1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
//! A SSA-building API that handles incomplete CFGs.
//!
//! The algorithm is based upon Braun M., Buchwald S., Hack S., Leißa R., Mallon C.,
//! Zwinkau A. (2013) Simple and Efficient Construction of Static Single Assignment Form.
//! In: Jhala R., De Bosschere K. (eds) Compiler Construction. CC 2013.
//! Lecture Notes in Computer Science, vol 7791. Springer, Berlin, Heidelberg
//!
//! https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf

use crate::Variable;
use alloc::vec::Vec;
use core::convert::TryInto;
use core::mem;
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::SecondaryMap;
use cranelift_codegen::ir::immediates::{Ieee32, Ieee64};
use cranelift_codegen::ir::instructions::BranchInfo;
use cranelift_codegen::ir::types::{F32, F64};
use cranelift_codegen::ir::{Block, Function, Inst, InstBuilder, InstructionData, Type, Value};
use cranelift_codegen::packed_option::PackedOption;
use smallvec::SmallVec;

/// Structure containing the data relevant the construction of SSA for a given function.
///
/// The parameter struct `Variable` corresponds to the way variables are represented in the
/// non-SSA language you're translating from.
///
/// The SSA building relies on information about the variables used and defined.
///
/// This SSA building module allows you to def and use variables on the fly while you are
/// constructing the CFG, no need for a separate SSA pass after the CFG is completed.
///
/// A basic block is said _filled_ if all the instruction that it contains have been translated,
/// and it is said _sealed_ if all of its predecessors have been declared. Only filled predecessors
/// can be declared.
pub struct SSABuilder {
    // TODO: Consider a sparse representation rather than SecondaryMap-of-SecondaryMap.
    /// Records for every variable and for every relevant block, the last definition of
    /// the variable in the block.
    variables: SecondaryMap<Variable, SecondaryMap<Block, PackedOption<Value>>>,

    /// Records the position of the basic blocks and the list of values used but not defined in the
    /// block.
    ssa_blocks: SecondaryMap<Block, SSABlockData>,

    /// Call stack for use in the `use_var`/`predecessors_lookup` state machine.
    calls: Vec<Call>,
    /// Result stack for use in the `use_var`/`predecessors_lookup` state machine.
    results: Vec<Value>,

    /// Side effects accumulated in the `use_var`/`predecessors_lookup` state machine.
    side_effects: SideEffects,
}

/// Side effects of a `use_var` or a `seal_block` method call.
pub struct SideEffects {
    /// When we want to append jump arguments to a `br_table` instruction, the critical edge is
    /// splitted and the newly created `Block`s are signaled here.
    pub split_blocks_created: Vec<Block>,
    /// When a variable is used but has never been defined before (this happens in the case of
    /// unreachable code), a placeholder `iconst` or `fconst` value is added to the right `Block`.
    /// This field signals if it is the case and return the `Block` to which the initialization has
    /// been added.
    pub instructions_added_to_blocks: Vec<Block>,
}

impl SideEffects {
    fn new() -> Self {
        Self {
            split_blocks_created: Vec::new(),
            instructions_added_to_blocks: Vec::new(),
        }
    }

    fn is_empty(&self) -> bool {
        self.split_blocks_created.is_empty() && self.instructions_added_to_blocks.is_empty()
    }
}

#[derive(Clone)]
struct PredBlock {
    block: Block,
    branch: Inst,
}

impl PredBlock {
    fn new(block: Block, branch: Inst) -> Self {
        Self { block, branch }
    }
}

type PredBlockSmallVec = SmallVec<[PredBlock; 4]>;

#[derive(Clone, Default)]
struct SSABlockData {
    // The predecessors of the Block with the block and branch instruction.
    predecessors: PredBlockSmallVec,
    // A block is sealed if all of its predecessors have been declared.
    sealed: bool,
    // List of current Block arguments for which an earlier def has not been found yet.
    undef_variables: Vec<(Variable, Value)>,
}

impl SSABlockData {
    fn add_predecessor(&mut self, pred: Block, inst: Inst) {
        debug_assert!(!self.sealed, "sealed blocks cannot accept new predecessors");
        self.predecessors.push(PredBlock::new(pred, inst));
    }

    fn remove_predecessor(&mut self, inst: Inst) -> Block {
        let pred = self
            .predecessors
            .iter()
            .position(|&PredBlock { branch, .. }| branch == inst)
            .expect("the predecessor you are trying to remove is not declared");
        self.predecessors.swap_remove(pred).block
    }
}

impl SSABuilder {
    /// Allocate a new blank SSA builder struct. Use the API function to interact with the struct.
    pub fn new() -> Self {
        Self {
            variables: SecondaryMap::with_default(SecondaryMap::new()),
            ssa_blocks: SecondaryMap::new(),
            calls: Vec::new(),
            results: Vec::new(),
            side_effects: SideEffects::new(),
        }
    }

    /// Clears a `SSABuilder` from all its data, letting it in a pristine state without
    /// deallocating memory.
    pub fn clear(&mut self) {
        self.variables.clear();
        self.ssa_blocks.clear();
        debug_assert!(self.calls.is_empty());
        debug_assert!(self.results.is_empty());
        debug_assert!(self.side_effects.is_empty());
    }

