1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
//! This module exposes the machine-specific backend definition pieces.
//!
//! The MachInst infrastructure is the compiler backend, from CLIF
//! (ir::Function) to machine code. The purpose of this infrastructure is, at a
//! high level, to do instruction selection/lowering (to machine instructions),
//! register allocation, and then perform all the fixups to branches, constant
//! data references, etc., needed to actually generate machine code.
//!
//! The container for machine instructions, at various stages of construction,
//! is the `VCode` struct. We refer to a sequence of machine instructions organized
//! into basic blocks as "vcode". This is short for "virtual-register code", though
//! it's a bit of a misnomer because near the end of the pipeline, vcode has all
//! real registers. Nevertheless, the name is catchy and we like it.
//!
//! The compilation pipeline, from an `ir::Function` (already optimized as much as
//! you like by machine-independent optimization passes) onward, is as follows.
//! (N.B.: though we show the VCode separately at each stage, the passes
//! mutate the VCode in place; these are not separate copies of the code.)
//!
//! ```plain
//!
//!     ir::Function                (SSA IR, machine-independent opcodes)
//!         |
//!         |  [lower]
//!         |
//!     VCode<arch_backend::Inst>   (machine instructions:
//!         |                        - mostly virtual registers.
//!         |                        - cond branches in two-target form.
//!         |                        - branch targets are block indices.
//!         |                        - in-memory constants held by insns,
//!         |                          with unknown offsets.
//!         |                        - critical edges (actually all edges)
//!         |                          are split.)
//!         | [regalloc]
//!         |
//!     VCode<arch_backend::Inst>   (machine instructions:
//!         |                        - all real registers.
//!         |                        - new instruction sequence returned
//!         |                          out-of-band in RegAllocResult.
//!         |                        - instruction sequence has spills,
//!         |                          reloads, and moves inserted.
//!         |                        - other invariants same as above.)
//!         |
//!         | [preamble/postamble]
//!         |
//!     VCode<arch_backend::Inst>   (machine instructions:
//!         |                        - stack-frame size known.
//!         |                        - out-of-band instruction sequence
//!         |                          has preamble prepended to entry
//!         |                          block, and postamble injected before
//!         |                          every return instruction.
//!         |                        - all symbolic stack references to
//!         |                          stackslots and spillslots are resolved
//!         |                          to concrete FP-offset mem addresses.)
//!         | [block/insn ordering]
//!         |
//!     VCode<arch_backend::Inst>   (machine instructions:
//!         |                        - vcode.final_block_order is filled in.
//!         |                        - new insn sequence from regalloc is
//!         |                          placed back into vcode and block
//!         |                          boundaries are updated.)
//!         | [redundant branch/block
//!         |  removal]
//!         |
//!     VCode<arch_backend::Inst>   (machine instructions:
//!         |                        - all blocks that were just an
//!         |                          unconditional branch are removed.)
//!         |
//!         | [branch finalization
//!         |  (fallthroughs)]
//!         |
//!     VCode<arch_backend::Inst>   (machine instructions:
//!         |                        - all branches are in lowered one-
//!         |                          target form, but targets are still
//!         |                          block indices.)
//!         |
//!         | [branch finalization
//!         |  (offsets)]
//!         |
//!     VCode<arch_backend::Inst>   (machine instructions:
//!         |                        - all branch offsets from start of
//!         |                          function are known, and all branches
//!         |                          have resolved-offset targets.)
//!         |
//!         | [MemArg finalization]
//!         |
//!     VCode<arch_backend::Inst>   (machine instructions:
//!         |                        - all MemArg references to the constant
//!         |                          pool are replaced with offsets.
//!         |                        - all constant-pool data is collected
//!         |                          in the VCode.)
//!         |
//!         | [binary emission]
//!         |
//!     Vec<u8>                     (machine code!)
//!
//! ```

use crate::binemit::{CodeInfo, CodeOffset, StackMap};
use crate::ir::condcodes::IntCC;
use crate::ir::{Function, SourceLoc, Type};
use crate::isa::unwind::input as unwind_input;
use crate::result::CodegenResult;
use crate::settings::Flags;

