1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#[cfg(feature = "logging")]
use crate::log::warn;
use crate::msgs::codec::Codec;
use crate::msgs::handshake::HandshakeMessagePayload;
use crate::msgs::message::{Message, MessagePayload};
use ring::digest;
use std::mem;

/// This deals with keeping a running hash of the handshake
/// payloads.  This is computed by buffering initially.  Once
/// we know what hash function we need to use we switch to
/// incremental hashing.
///
/// For client auth, we also need to buffer all the messages.
/// This is disabled in cases where client auth is not possible.
pub struct HandshakeHash {
    /// None before we know what hash function we're using
    alg: Option<&'static digest::Algorithm>,

    /// None before we know what hash function we're using
    ctx: Option<digest::Context>,

    /// true if we need to keep all messages
    client_auth_enabled: bool,

    /// buffer for pre-hashing stage and client-auth.
    buffer: Vec<u8>,
}

impl HandshakeHash {
    pub fn new() -> HandshakeHash {
        HandshakeHash {
            alg: None,
            ctx: None,
            client_auth_enabled: false,
            buffer: Vec::new(),
        }
    }

    /// We might be doing client auth, so need to keep a full
    /// log of the handshake.
    pub fn set_client_auth_enabled(&mut self) {
        debug_assert!(self.ctx.is_none()); // or we might have already discarded messages
        self.client_auth_enabled = true;
    }

    /// We decided not to do client auth after all, so discard
    /// the transcript.
    pub fn abandon_client_auth(&mut self) {
        self.client_auth_enabled = false;
        self.buffer.drain(..);
    }

    /// We now know what hash function the verify_data will use.
    pub fn start_hash(&mut self, alg: &'static digest::Algorithm) -> bool {
        match self.alg {
            None => {}
            Some(started) => {
                if started != alg {
                    // hash type is changing
                    warn!("altered hash to HandshakeHash::start_hash");
                    return false;
                }

                return true;
            }
        }
        self.alg = Some(alg);
        debug_assert!(self.ctx.is_none());

        let mut ctx = digest::Context::new(alg);
        ctx.update(&self.buffer);
        self.ctx = Some(ctx);

        // Discard buffer if we don't need it now.
        if !self.client_auth_enabled {
            self.buffer.drain(..);
        }
        true
    }

    /// Hash/buffer a handshake message.
    pub fn add_message(&mut self, m: &Message) -> &mut HandshakeHash {
        match m.payload {
            MessagePayload::Handshake(ref hs) => {
                let buf = hs.get_encoding();
                self.update_raw(&buf);
            }
            _ => {}
        };
        self
    }

    /// Hash or buffer a byte slice.
    fn update_raw(&mut self, buf: &[u8]) -> &mut Self {
        if self.ctx.is_some() {
            self.ctx.as_mut().unwrap().update(buf);
        }

        if self.ctx.is_none() || self.client_auth_enabled {
            self.buffer.extend_from_slice(buf);
        }

        self
    }

    /// Get the hash value if we were to hash `extra` too,
    /// using hash function `hash`.
    pub fn get_hash_given(&self, hash: &'static digest::Algorithm, extra: &[u8]) -> Vec<u8> {
        let mut ctx = if self.ctx.is_none() {
            let mut ctx = digest::Context::new(hash);
            ctx.update(&self.buffer);
            ctx
        } else {
            self.ctx.as_ref().unwrap().clone()
        };

        ctx.update(extra);
        let hash = ctx.finish();
        let mut ret = Vec::new();
        ret.extend_from_slice(hash.as_ref());
        ret
    }

    /// Take the current hash value, and encapsulate it in a
    /// 'handshake_hash' handshake message.  Start this hash
    /// again, with that message at the front.
    pub fn rollup_for_hrr(&mut self) {
        let old_hash = self.ctx.take().unwrap().finish();
        let old_handshake_hash_msg =
            HandshakeMessagePayload::build_handshake_hash(old_hash.as_ref());

        self.ctx = Some(digest::Context::new(self.alg.unwrap()));
        self.update_raw(&old_handshake_hash_msg.get_encoding());
    }

    /// Get the current hash value.
    pub fn get_current_hash(&self) -> Vec<u8> {
        let hash = self
            .ctx
            .as_ref()
            .unwrap()
            .clone()
            .finish();
        let mut ret = Vec::new();
        ret.extend_from_slice(hash.as_ref());
        ret
    }

    /// Takes this object's buffer containing all handshake messages
    /// so far.  This method only works once; it resets the buffer
    /// to empty.
    pub fn take_handshake_buf(&mut self) -> Vec<u8> {
        debug_assert!(self.client_auth_enabled);
        mem::replace(&mut self.buffer, Vec::new())
    }
}

#[cfg(test)]
mod test {
    use super::HandshakeHash;
    use ring::digest;

    #[test]
    fn hashes_correctly() {
        let mut hh = HandshakeHash::new();
        hh.update_raw(b"hello");
        assert_eq!(hh.buffer.len(), 5);
        hh.start_hash(&digest::SHA256);
        assert_eq!(hh.buffer.len(), 0);
        hh.update_raw(b"world");
        let h = hh.get_current_hash();
        assert_eq!(h[0], 0x93);
        assert_eq!(h[1], 0x6a);
        assert_eq!(h[2], 0x18);
        assert_eq!(h[3], 0x5c);
    }

    #[test]
    fn buffers_correctly() {
        let mut hh = HandshakeHash::new();
        hh.set_client_auth_enabled();
        hh.update_raw(b"hello");
        assert_eq!(hh.buffer.len(), 5);
        hh.start_hash(&digest::SHA256);
        assert_eq!(hh.buffer.len(), 5);
        hh.update_raw(b"world");
        assert_eq!(hh.buffer.len(), 10);
        let h = hh.get_current_hash();
        assert_eq!(h[0], 0x93);
        assert_eq!(h[1], 0x6a);
        assert_eq!(h[2], 0x18);
        assert_eq!(h[3], 0x5c);
        let buf = hh.take_handshake_buf();
        assert_eq!(b"helloworld".to_vec(), buf);
    }

    #[test]
    fn abandon() {
        let mut hh = HandshakeHash::new();
        hh.set_client_auth_enabled();
        hh.update_raw(b"hello");
        assert_eq!(hh.buffer.len(), 5);
        hh.start_hash(&digest::SHA256);
        assert_eq!(hh.buffer.len(), 5);
        hh.abandon_client_auth();
        assert_eq!(hh.buffer.len(), 0);
        hh.update_raw(b"world");
        assert_eq!(hh.buffer.len(), 0);
        let h = hh.get_current_hash();
        assert_eq!(h[0], 0x93);
        assert_eq!(h[1], 0x6a);
        assert_eq!(h[2], 0x18);
        assert_eq!(h[3], 0x5c);
    }
}