    /// Tests whether an `SSABuilder` is in a cleared state.
    pub fn is_empty(&self) -> bool {
        self.variables.is_empty()
            && self.ssa_blocks.is_empty()
            && self.calls.is_empty()
            && self.results.is_empty()
            && self.side_effects.is_empty()
    }
}

/// Small enum used for clarity in some functions.
#[derive(Debug)]
enum ZeroOneOrMore<T> {
    Zero,
    One(T),
    More,
}

/// Cases used internally by `use_var_nonlocal()` for avoiding the borrow checker.
#[derive(Debug)]
enum UseVarCases {
    Unsealed(Value),
    SealedOnePredecessor(Block),
    SealedMultiplePredecessors(Value, Block),
}

/// States for the `use_var`/`predecessors_lookup` state machine.
enum Call {
    UseVar(Block),
    FinishSealedOnePredecessor(Block),
    FinishPredecessorsLookup(Value, Block),
}

/// Emit instructions to produce a zero value in the given type.
fn emit_zero(ty: Type, mut cur: FuncCursor) -> Value {
    if ty.is_int() {
        cur.ins().iconst(ty, 0)
    } else if ty.is_bool() {
        cur.ins().bconst(ty, false)
    } else if ty == F32 {
        cur.ins().f32const(Ieee32::with_bits(0))
    } else if ty == F64 {
        cur.ins().f64const(Ieee64::with_bits(0))
    } else if ty.is_ref() {
        cur.ins().null(ty)
    } else if ty.is_vector() {
        let scalar_ty = ty.lane_type();
        if scalar_ty.is_int() || scalar_ty.is_bool() {
            let zero = cur.func.dfg.constants.insert(
                core::iter::repeat(0)
                    .take(ty.bytes().try_into().unwrap())
                    .collect(),
            );
            cur.ins().vconst(ty, zero)
        } else if scalar_ty == F32 {
            let scalar = cur.ins().f32const(Ieee32::with_bits(0));
            cur.ins().splat(ty, scalar)
        } else if scalar_ty == F64 {
            let scalar = cur.ins().f64const(Ieee64::with_bits(0));
            cur.ins().splat(ty, scalar)
        } else {
            panic!("unimplemented scalar type: {:?}", ty)
        }
    } else {
        panic!("unimplemented type: {:?}", ty)
    }
}

/// The following methods are the API of the SSA builder. Here is how it should be used when
/// translating to Cranelift IR:
///
/// - for each basic block, create a corresponding data for SSA construction with `declare_block`;
///
/// - while traversing a basic block and translating instruction, use `def_var` and `use_var`
///   to record definitions and uses of variables, these methods will give you the corresponding
///   SSA values;
///
/// - when all the instructions in a basic block have translated, the block is said _filled_ and
///   only then you can add it as a predecessor to other blocks with `declare_block_predecessor`;
///
/// - when you have constructed all the predecessor to a basic block,
///   call `seal_block` on it with the `Function` that you are building.
///
/// This API will give you the correct SSA values to use as arguments of your instructions,
/// as well as modify the jump instruction and `Block` parameters to account for the SSA
/// Phi functions.
///
impl SSABuilder {
    /// Declares a new definition of a variable in a given basic block.
    /// The SSA value is passed as an argument because it should be created with
    /// `ir::DataFlowGraph::append_result`.
    pub fn def_var(&mut self, var: Variable, val: Value, block: Block) {
        self.variables[var][block] = PackedOption::from(val);
    }

    /// Declares a use of a variable in a given basic block. Returns the SSA value corresponding
    /// to the current SSA definition of this variable and a list of newly created Blocks that
    /// are the results of critical edge splitting for `br_table` with arguments.
    ///
    /// If the variable has never been defined in this blocks or recursively in its predecessors,
    /// this method will silently create an initializer with `iconst` or `fconst`. You are
    /// responsible for making sure that you initialize your variables.
    pub fn use_var(
        &mut self,
        func: &mut Function,
        var: Variable,
        ty: Type,
        block: Block,
    ) -> (Value, SideEffects) {
        // First, try Local Value Numbering (Algorithm 1 in the paper).
        // If the variable already has a known Value in this block, use that.
        if let Some(var_defs) = self.variables.get(var) {
            if let Some(val) = var_defs[block].expand() {
                return (val, SideEffects::new());
            }
        }

        // Otherwise, use Global Value Numbering (Algorithm 2 in the paper).
        // This resolves the Value with respect to its predecessors.
        debug_assert!(self.calls.is_empty());
        debug_assert!(self.results.is_empty());
        debug_assert!(self.side_effects.is_empty());

        // Prepare the 'calls' and 'results' stacks for the state machine.
        self.use_var_nonlocal(func, var, ty, block);

        let value = self.run_state_machine(func, var, ty);
        let side_effects = mem::replace(&mut self.side_effects, SideEffects::new());

        (value, side_effects)
    }

    /// Resolve the minimal SSA Value of `var` in `block` by traversing predecessors.
    ///
    /// This function sets up state for `run_state_machine()` but does not execute it.
    fn use_var_nonlocal(&mut self, func: &mut Function, var: Variable, ty: Type, block: Block) {
        // This function is split into two parts to appease the borrow checker.
        // Part 1: With a mutable borrow of self, update the DataFlowGraph if necessary.
        let data = &mut self.ssa_blocks[block];
        let case = if data.sealed {
            // The block has multiple predecessors so we append a Block parameter that
            // will serve as a value.
            if data.predecessors.len() == 1 {
                // Optimize the common case of one predecessor: no param needed.
                UseVarCases::SealedOnePredecessor(data.predecessors[0].block)
            } else {
                // Break potential cycles by eagerly adding an operandless param.
                let val = func.dfg.append_block_param(block, ty);
                UseVarCases::SealedMultiplePredecessors(val, block)
            }
        } else {
            let val = func.dfg.append_block_param(block, ty);
            data.undef_variables.push((var, val));
            UseVarCases::Unsealed(val)
        };

