logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
macro_rules! blake2_impl {
    (
        $state:ident, $fix_state:ident, $word:ident, $vec:ident, $bytes:ident,
        $block_size:ident, $R1:expr, $R2:expr, $R3:expr, $R4:expr, $IV:expr,
        $vardoc:expr, $doc:expr,
    ) => {

        use $crate::as_bytes::AsBytes;
        use $crate::simd::{Vector4, $vec};

        use digest::{Update, BlockInput, FixedOutputDirty, VariableOutputDirty, Reset};
        use digest::InvalidOutputSize;
        use digest::generic_array::GenericArray;
        use digest::generic_array::typenum::{U4, Unsigned};
        use core::{cmp, convert::TryInto, ops::Div};
        use crypto_mac::{InvalidKeyLength, Mac, NewMac};

        type Output = GenericArray<u8, $bytes>;

        #[derive(Clone)]
        #[doc=$vardoc]
        pub struct $state {
            m: [$word; 16],
            h: [$vec; 2],
            t: u64,
            n: usize,

            h0: [$vec; 2],
            m0: [$word; 16],
            t0: u64,
        }

        #[inline(always)]
        fn iv0() -> $vec { $vec::new($IV[0], $IV[1], $IV[2], $IV[3]) }
        #[inline(always)]
        fn iv1() -> $vec { $vec::new($IV[4], $IV[5], $IV[6], $IV[7]) }

        #[inline(always)]
        fn quarter_round(v: &mut [$vec; 4], rd: u32, rb: u32, m: $vec) {
            v[0] = v[0].wrapping_add(v[1]).wrapping_add(m.from_le());
            v[3] = (v[3] ^ v[0]).rotate_right_const(rd);
            v[2] = v[2].wrapping_add(v[3]);
            v[1] = (v[1] ^ v[2]).rotate_right_const(rb);
        }

        #[inline(always)]
        fn shuffle(v: &mut [$vec; 4]) {
            v[1] = v[1].shuffle_left_1();
            v[2] = v[2].shuffle_left_2();
            v[3] = v[3].shuffle_left_3();
        }

        #[inline(always)]
        fn unshuffle(v: &mut [$vec; 4]) {
            v[1] = v[1].shuffle_right_1();
            v[2] = v[2].shuffle_right_2();
            v[3] = v[3].shuffle_right_3();
        }

        #[inline(always)]
        fn round(v: &mut [$vec; 4], m: &[$word; 16], s: &[usize; 16]) {
            quarter_round(v, $R1, $R2, $vec::gather(m,
                                  s[ 0], s[ 2], s[ 4], s[ 6]));
            quarter_round(v, $R3, $R4, $vec::gather(m,
                                  s[ 1], s[ 3], s[ 5], s[ 7]));

            shuffle(v);
            quarter_round(v, $R1, $R2, $vec::gather(m,
                                  s[ 8], s[10], s[12], s[14]));
            quarter_round(v, $R3, $R4, $vec::gather(m,
                                  s[ 9], s[11], s[13], s[15]));
            unshuffle(v);
        }

        impl $state {
            /// Creates a new hashing context with a key.
            ///
            /// **WARNING!** If you plan to use it for variable output MAC, then
            /// make sure to compare codes in constant time! It can be done
            /// for example by using `subtle` crate.
            pub fn new_keyed(key: &[u8], output_size: usize) -> Self {
                Self::with_params(key, &[], &[], output_size)
            }

            /// Creates a new hashing context with the full set of sequential-mode parameters.
            pub fn with_params(key: &[u8], salt: &[u8], persona: &[u8], output_size: usize) -> Self {
                let kk = key.len();
                assert!(kk <= $bytes::to_usize());
                assert!(output_size <= $bytes::to_usize());

                // The number of bytes needed to express two words.
                let length = $bytes::to_usize()/4;
                assert!(salt.len() <= length);
                assert!(persona.len() <= length);

                // Build a parameter block
                let mut p = [0 as $word; 8];
                p[0] = 0x0101_0000 ^ ((kk as $word) << 8) ^
                    (output_size as $word);

