1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//! Abstract definition of a matrix data storage.

use std::fmt::Debug;
use std::mem;

use crate::base::allocator::{Allocator, SameShapeC, SameShapeR};
use crate::base::default_allocator::DefaultAllocator;
use crate::base::dimension::{Dim, U1};
use crate::base::Scalar;

/*
 * Aliases for allocation results.
 */
/// The data storage for the sum of two matrices with dimensions `(R1, C1)` and `(R2, C2)`.
pub type SameShapeStorage<T, R1, C1, R2, C2> =
    <DefaultAllocator as Allocator<T, SameShapeR<R1, R2>, SameShapeC<C1, C2>>>::Buffer;

// TODO: better name than Owned ?
/// The owned data storage that can be allocated from `S`.
pub type Owned<T, R, C = U1> = <DefaultAllocator as Allocator<T, R, C>>::Buffer;

/// The row-stride of the owned data storage for a buffer of dimension `(R, C)`.
pub type RStride<T, R, C = U1> =
    <<DefaultAllocator as Allocator<T, R, C>>::Buffer as Storage<T, R, C>>::RStride;

/// The column-stride of the owned data storage for a buffer of dimension `(R, C)`.
pub type CStride<T, R, C = U1> =
    <<DefaultAllocator as Allocator<T, R, C>>::Buffer as Storage<T, R, C>>::CStride;

/// The trait shared by all matrix data storage.
///
/// TODO: doc
///
/// Note that `Self` must always have a number of elements compatible with the matrix length (given
/// by `R` and `C` if they are known at compile-time). For example, implementors of this trait
/// should **not** allow the user to modify the size of the underlying buffer with safe methods
/// (for example the `VecStorage::data_mut` method is unsafe because the user could change the
/// vector's size so that it no longer contains enough elements: this will lead to UB.
pub unsafe trait Storage<T: Scalar, R: Dim, C: Dim = U1>: Debug + Sized {
    /// The static stride of this storage's rows.
    type RStride: Dim;

    /// The static stride of this storage's columns.
    type CStride: Dim;

    /// The matrix data pointer.
    fn ptr(&self) -> *const T;

    /// The dimension of the matrix at run-time. Arr length of zero indicates the additive identity
    /// element of any dimension. Must be equal to `Self::dimension()` if it is not `None`.
    fn shape(&self) -> (R, C);

    /// The spacing between consecutive row elements and consecutive column elements.
    ///
    /// For example this returns `(1, 5)` for a row-major matrix with 5 columns.
    fn strides(&self) -> (Self::RStride, Self::CStride);

    /// Compute the index corresponding to the irow-th row and icol-th column of this matrix. The
    /// index must be such that the following holds:
    ///
    /// ```.ignore
    /// let lindex = self.linear_index(irow, icol);
    /// assert!(*self.get_unchecked(irow, icol) == *self.get_unchecked_linear(lindex))
    /// ```
    #[inline]
    fn linear_index(&self, irow: usize, icol: usize) -> usize {
        let (rstride, cstride) = self.strides();

        irow * rstride.value() + icol * cstride.value()
    }

    /// Gets the address of the i-th matrix component without performing bound-checking.
    #[inline]
    unsafe fn get_address_unchecked_linear(&self, i: usize) -> *const T {
        self.ptr().wrapping_add(i)
    }

    /// Gets the address of the i-th matrix component without performing bound-checking.
    #[inline]
    unsafe fn get_address_unchecked(&self, irow: usize, icol: usize) -> *const T {
        self.get_address_unchecked_linear(self.linear_index(irow, icol))
    }

    /// Retrieves a reference to the i-th element without bound-checking.
    #[inline]
    unsafe fn get_unchecked_linear(&self, i: usize) -> &T {
        &*self.get_address_unchecked_linear(i)
    }

    /// Retrieves a reference to the i-th element without bound-checking.
    #[inline]
    unsafe fn get_unchecked(&self, irow: usize, icol: usize) -> &T {
        self.get_unchecked_linear(self.linear_index(irow, icol))
    }

    /// Indicates whether this data buffer stores its elements contiguously.
    fn is_contiguous(&self) -> bool;