        // Part 2: Prepare SSABuilder state for run_state_machine().
        match case {
            UseVarCases::SealedOnePredecessor(pred) => {
                // Get the Value directly from the single predecessor.
                self.calls.push(Call::FinishSealedOnePredecessor(block));
                self.calls.push(Call::UseVar(pred));
            }
            UseVarCases::Unsealed(val) => {
                // Define the operandless param added above to prevent lookup cycles.
                self.def_var(var, val, block);

                // Nothing more can be known at this point.
                self.results.push(val);
            }
            UseVarCases::SealedMultiplePredecessors(val, block) => {
                // Define the operandless param added above to prevent lookup cycles.
                self.def_var(var, val, block);

                // Look up a use_var for each precessor.
                self.begin_predecessors_lookup(val, block);
            }
        }
    }

    /// For blocks with a single predecessor, once we've determined the value,
    /// record a local def for it for future queries to find.
    fn finish_sealed_one_predecessor(&mut self, var: Variable, block: Block) {
        let val = *self.results.last().unwrap();
        self.def_var(var, val, block);
    }

    /// Declares a new basic block to construct corresponding data for SSA construction.
    /// No predecessors are declared here and the block is not sealed.
    /// Predecessors have to be added with `declare_block_predecessor`.
    pub fn declare_block(&mut self, block: Block) {
        self.ssa_blocks[block] = SSABlockData {
            predecessors: PredBlockSmallVec::new(),
            sealed: false,
            undef_variables: Vec::new(),
        };
    }

    /// Declares a new predecessor for a `Block` and record the branch instruction
    /// of the predecessor that leads to it.
    ///
    /// The precedent `Block` must be filled before added as predecessor.
    /// Note that you must provide no jump arguments to the branch
    /// instruction when you create it since `SSABuilder` will fill them for you.
    ///
    /// Callers are expected to avoid adding the same predecessor more than once in the case
    /// of a jump table.
    pub fn declare_block_predecessor(&mut self, block: Block, pred: Block, inst: Inst) {
        debug_assert!(!self.is_sealed(block));
        self.ssa_blocks[block].add_predecessor(pred, inst)
    }

    /// Remove a previously declared Block predecessor by giving a reference to the jump
    /// instruction. Returns the basic block containing the instruction.
    ///
    /// Note: use only when you know what you are doing, this might break the SSA building problem
    pub fn remove_block_predecessor(&mut self, block: Block, inst: Inst) -> Block {
        debug_assert!(!self.is_sealed(block));
        self.ssa_blocks[block].remove_predecessor(inst)
    }

    /// Completes the global value numbering for a `Block`, all of its predecessors having been
    /// already sealed.
    ///
    /// This method modifies the function's `Layout` by adding arguments to the `Block`s to
    /// take into account the Phi function placed by the SSA algorithm.
    ///
    /// Returns the list of newly created blocks for critical edge splitting.
    pub fn seal_block(&mut self, block: Block, func: &mut Function) -> SideEffects {
        self.seal_one_block(block, func);
        mem::replace(&mut self.side_effects, SideEffects::new())
    }

    /// Completes the global value numbering for all unsealed `Block`s in `func`.
    ///
    /// It's more efficient to seal `Block`s as soon as possible, during
    /// translation, but for frontends where this is impractical to do, this
    /// function can be used at the end of translating all blocks to ensure
    /// that everything is sealed.
    pub fn seal_all_blocks(&mut self, func: &mut Function) -> SideEffects {
        // Seal all `Block`s currently in the function. This can entail splitting
        // and creation of new blocks, however such new blocks are sealed on
        // the fly, so we don't need to account for them here.
        for block in self.ssa_blocks.keys() {
            if !self.is_sealed(block) {
                self.seal_one_block(block, func);
            }
        }
        mem::replace(&mut self.side_effects, SideEffects::new())
    }

    /// Helper function for `seal_block` and
    /// `seal_all_blocks`.
    fn seal_one_block(&mut self, block: Block, func: &mut Function) {
        let block_data = &mut self.ssa_blocks[block];
        debug_assert!(
            !block_data.sealed,
            "Attempting to seal {} which is already sealed.",
            block
        );

        // Extract the undef_variables data from the block so that we
        // can iterate over it without borrowing the whole builder.
        let undef_vars = mem::replace(&mut block_data.undef_variables, Vec::new());

        // For each undef var we look up values in the predecessors and create a block parameter
        // only if necessary.
        for (var, val) in undef_vars {
            let ty = func.dfg.value_type(val);
            self.predecessors_lookup(func, val, var, ty, block);
        }
        self.mark_block_sealed(block);
    }

    /// Set the `sealed` flag for `block`.
    fn mark_block_sealed(&mut self, block: Block) {
        // Then we mark the block as sealed.
        let block_data = &mut self.ssa_blocks[block];
        debug_assert!(!block_data.sealed);
        debug_assert!(block_data.undef_variables.is_empty());
        block_data.sealed = true;