use alloc::boxed::Box;
use alloc::vec::Vec;
use core::fmt::Debug;
use core::ops::Range;
use regalloc::RegUsageCollector;
use regalloc::{
    RealReg, RealRegUniverse, Reg, RegClass, RegUsageMapper, SpillSlot, VirtualReg, Writable,
};
use smallvec::SmallVec;
use std::string::String;
use target_lexicon::Triple;

pub mod lower;
pub use lower::*;
pub mod vcode;
pub use vcode::*;
pub mod compile;
pub use compile::*;
pub mod blockorder;
pub use blockorder::*;
pub mod abi;
pub use abi::*;
pub mod abi_impl;
pub use abi_impl::*;
pub mod buffer;
pub use buffer::*;
pub mod adapter;
pub use adapter::*;
pub mod helpers;
pub use helpers::*;
pub mod inst_common;
pub use inst_common::*;
pub mod valueregs;
pub use valueregs::*;

/// A machine instruction.
pub trait MachInst: Clone + Debug {
    /// Return the registers referenced by this machine instruction along with
    /// the modes of reference (use, def, modify).
    fn get_regs(&self, collector: &mut RegUsageCollector);

    /// Map virtual registers to physical registers using the given virt->phys
    /// maps corresponding to the program points prior to, and after, this instruction.
    fn map_regs<RUM: RegUsageMapper>(&mut self, maps: &RUM);

    /// If this is a simple move, return the (source, destination) tuple of registers.
    fn is_move(&self) -> Option<(Writable<Reg>, Reg)>;

    /// Is this a terminator (branch or ret)? If so, return its type
    /// (ret/uncond/cond) and target if applicable.
    fn is_term<'a>(&'a self) -> MachTerminator<'a>;

    /// Returns true if the instruction is an epilogue placeholder.
    fn is_epilogue_placeholder(&self) -> bool;

    /// Should this instruction be included in the clobber-set?
    fn is_included_in_clobbers(&self) -> bool {
        true
    }

    /// Generate a move.
    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self;

    /// Generate a constant into a reg.
    fn gen_constant<F: FnMut(Type) -> Writable<Reg>>(
        to_regs: ValueRegs<Writable<Reg>>,
        value: u128,
        ty: Type,
        alloc_tmp: F,
    ) -> SmallVec<[Self; 4]>;

    /// Generate a zero-length no-op.
    fn gen_zero_len_nop() -> Self;

    /// Possibly operate on a value directly in a spill-slot rather than a
    /// register. Useful if the machine has register-memory instruction forms
    /// (e.g., add directly from or directly to memory), like x86.
    fn maybe_direct_reload(&self, reg: VirtualReg, slot: SpillSlot) -> Option<Self>;

    /// Determine register class(es) to store the given Cranelift type, and the
    /// Cranelift type actually stored in the underlying register(s).  May return
    /// an error if the type isn't supported by this backend.
    ///
    /// If the type requires multiple registers, then the list of registers is
    /// returned in little-endian order.
    ///
    /// Note that the type actually stored in the register(s) may differ in the
    /// case that a value is split across registers: for example, on a 32-bit
    /// target, an I64 may be stored in two registers, each of which holds an
    /// I32. The actually-stored types are used only to inform the backend when
    /// generating spills and reloads for individual registers.
    fn rc_for_type(ty: Type) -> CodegenResult<(&'static [RegClass], &'static [Type])>;

    /// Generate a jump to another target. Used during lowering of
    /// control flow.
    fn gen_jump(target: MachLabel) -> Self;

    /// Generate a NOP. The `preferred_size` parameter allows the caller to
    /// request a NOP of that size, or as close to it as possible. The machine
    /// backend may return a NOP whose binary encoding is smaller than the
    /// preferred size, but must not return a NOP that is larger. However,
    /// the instruction must have a nonzero size.
    fn gen_nop(preferred_size: usize) -> Self;

    /// Get the register universe for this backend.
    fn reg_universe(flags: &Flags) -> RealRegUniverse;

    /// Align a basic block offset (from start of function).  By default, no
    /// alignment occurs.
    fn align_basic_block(offset: CodeOffset) -> CodeOffset {
        offset
    }

    /// What is the worst-case instruction size emitted by this instruction type?
    fn worst_case_size() -> CodeOffset;

