1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
//! Abstract definition of a matrix data storage.
use std::fmt::Debug;
use std::mem;
use crate::base::allocator::{Allocator, SameShapeC, SameShapeR};
use crate::base::default_allocator::DefaultAllocator;
use crate::base::dimension::{Dim, U1};
use crate::base::Scalar;
/*
* Aliases for allocation results.
*/
/// The data storage for the sum of two matrices with dimensions `(R1, C1)` and `(R2, C2)`.
pub type SameShapeStorage<T, R1, C1, R2, C2> =
<DefaultAllocator as Allocator<T, SameShapeR<R1, R2>, SameShapeC<C1, C2>>>::Buffer;
// TODO: better name than Owned ?
/// The owned data storage that can be allocated from `S`.
pub type Owned<T, R, C = U1> = <DefaultAllocator as Allocator<T, R, C>>::Buffer;
/// The row-stride of the owned data storage for a buffer of dimension `(R, C)`.
pub type RStride<T, R, C = U1> =
<<DefaultAllocator as Allocator<T, R, C>>::Buffer as Storage<T, R, C>>::RStride;
/// The column-stride of the owned data storage for a buffer of dimension `(R, C)`.
pub type CStride<T, R, C = U1> =
<<DefaultAllocator as Allocator<T, R, C>>::Buffer as Storage<T, R, C>>::CStride;
/// The trait shared by all matrix data storage.
///
/// TODO: doc
///
/// Note that `Self` must always have a number of elements compatible with the matrix length (given
/// by `R` and `C` if they are known at compile-time). For example, implementors of this trait
/// should **not** allow the user to modify the size of the underlying buffer with safe methods
/// (for example the `VecStorage::data_mut` method is unsafe because the user could change the
/// vector's size so that it no longer contains enough elements: this will lead to UB.
pub unsafe trait Storage<T: Scalar, R: Dim, C: Dim = U1>: Debug + Sized {
/// The static stride of this storage's rows.
type RStride: Dim;
/// The static stride of this storage's columns.
type CStride: Dim;
/// The matrix data pointer.
fn ptr(&self) -> *const T;
/// The dimension of the matrix at run-time. Arr length of zero indicates the additive identity
/// element of any dimension. Must be equal to `Self::dimension()` if it is not `None`.
fn shape(&self) -> (R, C);
/// The spacing between consecutive row elements and consecutive column elements.
///
/// For example this returns `(1, 5)` for a row-major matrix with 5 columns.
fn strides(&self) -> (Self::RStride, Self::CStride);
/// Compute the index corresponding to the irow-th row and icol-th column of this matrix. The
/// index must be such that the following holds:
///
/// ```.ignore
/// let lindex = self.linear_index(irow, icol);
/// assert!(*self.get_unchecked(irow, icol) == *self.get_unchecked_linear(lindex))
/// ```
#[inline]
fn linear_index(&self, irow: usize, icol: usize) -> usize {
let (rstride, cstride) = self.strides();
irow * rstride.value() + icol * cstride.value()
}
/// Gets the address of the i-th matrix component without performing bound-checking.
#[inline]
unsafe fn get_address_unchecked_linear(&self, i: usize) -> *const T {
self.ptr().wrapping_add(i)
}
/// Gets the address of the i-th matrix component without performing bound-checking.
#[inline]
unsafe fn get_address_unchecked(&self, irow: usize, icol: usize) -> *const T {
self.get_address_unchecked_linear(self.linear_index(irow, icol))
}
/// Retrieves a reference to the i-th element without bound-checking.
#[inline]
unsafe fn get_unchecked_linear(&self, i: usize) -> &T {
&*self.get_address_unchecked_linear(i)
}
/// Retrieves a reference to the i-th element without bound-checking.
#[inline]
unsafe fn get_unchecked(&self, irow: usize, icol: usize) -> &T {
self.get_unchecked_linear(self.linear_index(irow, icol))
}
/// Indicates whether this data buffer stores its elements contiguously.
fn is_contiguous(&self) -> bool;
/// Retrieves the data buffer as a contiguous slice.