        // We could call data.predecessors.shrink_to_fit() here, if
        // important, because no further predecessors will be added
        // to this block.
    }

    /// Given the local SSA Value of a Variable in a Block, perform a recursive lookup on
    /// predecessors to determine if it is redundant with another Value earlier in the CFG.
    ///
    /// If such a Value exists and is redundant, the local Value is replaced by the
    /// corresponding non-local Value. If the original Value was a Block parameter,
    /// the parameter may be removed if redundant. Parameters are placed eagerly by callers
    /// to avoid infinite loops when looking up a Value for a Block that is in a CFG loop.
    ///
    /// Doing this lookup for each Value in each Block preserves SSA form during construction.
    ///
    /// Returns the chosen Value.
    ///
    /// ## Arguments
    ///
    /// `sentinel` is a dummy Block parameter inserted by `use_var_nonlocal()`.
    /// Its purpose is to allow detection of CFG cycles while traversing predecessors.
    ///
    /// The `sentinel: Value` and the `ty: Type` are describing the `var: Variable`
    /// that is being looked up.
    fn predecessors_lookup(
        &mut self,
        func: &mut Function,
        sentinel: Value,
        var: Variable,
        ty: Type,
        block: Block,
    ) -> Value {
        debug_assert!(self.calls.is_empty());
        debug_assert!(self.results.is_empty());
        // self.side_effects may be non-empty here so that callers can
        // accumulate side effects over multiple calls.
        self.begin_predecessors_lookup(sentinel, block);
        self.run_state_machine(func, var, ty)
    }

    /// Set up state for `run_state_machine()` to initiate non-local use lookups
    /// in all predecessors of `dest_block`, and arrange for a call to
    /// `finish_predecessors_lookup` once they complete.
    fn begin_predecessors_lookup(&mut self, sentinel: Value, dest_block: Block) {
        self.calls
            .push(Call::FinishPredecessorsLookup(sentinel, dest_block));
        // Iterate over the predecessors.
        let mut calls = mem::replace(&mut self.calls, Vec::new());
        calls.extend(
            self.predecessors(dest_block)
                .iter()
                .rev()
                .map(|&PredBlock { block: pred, .. }| Call::UseVar(pred)),
        );
        self.calls = calls;
    }

    /// Examine the values from the predecessors and compute a result value, creating
    /// block parameters as needed.
    fn finish_predecessors_lookup(
        &mut self,
        func: &mut Function,
        sentinel: Value,
        var: Variable,
        dest_block: Block,
    ) {
        let mut pred_values: ZeroOneOrMore<Value> = ZeroOneOrMore::Zero;

        // Determine how many predecessors are yielding unique, non-temporary Values.
        let num_predecessors = self.predecessors(dest_block).len();
        for &pred_val in self.results.iter().rev().take(num_predecessors) {
            match pred_values {
                ZeroOneOrMore::Zero => {
                    if pred_val != sentinel {
                        pred_values = ZeroOneOrMore::One(pred_val);
                    }
                }
                ZeroOneOrMore::One(old_val) => {
                    if pred_val != sentinel && pred_val != old_val {
                        pred_values = ZeroOneOrMore::More;
                        break;
                    }
                }
                ZeroOneOrMore::More => {
                    break;
                }
            }
        }

        // Those predecessors' Values have been examined: pop all their results.
        self.results.truncate(self.results.len() - num_predecessors);

        let result_val = match pred_values {
            ZeroOneOrMore::Zero => {
                // The variable is used but never defined before. This is an irregularity in the
                // code, but rather than throwing an error we silently initialize the variable to
                // 0. This will have no effect since this situation happens in unreachable code.
                if !func.layout.is_block_inserted(dest_block) {
                    func.layout.append_block(dest_block);
                }
                self.side_effects
                    .instructions_added_to_blocks
                    .push(dest_block);
                let zero = emit_zero(
                    func.dfg.value_type(sentinel),
                    FuncCursor::new(func).at_first_insertion_point(dest_block),
                );
                func.dfg.remove_block_param(sentinel);
                func.dfg.change_to_alias(sentinel, zero);
                zero
            }
            ZeroOneOrMore::One(pred_val) => {
                // Here all the predecessors use a single value to represent our variable
                // so we don't need to have it as a block argument.
                // We need to replace all the occurrences of val with pred_val but since
                // we can't afford a re-writing pass right now we just declare an alias.
                // Resolve aliases eagerly so that we can check for cyclic aliasing,
                // which can occur in unreachable code.
                let mut resolved = func.dfg.resolve_aliases(pred_val);
                if sentinel == resolved {
                    // Cycle detected. Break it by creating a zero value.
                    resolved = emit_zero(
                        func.dfg.value_type(sentinel),
                        FuncCursor::new(func).at_first_insertion_point(dest_block),
                    );
                }
                func.dfg.remove_block_param(sentinel);
                func.dfg.change_to_alias(sentinel, resolved);
                resolved
            }
            ZeroOneOrMore::More => {
                // There is disagreement in the predecessors on which value to use so we have
                // to keep the block argument. To avoid borrowing `self` for the whole loop,
                // temporarily detach the predecessors list and replace it with an empty list.
                let mut preds =
                    mem::replace(self.predecessors_mut(dest_block), PredBlockSmallVec::new());
                for &mut PredBlock {
                    block: ref mut pred_block,
                    branch: ref mut last_inst,
                } in &mut preds
                {
                    // We already did a full `use_var` above, so we can do just the fast path.
                    let ssa_block_map = self.variables.get(var).unwrap();
                    let pred_val = ssa_block_map.get(*pred_block).unwrap().unwrap();
                    let jump_arg = self.append_jump_argument(
                        func,
                        *last_inst,
                        *pred_block,
                        dest_block,
                        pred_val,
                        var,
                    );
                    if let Some((middle_block, middle_jump_inst)) = jump_arg {
                        *pred_block = middle_block;
                        *last_inst = middle_jump_inst;
                        self.side_effects.split_blocks_created.push(middle_block);
                    }
                }
                // Now that we're done, move the predecessors list back.
                debug_assert!(self.predecessors(dest_block).is_empty());
                *self.predecessors_mut(dest_block) = preds;