                // salt is two words long
                if salt.len() < length {
                    let mut padded_salt = GenericArray::<u8, <$bytes as Div<U4>>::Output>::default();
                    for i in 0..salt.len() {
                        padded_salt[i] = salt[i];
                    }
                    p[4] = $word::from_le_bytes(padded_salt[0 .. length/2].try_into().unwrap());
                    p[5] = $word::from_le_bytes(padded_salt[length/2 .. padded_salt.len()].try_into().unwrap());
                } else {
                    p[4] = $word::from_le_bytes(salt[0 .. salt.len()/2].try_into().unwrap());
                    p[5] = $word::from_le_bytes(salt[salt.len()/2 .. salt.len()].try_into().unwrap());
                }

                // persona is also two words long
                if persona.len() < length {
                    let mut padded_persona = GenericArray::<u8, <$bytes as Div<U4>>::Output>::default();
                    for i in 0..persona.len() {
                        padded_persona[i] = persona[i];
                    }
                    p[6] = $word::from_le_bytes(padded_persona[0 .. length/2].try_into().unwrap());
                    p[7] = $word::from_le_bytes(padded_persona[length/2 .. padded_persona.len()].try_into().unwrap());
                } else {
                    p[6] = $word::from_le_bytes(persona[0 .. length/2].try_into().unwrap());
                    p[7] = $word::from_le_bytes(persona[length/2 .. persona.len()].try_into().unwrap());
                }

                let mut state = Self::with_parameter_block(&p);

                if kk > 0 {
                    copy(key, state.m.as_mut_bytes());
                    state.t = 2 * $bytes::to_u64();
                }

                state.t0 = state.t;
                state.m0 = state.m;
                state
            }

            #[doc(hidden)]
            pub fn with_parameter_block(p: &[$word; 8]) -> Self {
                let nn = p[0] as u8 as usize;
                let kk = (p[0] >> 8) as u8 as usize;
                assert!(nn >= 1 && nn <= $bytes::to_usize());
                assert!(kk <= $bytes::to_usize());

                let h0 = [
                    iv0() ^ $vec::new(p[0], p[1], p[2], p[3]),
                    iv1() ^ $vec::new(p[4], p[5], p[6], p[7]),
                ];

                $state {
                    m: [0; 16],
                    h: h0,
                    t: 0,
                    n: nn,

                    t0: 0,
                    m0: [0; 16],
                    h0,
                }
            }

            /// Updates the hashing context with more data.
            fn update(&mut self, data: &[u8]) {
                let mut rest = data;

                let block = 2 * $bytes::to_usize();

                let off = self.t as usize % block;
                if off != 0 || self.t == 0 {
                    let len = cmp::min(block - off, rest.len());

                    let part = &rest[..len];
                    rest = &rest[part.len()..];

                    copy(part, &mut self.m.as_mut_bytes()[off..]);
                    self.t = self.t.checked_add(part.len() as u64)
                        .expect("hash data length overflow");
                }

                while rest.len() >= block {
                    self.compress(0, 0);

                    let part = &rest[..block];
                    rest = &rest[part.len()..];

                    copy(part, &mut self.m.as_mut_bytes());
                    self.t = self.t.checked_add(part.len() as u64)
                        .expect("hash data length overflow");
                }

                let n = rest.len();
                if n > 0 {
                    self.compress(0, 0);

                    copy(rest, &mut self.m.as_mut_bytes());
                    self.t = self.t.checked_add(rest.len() as u64)
                        .expect("hash data length overflow");
                }
            }

            #[doc(hidden)]
            pub fn finalize_last_node(mut self) -> Output {
                self.finalize_with_flag(!0)
            }


            fn finalize_with_flag(&mut self, f1: $word) -> Output {
                let off = self.t as usize % (2 * $bytes::to_usize());
                if off != 0 {
                    self.m.as_mut_bytes()[off..].iter_mut().for_each(|b| *b = 0);
                }

                self.compress(!0, f1);

                let buf = [self.h[0].to_le(), self.h[1].to_le()];

                let mut out = GenericArray::default();
                copy(buf.as_bytes(), &mut out);
                out
            }

            fn compress(&mut self, f0: $word, f1: $word) {
                use $crate::consts::SIGMA;

                let m = &self.m;
                let h = &mut self.h;

                let t0 = self.t as $word;
                let t1 = match $bytes::to_u8() {
                    64 => 0,
                    32 => (self.t >> 32) as $word,
                    _  => unreachable!(),
                };

                let mut v = [
                    h[0],
                    h[1],
                    iv0(),
                    iv1() ^ $vec::new(t0, t1, f0, f1),
                ];

