1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
//! Value affinity for register allocation.
//!
//! An SSA value's affinity is a hint used to guide the register allocator. It specifies the class
//! of allocation that is likely to cause the least amount of fixup moves in order to satisfy
//! instruction operand constraints.
//!
//! For values that want to be in registers, the affinity hint includes a register class or
//! subclass. This is just a hint, and the register allocator is allowed to pick a register from a
//! larger register class instead.
use crate::ir::{AbiParam, ArgumentLoc};
use crate::isa::{ConstraintKind, OperandConstraint, RegClassIndex, RegInfo, TargetIsa};
use core::fmt;
/// Preferred register allocation for an SSA value.
#[derive(Clone, Copy, Debug)]
pub enum Affinity {
/// No affinity.
///
/// This indicates a value that is not defined or used by any real instructions. It is a ghost
/// value that won't appear in the final program.
Unassigned,
/// This value should be placed in a spill slot on the stack.
Stack,
/// This value prefers a register from the given register class.
Reg(RegClassIndex),
}
impl Default for Affinity {
fn default() -> Self {
Self::Unassigned
}
}
impl Affinity {
/// Create an affinity that satisfies a single constraint.
///
/// This will never create an `Affinity::Unassigned`.
/// Use the `Default` implementation for that.
pub fn new(constraint: &OperandConstraint) -> Self {
if constraint.kind == ConstraintKind::Stack {
Self::Stack
} else {
Self::Reg(constraint.regclass.into())
}
}
/// Create an affinity that matches an ABI argument for `isa`.
pub fn abi(arg: &AbiParam, isa: &dyn TargetIsa) -> Self {
match arg.location {
ArgumentLoc::Unassigned => Self::Unassigned,
ArgumentLoc::Reg(_) => Self::Reg(isa.regclass_for_abi_type(arg.value_type).into()),
ArgumentLoc::Stack(_) => Self::Stack,
}
}
/// Is this the `Unassigned` affinity?
pub fn is_unassigned(self) -> bool {
match self {
Self::Unassigned => true,
_ => false,
}
}
/// Is this the `Reg` affinity?
pub fn is_reg(self) -> bool {
match self {
Self::Reg(_) => true,
_ => false,
}
}
/// Is this the `Stack` affinity?
pub fn is_stack(self) -> bool {
match self {
Self::Stack => true,
_ => false,
}
}
/// Merge an operand constraint into this affinity.
///
/// Note that this does not guarantee that the register allocator will pick a register that
/// satisfies the constraint.
pub fn merge(&mut self, constraint: &OperandConstraint, reginfo: &RegInfo) {
match *self {
Self::Unassigned => *self = Self::new(constraint),
Self::Reg(rc) => {
// If the preferred register class is a subclass of the constraint, there's no need
// to change anything.
if constraint.kind != ConstraintKind::Stack && !constraint.regclass.has_subclass(rc)
{
// If the register classes overlap, try to shrink our preferred register class.
if let Some(subclass) = constraint.regclass.intersect_index(reginfo.rc(rc)) {
*self = Self::Reg(subclass);
}
}
}
Self::Stack => {}
}
}
/// Return an object that can display this value affinity, using the register info from the
/// target ISA.
pub fn display<'a, R: Into<Option<&'a RegInfo>>>(self, regs: R) -> DisplayAffinity<'a> {
DisplayAffinity(self, regs.into())
}
}
/// Displaying an `Affinity` correctly requires the associated `RegInfo` from the target ISA.
pub struct DisplayAffinity<'a>(Affinity, Option<&'a RegInfo>);
impl<'a> fmt::Display for DisplayAffinity<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.0 {
Affinity::Unassigned => write!(f, "unassigned"),
Affinity::Stack => write!(f, "stack"),
Affinity::Reg(rci) => match self.1 {
Some(regs) => write!(f, "{}", regs.rc(rci)),
None => write!(f, "{}", rci),
},
}
}
}