                sentinel
            }
        };

        self.results.push(result_val);
    }

    /// Appends a jump argument to a jump instruction, returns block created in case of
    /// critical edge splitting.
    fn append_jump_argument(
        &mut self,
        func: &mut Function,
        jump_inst: Inst,
        jump_inst_block: Block,
        dest_block: Block,
        val: Value,
        var: Variable,
    ) -> Option<(Block, Inst)> {
        match func.dfg.analyze_branch(jump_inst) {
            BranchInfo::NotABranch => {
                panic!("you have declared a non-branch instruction as a predecessor to a block");
            }
            // For a single destination appending a jump argument to the instruction
            // is sufficient.
            BranchInfo::SingleDest(_, _) => {
                func.dfg.append_inst_arg(jump_inst, val);
                None
            }
            BranchInfo::Table(jt, default_block) => {
                // In the case of a jump table, the situation is tricky because br_table doesn't
                // support arguments.
                // We have to split the critical edge
                let middle_block = func.dfg.make_block();
                func.layout.append_block(middle_block);
                self.declare_block(middle_block);
                self.ssa_blocks[middle_block].add_predecessor(jump_inst_block, jump_inst);
                self.mark_block_sealed(middle_block);

                if let Some(default_block) = default_block {
                    if dest_block == default_block {
                        match func.dfg[jump_inst] {
                            InstructionData::BranchTable {
                                destination: ref mut dest,
                                ..
                            } => {
                                *dest = middle_block;
                            }
                            _ => panic!("should not happen"),
                        }
                    }
                }

                for old_dest in func.jump_tables[jt].as_mut_slice() {
                    if *old_dest == dest_block {
                        *old_dest = middle_block;
                    }
                }
                let mut cur = FuncCursor::new(func).at_bottom(middle_block);
                let middle_jump_inst = cur.ins().jump(dest_block, &[val]);
                self.def_var(var, val, middle_block);
                Some((middle_block, middle_jump_inst))
            }
        }
    }

    /// Returns the list of `Block`s that have been declared as predecessors of the argument.
    fn predecessors(&self, block: Block) -> &[PredBlock] {
        &self.ssa_blocks[block].predecessors
    }

    /// Returns whether the given Block has any predecessor or not.
    pub fn has_any_predecessors(&self, block: Block) -> bool {
        !self.predecessors(block).is_empty()
    }

    /// Same as predecessors, but for &mut.
    fn predecessors_mut(&mut self, block: Block) -> &mut PredBlockSmallVec {
        &mut self.ssa_blocks[block].predecessors
    }

    /// Returns `true` if and only if `seal_block` has been called on the argument.
    pub fn is_sealed(&self, block: Block) -> bool {
        self.ssa_blocks[block].sealed
    }

    /// The main algorithm is naturally recursive: when there's a `use_var` in a
    /// block with no corresponding local defs, it recurses and performs a
    /// `use_var` in each predecessor. To avoid risking running out of callstack
    /// space, we keep an explicit stack and use a small state machine rather
    /// than literal recursion.
    fn run_state_machine(&mut self, func: &mut Function, var: Variable, ty: Type) -> Value {
        // Process the calls scheduled in `self.calls` until it is empty.
        while let Some(call) = self.calls.pop() {
            match call {
                Call::UseVar(ssa_block) => {
                    // First we lookup for the current definition of the variable in this block
                    if let Some(var_defs) = self.variables.get(var) {
                        if let Some(val) = var_defs[ssa_block].expand() {
                            self.results.push(val);
                            continue;
                        }
                    }
                    self.use_var_nonlocal(func, var, ty, ssa_block);
                }
                Call::FinishSealedOnePredecessor(ssa_block) => {
                    self.finish_sealed_one_predecessor(var, ssa_block);
                }
                Call::FinishPredecessorsLookup(sentinel, dest_block) => {
                    self.finish_predecessors_lookup(func, sentinel, var, dest_block);
                }
            }
        }
        debug_assert_eq!(self.results.len(), 1);
        self.results.pop().unwrap()
    }
}

#[cfg(test)]
mod tests {
    use crate::ssa::SSABuilder;
    use crate::Variable;
    use cranelift_codegen::cursor::{Cursor, FuncCursor};
    use cranelift_codegen::entity::EntityRef;
    use cranelift_codegen::ir::instructions::BranchInfo;
    use cranelift_codegen::ir::types::*;
    use cranelift_codegen::ir::{Function, Inst, InstBuilder, JumpTableData, Opcode};
    use cranelift_codegen::settings;
    use cranelift_codegen::verify_function;

