1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
//! Analysis in support of copy coalescing for the backtracking allocator.
//!
//! This detects and collects information about all copy coalescing
//! opportunities in the incoming function. It does not use that information
//! at all -- that is for the main allocation loop and the spill slot allocator
//! to do.
//!
//! Coalescing analysis creates 4 pieces of information:
//!
//! * a map from `VirtualRangeIx` to a set of `Hint`s (see below) which state a
//! preference for which register that range would prefer to be allocated to.
//!
//! * equivalence class groupings for the virtual ranges. Two virtual ranges
//! will be assigned the same equivalence class if there is a move instruction
//! that transfers a value from one range to the other. The equivalence
//! classes created are the transitive closure of this pairwise relation.
//!
//! * a simple mapping from instruction index to bool, indicating those
//! instructions that are moves between virtual registers, and that have been
//! used to construct the equivalence classes above.
//!
//! * a mapping from virtual registers to virtual ranges. This is really
//! produced as a side-effect of computing the above three elements, but is
//! useful in its own right and so is also returned.
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
use log::{debug, info, log_enabled, Level};
use smallvec::{smallvec, SmallVec};
use crate::data_structures::{
InstIx, InstPoint, Map, MoveInfo, MoveInfoElem, RangeFrag, RangeFragIx, RealRange, RealRangeIx,
RealReg, RealRegUniverse, RegToRangesMaps, SpillCost, TypedIxVec, VirtualRange, VirtualRangeIx,
VirtualReg,
};
use crate::union_find::{ToFromU32, UnionFind, UnionFindEquivClasses};
use crate::Function;
//=============================================================================
//
// *** Some important comments about the interaction between this coalescing
// *** analysis, the main allocation loop and the spill slot allocator.
//
// The main allocation loop tries to assign the same register to all the
// VirtualRanges in an equivalence class. Similarly, the spill slot allocator
// tries to allocate the same spill slot to all the VirtualRanges in an
// equivalence class. In most cases they are successful, and so the moves
// between those VirtualRanges will later disappear. However, the complete
// story is not quite so simple.
//
// It is only safe to assign the VirtualRanges in the same equivalence class
// to a single register or spill slot if those VirtualRanges are
// non-overlapping. That is, if their overall collection of RangeFrags is
// disjoint. If two such VirtualRanges overlapped, then they could be
// carrying different values, and so they would need separate registers or
// spill slots.
//
// Most of the time, these equivalence classes are indeed internally
// non-overlapping. But that's just luck -- that's how the input VCode mostly
// is. The coalescing analysis *doesn't* properly check for overlaps within an
// equivalence class, so it can be the case that the members of an equivalence
// class overlap. The users of that information -- the main allocation loop
// and the spill slot allocator -- currently check for, and handle, such
// situations. So the generated allocation is correct.
//
// It does, however, cause imprecision and unnecessary spilling, and, in the
// main allocation loop, slightly increased evictions.
//
// The "proper" fix for all this would be to fix the coalescing analysis so as
// only to build non-internally-overlapping VirtualRange equivalence classes.
// However, that sounds expensive. Instead there is a half-hearted effort
// made to avoid creating equivalence classes whose elements (VirtualRanges)
// overlap. This is done by doing an overlap check on two VirtualRanges
// connected by a move, and not merging their equivalence classes if they
// overlap. That helps, but it doesn't completely avoid the problem because
// there might be overlaps between other members (VirtualRanges) of the
// about-to-be-merged equivalence classes.
//=============================================================================
// Coalescing analysis: Hints
//
// A coalescing hint for a virtual live range. The u32 is an arbitrary
// "weight" value which indicates a relative strength-of-preference for the
// hint. It exists because a VLR can have arbitrarily many copy
// instructions at its "boundary", and hence arbitrarily many hints. Of
// course the allocator core can honour at most one of them, so it needs a
// way to choose between them. In this implementation, the u32s are simply
// the estimated execution count of the associated copy instruction.
#[derive(Clone)]
pub enum Hint {
// I would like to have the same real register as some other virtual range.
SameAs(VirtualRangeIx, u32),
// I would like to have exactly this real register.
Exactly(RealReg, u32),
}
fn show_hint(h: &Hint, univ: &RealRegUniverse) -> String {
match h {
Hint::SameAs(vlrix, weight) => format!("(SameAs {:?}, weight={})", vlrix, weight),
Hint::Exactly(rreg, weight) => format!(
"(Exactly {}, weight={})",
rreg.to_reg().show_with_rru(&univ),
weight
),
}
}
impl Hint {
#[inline(always)]
fn get_weight(&self) -> u32 {
match self {
Hint::SameAs(_vlrix, weight) => *weight,
Hint::Exactly(_rreg, weight) => *weight,
}
}
}
// We need this in order to construct a UnionFind<VirtualRangeIx>.
impl ToFromU32 for VirtualRangeIx {
fn to_u32(x: VirtualRangeIx) -> u32 {
x.get()
}
fn from_u32(x: u32) -> VirtualRangeIx {
VirtualRangeIx::new(x)
}
}
//=============================================================================
// Coalescing analysis: top level function
// This performs coalescing analysis and returns info as a 3-tuple. Note that
// it also may change the spill costs for some of the VLRs in `vlr_env` to
// better reflect the spill cost situation in the presence of coalescing.
