.is_empty());
        let res = Pin::new(&mut *this.buf).poll_write(cx, buf);
        if let Poll::Ready(Ok(count)) = res {
            this.cipher.apply_keystream(&mut this.buf[0..count]);
            trace!("encrypted {} bytes", count);
        } else {
            debug_assert!(false);
        };
        // flush immediately afterwards, but if we get a pending we don't care
        if let Poll::Ready(Err(e)) = poll_flush_buf(&mut this.inner, this.buf, cx) {
            Poll::Ready(Err(e))
        } else {
            res
        }
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        let mut this = self.project();
        ready!(poll_flush_buf(&mut this.inner, this.buf, cx))?;
        this.inner.poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        let mut this = self.project();
        ready!(poll_flush_buf(&mut this.inner, this.buf, cx))?;
        this.inner.poll_close(cx)
    }
}

impl<W: AsyncWrite + fmt::Debug> fmt::Debug for CryptWriter<W> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("CryptWriter")
            .field("writer", &self.inner)
            .field("buf", &self.buf)
            .finish()
    }
}