    #[test]
    fn simple_block() {
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        // Here is the pseudo-program we want to translate:
        // block0:
        //    x = 1;
        //    y = 2;
        //    z = x + y;
        //    z = x + z;

        ssa.declare_block(block0);
        let x_var = Variable::new(0);
        let x_ssa = {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.def_var(x_var, x_ssa, block0);
        let y_var = Variable::new(1);
        let y_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(y_var, y_ssa, block0);
        assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa);
        assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa);

        let z_var = Variable::new(2);
        let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0;
        let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0;
        let z1_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iadd(x_use1, y_use1)
        };
        ssa.def_var(z_var, z1_ssa, block0);
        assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa);

        let x_use2 = ssa.use_var(&mut func, x_var, I32, block0).0;
        let z_use1 = ssa.use_var(&mut func, z_var, I32, block0).0;
        let z2_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iadd(x_use2, z_use1)
        };
        ssa.def_var(z_var, z2_ssa, block0);
        assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z2_ssa);
    }

    #[test]
    fn sequence_of_blocks() {
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        // Here is the pseudo-program we want to translate:
        // block0:
        //    x = 1;
        //    y = 2;
        //    z = x + y;
        //    brnz y, block1;
        //    jump block1;
        // block1:
        //    z = x + z;
        //    jump block2;
        // block2:
        //    y = x + y;
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
            cur.insert_block(block2);
        }

        // block0
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let x_var = Variable::new(0);
        let x_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.def_var(x_var, x_ssa, block0);
        let y_var = Variable::new(1);
        let y_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(y_var, y_ssa, block0);
        let z_var = Variable::new(2);
        let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0;
        let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0;
        let z1_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iadd(x_use1, y_use1)
        };
        ssa.def_var(z_var, z1_ssa, block0);
        let y_use2 = ssa.use_var(&mut func, y_var, I32, block0).0;
        let brnz_block0_block2: Inst = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().brnz(y_use2, block2, &[])
        };
        let jump_block0_block1: Inst = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().jump(block1, &[])
        };

        assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa);
        assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa);
        assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa);

        // block1
        ssa.declare_block(block1);
        ssa.declare_block_predecessor(block1, block0, jump_block0_block1);
        ssa.seal_block(block1, &mut func);

        let x_use2 = ssa.use_var(&mut func, x_var, I32, block1).0;
        let z_use1 = ssa.use_var(&mut func, z_var, I32, block1).0;
        let z2_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().iadd(x_use2, z_use1)
        };
        ssa.def_var(z_var, z2_ssa, block1);
        let jump_block1_block2: Inst = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().jump(block2, &[])
        };

        assert_eq!(x_use2, x_ssa);
        assert_eq!(z_use1, z1_ssa);
        assert_eq!(ssa.use_var(&mut func, z_var, I32, block1).0, z2_ssa);

        // block2
        ssa.declare_block(block2);
        ssa.declare_block_predecessor(block2, block0, brnz_block0_block2);
        ssa.declare_block_predecessor(block2, block1, jump_block1_block2);
        ssa.seal_block(block2, &mut func);
        let x_use3 = ssa.use_var(&mut func, x_var, I32, block2).0;
        let y_use3 = ssa.use_var(&mut func, y_var, I32, block2).0;
        let y2_ssa = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().iadd(x_use3, y_use3)
        };
        ssa.def_var(y_var, y2_ssa, block2);

        assert_eq!(x_ssa, x_use3);
        assert_eq!(y_ssa, y_use3);
        match func.dfg.analyze_branch(brnz_block0_block2) {
            BranchInfo::SingleDest(dest, jump_args) => {
                assert_eq!(dest, block2);
                assert_eq!(jump_args.len(), 0);
            }
            _ => assert!(false),
        };
        match func.dfg.analyze_branch(jump_block0_block1) {
            BranchInfo::SingleDest(dest, jump_args) => {
                assert_eq!(dest, block1);
                assert_eq!(jump_args.len(), 0);
            }
            _ => assert!(false),
        };
        match func.dfg.analyze_branch(jump_block1_block2) {
            BranchInfo::SingleDest(dest, jump_args) => {
                assert_eq!(dest, block2);
                assert_eq!(jump_args.len(), 0);
            }
            _ => assert!(false),
        };
    }

    #[test]
    fn program_with_loop() {
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        let block3 = func.dfg.make_block();
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
            cur.insert_block(block2);
            cur.insert_block(block3);
        }
        // Here is the pseudo-program we want to translate:
        // block0:
        //    x = 1;
        //    y = 2;
        //    z = x + y;
        //    jump block1
        // block1:
        //    z = z + y;
        //    brnz y, block3;
        //    jump block2;
        // block2:
        //    z = z - x;
        //    return y
        // block3:
        //    y = y - x
        //    jump block1

        // block0
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let x_var = Variable::new(0);
        let x1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.def_var(x_var, x1, block0);
        let y_var = Variable::new(1);
        let y1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(y_var, y1, block0);
        let z_var = Variable::new(2);
        let x2 = ssa.use_var(&mut func, x_var, I32, block0).0;
        let y2 = ssa.use_var(&mut func, y_var, I32, block0).0;
        let z1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iadd(x2, y2)
        };
        ssa.def_var(z_var, z1, block0);
        let jump_block0_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().jump(block1, &[])
        };
        assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x1);
        assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y1);
        assert_eq!(x2, x1);
        assert_eq!(y2, y1);

