1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
//! Backtracking allocator: per-real-register commitment maps
use std::cmp::Ordering;
use std::fmt;
use crate::avl_tree::{AVLTree, AVL_NULL};
use crate::data_structures::{
cmp_range_frags, InstPoint, RangeFrag, RangeFragIx, RangeId, SortedRangeFragIxs,
SortedRangeFrags, TypedIxVec,
};
//=============================================================================
// Per-real-register commitment maps
//
// Something that pairs a fragment index with the identity of the virtual or real range to which
// this fragment conceptually "belongs", at least for the purposes of this commitment map. If
// the `lr_id` field denotes a real range, the associated fragment belongs to a real-reg live
// range and is therefore non-evictable. The identity of the range is necessary because:
//
// * for VirtualRanges, (1) we may need to evict the mapping, so we will need to get hold of the
// VirtualRange, so that we have all fragments of the VirtualRange to hand, and (2) if the
// client requires stackmaps, we need to look at the VirtualRange to see if it is reftyped.
//
// * for RealRanges, only (2) applies; (1) is irrelevant since RealRange assignments are
// non-evictable.
//
// (A fragment merely denotes a sequence of instruction (points), but within the context of a
// commitment map for a real register, obviously any particular fragment can't be part of two
// different virtual live ranges.)
//
// Note that we don't intend to actually use the PartialOrd methods for RangeFragAndRangeId.
// However, they need to exist since we want to construct an AVLTree<RangeFragAndRangeId>, and
// that requires PartialOrd for its element type. For working with such trees we will supply
// our own comparison function; hence PartialOrd here serves only to placate the typechecker.
// It should never actually be used.
#[derive(Clone)]
pub struct RangeFragAndRangeId {
pub frag: RangeFrag,
pub id: RangeId,
}
impl RangeFragAndRangeId {
fn new(frag: RangeFrag, id: RangeId) -> Self {
Self { frag, id }
}
}
impl PartialEq for RangeFragAndRangeId {
fn eq(&self, _other: &Self) -> bool {
// See comments above.
panic!("impl PartialEq for RangeFragAndRangeId: should never be used");
}
}
impl PartialOrd for RangeFragAndRangeId {
fn partial_cmp(&self, _other: &Self) -> Option<Ordering> {
// See comments above.
panic!("impl PartialOrd for RangeFragAndRangeId: should never be used");
}
}
impl fmt::Debug for RangeFragAndRangeId {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "(FnV {:?} {:?})", self.frag, self.id)
}
}
//=============================================================================
// Per-real-register commitment maps
//
// This indicates the current set of fragments to which some real register is
// currently "committed". The fragments *must* be non-overlapping. Hence
// they form a total order, and so we may validly build an AVL tree of them.
pub struct CommitmentMap {
pub tree: AVLTree<RangeFragAndRangeId>,
}
impl fmt::Debug for CommitmentMap {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let as_vec = self.tree.to_vec();
as_vec.fmt(fmt)
}
}
impl CommitmentMap {
pub fn new() -> Self {
// The AVL tree constructor needs a default value for the elements. It
// will never be used. The RangeId index value will show as
// obviously bogus if we ever try to "dereference" any part of it.
let dflt = RangeFragAndRangeId::new(RangeFrag::invalid_value(), RangeId::invalid_value());
Self {
tree: AVLTree::<RangeFragAndRangeId>::new(dflt),
}
}
pub fn add(&mut self, to_add_frags: &SortedRangeFrags, to_add_lr_id: RangeId) {
for frag in &to_add_frags.frags {
let to_add = RangeFragAndRangeId::new(frag.clone(), to_add_lr_id);
let added = self.tree.insert(
to_add,
Some(&|pair1: RangeFragAndRangeId, pair2: RangeFragAndRangeId| {
cmp_range_frags(&pair1.frag, &pair2.frag)
}),
);
// If this fails, it means the fragment overlaps one that has already
// been committed to. That's a serious error.
assert!(added);
}
}
pub fn add_indirect(
&mut self,
to_add_frags: &SortedRangeFragIxs,
to_add_lr_id: RangeId,
frag_env: &TypedIxVec<RangeFragIx, RangeFrag>,
) {
for fix in &to_add_frags.frag_ixs {
let to_add = RangeFragAndRangeId::new(frag_env[*fix].clone(), to_add_lr_id);
let added = self.tree.insert(
to_add,
Some(&|pair1: RangeFragAndRangeId, pair2: RangeFragAndRangeId| {
cmp_range_frags(&pair1.frag, &pair2.frag)
}),
);
// If this fails, it means the fragment overlaps one that has already
// been committed to. That's a serious error.
assert!(added);
}
}
pub fn del(&mut self, to_del_frags: &SortedRangeFrags) {
for frag in &to_del_frags.frags {
// re RangeId::invalid_value(): we don't care what the RangeId is, since we're
// deleting by RangeFrags alone.
let to_del = RangeFragAndRangeId::new(frag.clone(), RangeId::invalid_value());
let deleted = self.tree.delete(
to_del,
Some(&|pair1: RangeFragAndRangeId, pair2: RangeFragAndRangeId| {
cmp_range_frags(&pair1.frag, &pair2.frag)
}),
);
// If this fails, it means the fragment wasn't already committed to.
// That's also a serious error.
assert!(deleted);
}
}
// Find the RangeId for the RangeFrag that overlaps `pt`, if one exists.
// This is conceptually equivalent to LogicalSpillSlot::get_refness_at_inst_point.
pub fn lookup_inst_point(&self, pt: InstPoint) -> Option<RangeId> {
let mut root = self.tree.root;
while root != AVL_NULL {
let root_node = &self.tree.pool[root as usize];
let root_item = &root_node.item;
if pt < root_item.frag.first {
// `pt` is to the left of the `root`. So there's no
// overlap with `root`. Continue by inspecting the left subtree.
root = root_node.left;
} else if root_item.frag.last < pt {
// Ditto for the right subtree.
root = root_node.right;
} else {
// `pt` overlaps the `root`, so we have what we want.
return Some(root_item.id);
}
}
None
}
}