    /// Retrieves the data buffer as a contiguous slice.
    ///
    /// The matrix components may not be stored in a contiguous way, depending on the strides.
    fn as_slice(&self) -> &[T];

    /// Builds a matrix data storage that does not contain any reference.
    fn into_owned(self) -> Owned<T, R, C>
    where
        DefaultAllocator: Allocator<T, R, C>;

    /// Clones this data storage to one that does not contain any reference.
    fn clone_owned(&self) -> Owned<T, R, C>
    where
        DefaultAllocator: Allocator<T, R, C>;
}

/// Trait implemented by matrix data storage that can provide a mutable access to its elements.
///
/// Note that a mutable access does not mean that the matrix owns its data. For example, a mutable
/// matrix slice can provide mutable access to its elements even if it does not own its data (it
/// contains only an internal reference to them).
pub unsafe trait StorageMut<T: Scalar, R: Dim, C: Dim = U1>: Storage<T, R, C> {
    /// The matrix mutable data pointer.
    fn ptr_mut(&mut self) -> *mut T;

    /// Gets the mutable address of the i-th matrix component without performing bound-checking.
    #[inline]
    unsafe fn get_address_unchecked_linear_mut(&mut self, i: usize) -> *mut T {
        self.ptr_mut().wrapping_add(i)
    }

    /// Gets the mutable address of the i-th matrix component without performing bound-checking.
    #[inline]
    unsafe fn get_address_unchecked_mut(&mut self, irow: usize, icol: usize) -> *mut T {
        let lid = self.linear_index(irow, icol);
        self.get_address_unchecked_linear_mut(lid)
    }

    /// Retrieves a mutable reference to the i-th element without bound-checking.
    unsafe fn get_unchecked_linear_mut(&mut self, i: usize) -> &mut T {
        &mut *self.get_address_unchecked_linear_mut(i)
    }

    /// Retrieves a mutable reference to the element at `(irow, icol)` without bound-checking.
    #[inline]
    unsafe fn get_unchecked_mut(&mut self, irow: usize, icol: usize) -> &mut T {
        &mut *self.get_address_unchecked_mut(irow, icol)
    }

    /// Swaps two elements using their linear index without bound-checking.
    #[inline]
    unsafe fn swap_unchecked_linear(&mut self, i1: usize, i2: usize) {
        let a = self.get_address_unchecked_linear_mut(i1);
        let b = self.get_address_unchecked_linear_mut(i2);

        mem::swap(&mut *a, &mut *b);
    }

    /// Swaps two elements without bound-checking.
    #[inline]
    unsafe fn swap_unchecked(&mut self, row_col1: (usize, usize), row_col2: (usize, usize)) {
        let lid1 = self.linear_index(row_col1.0, row_col1.1);
        let lid2 = self.linear_index(row_col2.0, row_col2.1);

        self.swap_unchecked_linear(lid1, lid2)
    }

    /// Retrieves the mutable data buffer as a contiguous slice.
    ///
    /// Matrix components may not be contiguous, depending on its strides.
    fn as_mut_slice(&mut self) -> &mut [T];
}

/// A matrix storage that is stored contiguously in memory.
///
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols - 1]`, the value
/// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because
/// failing to comply to this may cause Undefined Behaviors.
pub unsafe trait ContiguousStorage<T: Scalar, R: Dim, C: Dim = U1>:
    Storage<T, R, C>
{
}

/// A mutable matrix storage that is stored contiguously in memory.
///
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols - 1]`, the value
/// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because
/// failing to comply to this may cause Undefined Behaviors.
pub unsafe trait ContiguousStorageMut<T: Scalar, R: Dim, C: Dim = U1>:
    ContiguousStorage<T, R, C> + StorageMut<T, R, C>
{
}

/// A matrix storage that can be reshaped in-place.
pub trait ReshapableStorage<T, R1, C1, R2, C2>: Storage<T, R1, C1>
where
    T: Scalar,
    R1: Dim,
    C1: Dim,
    R2: Dim,
    C2: Dim,
{
    /// The reshaped storage type.
    type Output: Storage<T, R2, C2>;

    /// Reshapes the storage into the output storage type.
    fn reshape_generic(self, nrows: R2, ncols: C2) -> Self::Output;
}