        // block1
        ssa.declare_block(block1);
        ssa.declare_block_predecessor(block1, block0, jump_block0_block1);
        let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
        let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
        let z3 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().iadd(z2, y3)
        };
        ssa.def_var(z_var, z3, block1);
        let y4 = ssa.use_var(&mut func, y_var, I32, block1).0;
        assert_eq!(y4, y3);
        let brnz_block1_block3 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().brnz(y4, block3, &[])
        };
        let jump_block1_block2 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().jump(block2, &[])
        };

        // block2
        ssa.declare_block(block2);
        ssa.declare_block_predecessor(block2, block1, jump_block1_block2);
        ssa.seal_block(block2, &mut func);
        let z4 = ssa.use_var(&mut func, z_var, I32, block2).0;
        assert_eq!(z4, z3);
        let x3 = ssa.use_var(&mut func, x_var, I32, block2).0;
        let z5 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().isub(z4, x3)
        };
        ssa.def_var(z_var, z5, block2);
        let y5 = ssa.use_var(&mut func, y_var, I32, block2).0;
        assert_eq!(y5, y3);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().return_(&[y5])
        };

        // block3
        ssa.declare_block(block3);
        ssa.declare_block_predecessor(block3, block1, brnz_block1_block3);
        ssa.seal_block(block3, &mut func);
        let y6 = ssa.use_var(&mut func, y_var, I32, block3).0;
        assert_eq!(y6, y3);
        let x4 = ssa.use_var(&mut func, x_var, I32, block3).0;
        assert_eq!(x4, x3);
        let y7 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block3);
            cur.ins().isub(y6, x4)
        };
        ssa.def_var(y_var, y7, block3);
        let jump_block3_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block3);
            cur.ins().jump(block1, &[])
        };

        // block1 after all predecessors have been visited.
        ssa.declare_block_predecessor(block1, block3, jump_block3_block1);
        ssa.seal_block(block1, &mut func);
        assert_eq!(func.dfg.block_params(block1)[0], z2);
        assert_eq!(func.dfg.block_params(block1)[1], y3);
        assert_eq!(func.dfg.resolve_aliases(x3), x1);
    }

    #[test]
    fn br_table_with_args() {
        // This tests the on-demand splitting of critical edges for br_table with jump arguments
        //
        // Here is the pseudo-program we want to translate:
        //
        // function %f {
        // jt = jump_table [block2, block1]
        // block0:
        //    x = 1;
        //    br_table x, block2, jt
        // block1:
        //    x = 2
        //    jump block2
        // block2:
        //    x = x + 1
        //    return
        // }

        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        let mut jump_table = JumpTableData::new();
        jump_table.push_entry(block2);
        jump_table.push_entry(block1);
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
            cur.insert_block(block2);
        }

        // block0
        let x1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let x_var = Variable::new(0);
        ssa.def_var(x_var, x1, block0);
        ssa.use_var(&mut func, x_var, I32, block0).0;
        let br_table = {
            let jt = func.create_jump_table(jump_table);
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().br_table(x1, block2, jt)
        };

        // block1
        ssa.declare_block(block1);
        ssa.declare_block_predecessor(block1, block0, br_table);
        ssa.seal_block(block1, &mut func);
        let x2 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(x_var, x2, block1);
        let jump_block1_block2 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().jump(block2, &[])
        };

        // block2
        ssa.declare_block(block2);
        ssa.declare_block_predecessor(block2, block1, jump_block1_block2);
        ssa.declare_block_predecessor(block2, block0, br_table);
        ssa.seal_block(block2, &mut func);
        let x3 = ssa.use_var(&mut func, x_var, I32, block2).0;
        let x4 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().iadd_imm(x3, 1)
        };
        ssa.def_var(x_var, x4, block2);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().return_(&[])
        };

        let flags = settings::Flags::new(settings::builder());
        match verify_function(&func, &flags) {
            Ok(()) => {}
            Err(_errors) => {
                #[cfg(feature = "std")]
                panic!(_errors);
                #[cfg(not(feature = "std"))]
                panic!("function failed to verify");
            }
        }
    }

    #[test]
    fn undef_values_reordering() {
        // Here is the pseudo-program we want to translate:
        // block0:
        //    x = 0;
        //    y = 1;
        //    z = 2;
        //    jump block1;
        // block1:
        //    x = z + x;
        //    y = y - x;
        //    jump block1;
        //
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
        }

        // block0
        ssa.declare_block(block0);
        let x_var = Variable::new(0);
        ssa.seal_block(block0, &mut func);
        let x1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 0)
        };
        ssa.def_var(x_var, x1, block0);
        let y_var = Variable::new(1);
        let y1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 1)
        };
        ssa.def_var(y_var, y1, block0);
        let z_var = Variable::new(2);
        let z1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().iconst(I32, 2)
        };
        ssa.def_var(z_var, z1, block0);
        let jump_block0_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().jump(block1, &[])
        };