                round(&mut v, m, &SIGMA[0]);
                round(&mut v, m, &SIGMA[1]);
                round(&mut v, m, &SIGMA[2]);
                round(&mut v, m, &SIGMA[3]);
                round(&mut v, m, &SIGMA[4]);
                round(&mut v, m, &SIGMA[5]);
                round(&mut v, m, &SIGMA[6]);
                round(&mut v, m, &SIGMA[7]);
                round(&mut v, m, &SIGMA[8]);
                round(&mut v, m, &SIGMA[9]);
                if $bytes::to_u8() == 64 {
                    round(&mut v, m, &SIGMA[0]);
                    round(&mut v, m, &SIGMA[1]);
                }

                h[0] = h[0] ^ (v[0] ^ v[2]);
                h[1] = h[1] ^ (v[1] ^ v[3]);
            }
        }

        impl Default for $state {
            fn default() -> Self { Self::new_keyed(&[], $bytes::to_usize()) }
        }

        impl BlockInput for $state {
            type BlockSize = $block_size;
        }

        impl Update for $state {
            fn update(&mut self, data: impl AsRef<[u8]>) {
                self.update(data.as_ref());
            }
        }

        impl VariableOutputDirty for $state {
            fn new(output_size: usize) -> Result<Self, InvalidOutputSize> {
                if output_size == 0 || output_size > $bytes::to_usize() {
                    return Err(InvalidOutputSize);
                }
                Ok(Self::new_keyed(&[], output_size))
            }

            fn output_size(&self) -> usize {
                self.n
            }

            fn finalize_variable_dirty(&mut self, f: impl FnOnce(&[u8])) {
                let n = self.n;
                let res = self.finalize_with_flag(0);
                f(&res[..n]);
            }
        }

        impl Reset for $state {
            fn reset(&mut self) {
                self.t = self.t0;
                self.m = self.m0;
                self.h = self.h0;
            }
        }

        opaque_debug::implement!($state);
        digest::impl_write!($state);


        #[derive(Clone)]
        #[doc=$doc]
        pub struct $fix_state {
            state: $state,
        }

        impl $fix_state {
            /// Creates a new hashing context with the full set of sequential-mode parameters.
            pub fn with_params(key: &[u8], salt: &[u8], persona: &[u8]) -> Self {
                let state = $state::with_params(key, salt, persona, $bytes::to_usize());
                Self { state }
            }
        }

        impl Default for $fix_state {
            fn default() -> Self {
                let state = $state::new_keyed(&[], $bytes::to_usize());
                Self { state }
            }
        }

        impl BlockInput for $fix_state {
            type BlockSize = $block_size;
        }

        impl Update for $fix_state {
            fn update(&mut self, data: impl AsRef<[u8]>) {
                self.state.update(data.as_ref());
            }
        }

        impl FixedOutputDirty for $fix_state {
            type OutputSize = $bytes;

            fn finalize_into_dirty(&mut self, out: &mut Output)  {
                out.copy_from_slice(&self.state.finalize_with_flag(0));
            }
        }

        impl Reset for $fix_state {
            fn reset(&mut self) {
                self.state.reset()
            }
        }

        impl NewMac for $fix_state {
            type KeySize = $bytes;

            fn new(key: &GenericArray<u8, $bytes>) -> Self {
                let state = $state::new_keyed(key, $bytes::to_usize());
                Self { state }
            }

            fn new_varkey(key: &[u8]) -> Result<Self, InvalidKeyLength> {
                if key.len() > $bytes::to_usize() {
                    Err(InvalidKeyLength)
                } else {
                    let state = $state::new_keyed(key, $bytes::to_usize());
                    Ok(Self { state })
                }
            }
        }

        impl Mac for $fix_state {
            type OutputSize = $bytes;

            fn update(&mut self, data: &[u8]) { self.state.update(data); }

            fn reset(&mut self) {
                <Self as Reset>::reset(self)
            }

            fn finalize(mut self) -> crypto_mac::Output<Self> {
                crypto_mac::Output::new(self.state.finalize_with_flag(0))
            }
        }

        opaque_debug::implement!($fix_state);
        digest::impl_write!($fix_state);

        fn copy(src: &[u8], dst: &mut [u8]) {
            assert!(dst.len() >= src.len());
            unsafe {
                core::ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), src.len());
            }
        }
    }
}