    /// What is the register class used for reference types (GC-observable pointers)? Can
    /// be dependent on compilation flags.
    fn ref_type_regclass(_flags: &Flags) -> RegClass;

    /// A label-use kind: a type that describes the types of label references that
    /// can occur in an instruction.
    type LabelUse: MachInstLabelUse;
}

/// A descriptor of a label reference (use) in an instruction set.
pub trait MachInstLabelUse: Clone + Copy + Debug + Eq {
    /// Required alignment for any veneer. Usually the required instruction
    /// alignment (e.g., 4 for a RISC with 32-bit instructions, or 1 for x86).
    const ALIGN: CodeOffset;

    /// What is the maximum PC-relative range (positive)? E.g., if `1024`, a
    /// label-reference fixup at offset `x` is valid if the label resolves to `x
    /// + 1024`.
    fn max_pos_range(self) -> CodeOffset;
    /// What is the maximum PC-relative range (negative)? This is the absolute
    /// value; i.e., if `1024`, then a label-reference fixup at offset `x` is
    /// valid if the label resolves to `x - 1024`.
    fn max_neg_range(self) -> CodeOffset;
    /// What is the size of code-buffer slice this label-use needs to patch in
    /// the label's value?
    fn patch_size(self) -> CodeOffset;
    /// Perform a code-patch, given the offset into the buffer of this label use
    /// and the offset into the buffer of the label's definition.
    /// It is guaranteed that, given `delta = offset - label_offset`, we will
    /// have `offset >= -self.max_neg_range()` and `offset <=
    /// self.max_pos_range()`.
    fn patch(self, buffer: &mut [u8], use_offset: CodeOffset, label_offset: CodeOffset);
    /// Can the label-use be patched to a veneer that supports a longer range?
    /// Usually valid for jumps (a short-range jump can jump to a longer-range
    /// jump), but not for e.g. constant pool references, because the constant
    /// load would require different code (one more level of indirection).
    fn supports_veneer(self) -> bool;
    /// How many bytes are needed for a veneer?
    fn veneer_size(self) -> CodeOffset;
    /// Generate a veneer. The given code-buffer slice is `self.veneer_size()`
    /// bytes long at offset `veneer_offset` in the buffer. The original
    /// label-use will be patched to refer to this veneer's offset.  A new
    /// (offset, LabelUse) is returned that allows the veneer to use the actual
    /// label. For veneers to work properly, it is expected that the new veneer
    /// has a larger range; on most platforms this probably means either a
    /// "long-range jump" (e.g., on ARM, the 26-bit form), or if already at that
    /// stage, a jump that supports a full 32-bit range, for example.
    fn generate_veneer(self, buffer: &mut [u8], veneer_offset: CodeOffset) -> (CodeOffset, Self);
}

/// Describes a block terminator (not call) in the vcode, when its branches
/// have not yet been finalized (so a branch may have two targets).
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum MachTerminator<'a> {
    /// Not a terminator.
    None,
    /// A return instruction.
    Ret,
    /// An unconditional branch to another block.
    Uncond(MachLabel),
    /// A conditional branch to one of two other blocks.
    Cond(MachLabel, MachLabel),
    /// An indirect branch with known possible targets.
    Indirect(&'a [MachLabel]),
}

/// A trait describing the ability to encode a MachInst into binary machine code.
pub trait MachInstEmit: MachInst {
    /// Persistent state carried across `emit` invocations.
    type State: MachInstEmitState<Self>;
    /// Constant information used in `emit` invocations.
    type Info: MachInstEmitInfo;
    /// Unwind info generator.
    type UnwindInfo: UnwindInfoGenerator<Self>;
    /// Emit the instruction.
    fn emit(&self, code: &mut MachBuffer<Self>, info: &Self::Info, state: &mut Self::State);
    /// Pretty-print the instruction.
    fn pretty_print(&self, mb_rru: Option<&RealRegUniverse>, state: &mut Self::State) -> String;
}

/// Constant information used to emit an instruction.
pub trait MachInstEmitInfo {
    /// Return the target-independent settings used for the compilation of this
    /// particular function.
    fn flags(&self) -> &Flags;
}