        // block1
        ssa.declare_block(block1);
        ssa.declare_block_predecessor(block1, block0, jump_block0_block1);
        let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
        assert_eq!(func.dfg.block_params(block1)[0], z2);
        let x2 = ssa.use_var(&mut func, x_var, I32, block1).0;
        assert_eq!(func.dfg.block_params(block1)[1], x2);
        let x3 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().iadd(x2, z2)
        };
        ssa.def_var(x_var, x3, block1);
        let x4 = ssa.use_var(&mut func, x_var, I32, block1).0;
        let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
        assert_eq!(func.dfg.block_params(block1)[2], y3);
        let y4 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().isub(y3, x4)
        };
        ssa.def_var(y_var, y4, block1);
        let jump_block1_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            cur.ins().jump(block1, &[])
        };
        ssa.declare_block_predecessor(block1, block1, jump_block1_block1);
        ssa.seal_block(block1, &mut func);
        // At sealing the "z" argument disappear but the remaining "x" and "y" args have to be
        // in the right order.
        assert_eq!(func.dfg.block_params(block1)[1], y3);
        assert_eq!(func.dfg.block_params(block1)[0], x2);
    }

    #[test]
    fn undef() {
        // Use vars of various types which have not been defined.
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let i32_var = Variable::new(0);
        let f32_var = Variable::new(1);
        let f64_var = Variable::new(2);
        let b1_var = Variable::new(3);
        let f32x4_var = Variable::new(4);
        ssa.use_var(&mut func, i32_var, I32, block0);
        ssa.use_var(&mut func, f32_var, F32, block0);
        ssa.use_var(&mut func, f64_var, F64, block0);
        ssa.use_var(&mut func, b1_var, B1, block0);
        ssa.use_var(&mut func, f32x4_var, F32X4, block0);
        assert_eq!(func.dfg.num_block_params(block0), 0);
    }

    #[test]
    fn undef_in_entry() {
        // Use a var which has not been defined. The search should hit the
        // top of the entry block, and then fall back to inserting an iconst.
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        let x_var = Variable::new(0);
        assert_eq!(func.dfg.num_block_params(block0), 0);
        ssa.use_var(&mut func, x_var, I32, block0);
        assert_eq!(func.dfg.num_block_params(block0), 0);
        assert_eq!(
            func.dfg[func.layout.first_inst(block0).unwrap()].opcode(),
            Opcode::Iconst
        );
    }

    #[test]
    fn undef_in_entry_sealed_after() {
        // Use a var which has not been defined, but the block is not sealed
        // until afterward. Before sealing, the SSA builder should insert an
        // block param; after sealing, it should be removed.
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        ssa.declare_block(block0);
        let x_var = Variable::new(0);
        assert_eq!(func.dfg.num_block_params(block0), 0);
        ssa.use_var(&mut func, x_var, I32, block0);
        assert_eq!(func.dfg.num_block_params(block0), 1);
        ssa.seal_block(block0, &mut func);
        assert_eq!(func.dfg.num_block_params(block0), 0);
        assert_eq!(
            func.dfg[func.layout.first_inst(block0).unwrap()].opcode(),
            Opcode::Iconst
        );
    }

    #[test]
    fn unreachable_use() {
        // Here is the pseudo-program we want to translate:
        // block0:
        //    return;
        // block1:
        //    brz x, block1;
        //    jump block1;
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
        }

        // block0
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().return_(&[]);
        }

        // block1
        ssa.declare_block(block1);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            let x_var = Variable::new(0);
            let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
            let brz = cur.ins().brz(x_val, block1, &[]);
            let jump_block1_block1 = cur.ins().jump(block1, &[]);
            ssa.declare_block_predecessor(block1, block1, brz);
            ssa.declare_block_predecessor(block1, block1, jump_block1_block1);
        }
        ssa.seal_block(block1, &mut func);

        let flags = settings::Flags::new(settings::builder());
        match verify_function(&func, &flags) {
            Ok(()) => {}
            Err(_errors) => {
                #[cfg(feature = "std")]
                panic!(_errors);
                #[cfg(not(feature = "std"))]
                panic!("function failed to verify");
            }
        }
    }

    #[test]
    fn unreachable_use_with_multiple_preds() {
        // Here is the pseudo-program we want to translate:
        // block0:
        //    return;
        // block1:
        //    brz x, block2;
        //    jump block1;
        // block2:
        //    jump block1;
        let mut func = Function::new();
        let mut ssa = SSABuilder::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        {
            let mut cur = FuncCursor::new(&mut func);
            cur.insert_block(block0);
            cur.insert_block(block1);
            cur.insert_block(block2);
        }

        // block0
        ssa.declare_block(block0);
        ssa.seal_block(block0, &mut func);
        {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
            cur.ins().return_(&[]);
        }

        // block1
        ssa.declare_block(block1);
        let brz = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
            let x_var = Variable::new(0);
            let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
            let brz = cur.ins().brz(x_val, block2, &[]);
            let jump_block1_block1 = cur.ins().jump(block1, &[]);
            ssa.declare_block_predecessor(block1, block1, jump_block1_block1);
            brz
        };

        // block2
        ssa.declare_block(block2);
        ssa.declare_block_predecessor(block2, block1, brz);
        ssa.seal_block(block2, &mut func);
        let jump_block2_block1 = {
            let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
            cur.ins().jump(block1, &[])
        };

        // seal block1
        ssa.declare_block_predecessor(block1, block2, jump_block2_block1);
        ssa.seal_block(block1, &mut func);
        let flags = settings::Flags::new(settings::builder());
        match verify_function(&func, &flags) {
            Ok(()) => {}
            Err(_errors) => {
                #[cfg(feature = "std")]
                panic!(_errors);
                #[cfg(not(feature = "std"))]
                panic!("function failed to verify");
            }
        }
    }
}