///
/// The matrix components may not be stored in a contiguous way, depending on the strides.
fn as_slice(&self) -> &[T];
/// Builds a matrix data storage that does not contain any reference.
fn into_owned(self) -> Owned<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>;
/// Clones this data storage to one that does not contain any reference.
fn clone_owned(&self) -> Owned<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>;
}
/// Trait implemented by matrix data storage that can provide a mutable access to its elements.
///
/// Note that a mutable access does not mean that the matrix owns its data. For example, a mutable
/// matrix slice can provide mutable access to its elements even if it does not own its data (it
/// contains only an internal reference to them).
pub unsafe trait StorageMut<T: Scalar, R: Dim, C: Dim = U1>: Storage<T, R, C> {
/// The matrix mutable data pointer.
fn ptr_mut(&mut self) -> *mut T;
/// Gets the mutable address of the i-th matrix component without performing bound-checking.
#[inline]
unsafe fn get_address_unchecked_linear_mut(&mut self, i: usize) -> *mut T {
self.ptr_mut().wrapping_add(i)
}
/// Gets the mutable address of the i-th matrix component without performing bound-checking.
#[inline]
unsafe fn get_address_unchecked_mut(&mut self, irow: usize, icol: usize) -> *mut T {
let lid = self.linear_index(irow, icol);
self.get_address_unchecked_linear_mut(lid)
}
/// Retrieves a mutable reference to the i-th element without bound-checking.
unsafe fn get_unchecked_linear_mut(&mut self, i: usize) -> &mut T {
&mut *self.get_address_unchecked_linear_mut(i)
}
/// Retrieves a mutable reference to the element at `(irow, icol)` without bound-checking.
#[inline]
unsafe fn get_unchecked_mut(&mut self, irow: usize, icol: usize) -> &mut T {
&mut *self.get_address_unchecked_mut(irow, icol)
}
/// Swaps two elements using their linear index without bound-checking.
#[inline]
unsafe fn swap_unchecked_linear(&mut self, i1: usize, i2: usize) {
let a = self.get_address_unchecked_linear_mut(i1);
let b = self.get_address_unchecked_linear_mut(i2);
mem::swap(&mut *a, &mut *b);
}
/// Swaps two elements without bound-checking.
#[inline]
unsafe fn swap_unchecked(&mut self, row_col1: (usize, usize), row_col2: (usize, usize)) {
let lid1 = self.linear_index(row_col1.0, row_col1.1);
let lid2 = self.linear_index(row_col2.0, row_col2.1);
self.swap_unchecked_linear(lid1, lid2)
}
/// Retrieves the mutable data buffer as a contiguous slice.
///
/// Matrix components may not be contiguous, depending on its strides.
fn as_mut_slice(&mut self) -> &mut [T];
}
/// A matrix storage that is stored contiguously in memory.
///
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols - 1]`, the value
/// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because
/// failing to comply to this may cause Undefined Behaviors.
pub unsafe trait ContiguousStorage<T: Scalar, R: Dim, C: Dim = U1>:
Storage<T, R, C>
{
}
/// A mutable matrix storage that is stored contiguously in memory.
///
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols - 1]`, the value
/// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because
/// failing to comply to this may cause Undefined Behaviors.
pub unsafe trait ContiguousStorageMut<T: Scalar, R: Dim, C: Dim = U1>:
ContiguousStorage<T, R, C> + StorageMut<T, R, C>
{
}
/// A matrix storage that can be reshaped in-place.
pub trait ReshapableStorage<T, R1, C1, R2, C2>: Storage<T, R1, C1>
where
T: Scalar,
R1: Dim,
C1: Dim,
R2: Dim,
C2: Dim,
{
/// The reshaped storage type.
type Output: Storage<T, R2, C2>;
/// Reshapes the storage into the output storage type.
fn reshape_generic(self, nrows: R2, ncols: C2) -> Self::Output;
}