/// A trait describing the emission state carried between MachInsts when
/// emitting a function body.
pub trait MachInstEmitState<I: MachInst>: Default + Clone + Debug {
    /// Create a new emission state given the ABI object.
    fn new(abi: &dyn ABICallee<I = I>) -> Self;
    /// Update the emission state before emitting an instruction that is a
    /// safepoint.
    fn pre_safepoint(&mut self, _stack_map: StackMap) {}
    /// Update the emission state to indicate instructions are associated with a
    /// particular SourceLoc.
    fn pre_sourceloc(&mut self, _srcloc: SourceLoc) {}
}

/// The result of a `MachBackend::compile_function()` call. Contains machine
/// code (as bytes) and a disassembly, if requested.
pub struct MachCompileResult {
    /// Machine code.
    pub buffer: MachBufferFinalized,
    /// Size of stack frame, in bytes.
    pub frame_size: u32,
    /// Disassembly, if requested.
    pub disasm: Option<String>,
    /// Unwind info.
    pub unwind_info: Option<unwind_input::UnwindInfo<Reg>>,
}

impl MachCompileResult {
    /// Get a `CodeInfo` describing section sizes from this compilation result.
    pub fn code_info(&self) -> CodeInfo {
        let code_size = self.buffer.total_size();
        CodeInfo {
            code_size,
            jumptables_size: 0,
            rodata_size: 0,
            total_size: code_size,
        }
    }
}

/// Top-level machine backend trait, which wraps all monomorphized code and
/// allows a virtual call from the machine-independent `Function::compile()`.
pub trait MachBackend {
    /// Compile the given function.
    fn compile_function(
        &self,
        func: &Function,
        want_disasm: bool,
    ) -> CodegenResult<MachCompileResult>;

    /// Return flags for this backend.
    fn flags(&self) -> &Flags;

    /// Return triple for this backend.
    fn triple(&self) -> Triple;

    /// Return name for this backend.
    fn name(&self) -> &'static str;

    /// Return the register universe for this backend.
    fn reg_universe(&self) -> &RealRegUniverse;

    /// Machine-specific condcode info needed by TargetIsa.
    /// Condition that will be true when an IaddIfcout overflows.
    fn unsigned_add_overflow_condition(&self) -> IntCC;

    /// Machine-specific condcode info needed by TargetIsa.
    /// Condition that will be true when an IsubIfcout overflows.
    fn unsigned_sub_overflow_condition(&self) -> IntCC;

    /// Produces unwind info based on backend results.
    #[cfg(feature = "unwind")]
    fn emit_unwind_info(
        &self,
        _result: &MachCompileResult,
        _kind: UnwindInfoKind,
    ) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
        // By default, an backend cannot produce unwind info.
        Ok(None)
    }

    /// Machine-specific condcode info needed by TargetIsa.
    /// Creates a new System V Common Information Entry for the ISA.
    #[cfg(feature = "unwind")]
    fn create_systemv_cie(&self) -> Option<gimli::write::CommonInformationEntry> {
        // By default, an ISA cannot create a System V CIE
        None
    }
}

/// Expected unwind info type.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub enum UnwindInfoKind {
    /// No unwind info.
    None,
    /// SystemV CIE/FDE unwind info.
    #[cfg(feature = "unwind")]
    SystemV,
    /// Windows X64 Unwind info
    #[cfg(feature = "unwind")]
    Windows,
}

/// Input data for UnwindInfoGenerator.
pub struct UnwindInfoContext<'a, Inst: MachInstEmit> {
    /// Function instructions.
    pub insts: &'a [Inst],
    /// Instruction layout: end offsets
    pub insts_layout: &'a [CodeOffset],
    /// Length of the function.
    pub len: CodeOffset,
    /// Prologue range.
    pub prologue: Range<u32>,
    /// Epilogue ranges.
    pub epilogues: &'a [Range<u32>],
}

/// UnwindInfo generator/helper.
pub trait UnwindInfoGenerator<I: MachInstEmit> {
    /// Creates unwind info based on function signature and
    /// emitted instructions.
    fn create_unwind_info(
        context: UnwindInfoContext<I>,
    ) -> CodegenResult<Option<unwind_input::UnwindInfo<Reg>>>;
}