#[inline(never)]
pub fn do_coalescing_analysis<F: Function>(
func: &F,
univ: &RealRegUniverse,
rlr_env: &TypedIxVec<RealRangeIx, RealRange>,
vlr_env: &mut TypedIxVec<VirtualRangeIx, VirtualRange>,
frag_env: &TypedIxVec<RangeFragIx, RangeFrag>,
reg_to_ranges_maps: &RegToRangesMaps,
move_info: &MoveInfo,
) -> (
TypedIxVec<VirtualRangeIx, SmallVec<[Hint; 8]>>,
UnionFindEquivClasses<VirtualRangeIx>,
TypedIxVec<InstIx, bool>,
) {
info!("");
info!("do_coalescing_analysis: begin");
// This function contains significant additional complexity due to the requirement to handle
// pathological cases in reasonable time without unduly burdening the common cases.
//
// ========================================================================================
//
// The core questions that the coalescing analysis asks is:
//
// For an instruction I and a reg V:
//
// * does I start a live range fragment for V? In other words, is it a "first def of V" ?
//
// * and dually: does I end a live range fragment for V? IOW, is it a "last use of V" ?
//
// V may be a real or virtual register -- we must handle both. I is invariably a move
// instruction. We could ask such questions about other kinds of insns, but we don't care
// about those.
//
// The reason we care about this is as follows. If we can find some move insn I, which is
// the last use of some reg V1 and the first def of some other reg V2, then V1 and V2 can at
// least in principle be allocated to the same real register.
//
// Note that the "last" and "first" aspect is critical for correctness. Consider this:
//
// V1 = ...
// I V2 = V1
// * V2 = V2 - 99
// # V3 = V1 + 47
//
// Here, I might be a first def of V2, but it's certainly not the last use of V1, and so if
// we allocate V1 and V2 to the same real register, the insn marked * will trash the value
// of V1 while it's still needed at #, and we'll create wrong code. For the same reason, we
// can only coalesce out a move if the destination is a first def.
//
// The use of names V* in the above example is slightly misleading. As mentioned, the above
// criteria apply to both real and virtual registers. The only limitation is that,
// obviously, we can't coalesce out a move if both registers involved are real. But if only
// one is real then we have at least the possibility to do that.
//
// Now to the question of compiler performance. The simplest way to establish whether (for
// example) I is a first def of V is to visit all of V's `RangeFrag`s, to see if any of them
// start at `I.d`. That can be done by iterating over all of the live ranges that belong to
// V, and through each `RangeFrag` in each live range. Hence it's a linear search through
// V's `RangeFrag`s.
//
// For the vast majority of cases, this works well because most regs -- and especially, most
// virtual regs, in code derived from an SSA precursor -- have short live ranges, and
// usually only one, and so there are very few `RangeFrag`s to visit. However, there are
// cases where a register has many `RangeFrag`s -- we've seen inputs where that number
// exceeds 100,000 -- in which case a linear search is disastrously slow.
//
// To fix this, there is a Plan B scheme for establishing the same facts. It relies on the
// observation that the `RangeFrag`s for each register are mutually non-overlapping. Hence
// their start points are all unique, so we can park them all in a vector, sort it, and
// binary search it. And the same for the end points. This is the purpose of structs
// `ManyFragsInfoR` and `ManyFragsInfoV` below.
//
// Although this plan keeps us out of performance black holes in pathological cases, it is
// expensive in a constant-factors sense: it requires dynamic memory allocation for these
// vectors, and it requires sorting them. Hence we try to avoid it as much as possible, and
// route almost all work via the simple linear-search scheme.
//
// The linear-vs-binary-search choice is made for each register individually. Incoming
// parameter `reg_to_ranges_maps` contains fields `r/vregs_with_many_frags`, and it is only
// for those that sorted vectors are prepared. Those vectors are tracked by the maps
// `r/v_many_map` below. `reg_to_ranges_maps` also contains field `many_frags_thresh` which
// tells us what the size threshold actually was, and this is used to opportunistically
// pre-size the vectors. It's not required for correctness.
//
// All this complexity is bought together in the four closures `doesVRegHaveLastUseAt`,
// `doesVRegHaveFirstDefAt`, `doesRRegHaveLastUseAt` and `doesRRegHaveFirstDefAt`. In each
// case, they first try to resolve the query by binary search, which usually fails, in which
// case they fall back to a linear search, which will always give a correct result. In
// debug builds, if the binary search does produce an answer, it is crosschecked against the
// linear search result.
//
// The duplication in the four closures is undesirable but hard to avoid. The real- and
// virtual-reg cases have different types. Similarly, the first/last cases are slightly
// different. If there were a way to guarantee that rustc would inline closures, then it
// might be worth trying to common them up, on the basis that rustc can inline and
// specialise, leading back to what we currently have here. However, in the absence of such
// a facility, I didn't want to risk it, given that these closures are performance-critical.
//
// Finally, note that the coalescing analysis proper involves more than just the above
// described searches, and one sees the code for the rest of it following the search
// closures below. However, the rest of it isn't performance critical, and is not described
// in this comment.
//
// ========================================================================================
// So, first: for the registers which `reg_to_ranges_maps` tells us have "many" fragments,
// prepare the binary-search vectors. This is done first for the real regs and then below
// for virtual regs.
struct ManyFragsInfoR {
sorted_firsts: Vec<(InstPoint, RealRangeIx)>,
sorted_lasts: Vec<(InstPoint, RealRangeIx)>,
}
let r_many_card = reg_to_ranges_maps.rregs_with_many_frags.len();
let mut r_many_map = Map::<u32 /*RealReg index*/, ManyFragsInfoR>::default();
r_many_map.reserve(r_many_card);
for rreg_no in ®_to_ranges_maps.rregs_with_many_frags {
// `2 * reg_to_ranges_maps.many_frags_thresh` is clearly a heuristic hack, but we do
// know for sure that each vector will contain at least
// `reg_to_ranges_maps.many_frags_thresh` and very likely more. And that threshold is
// already quite high, so pre-sizing the vectors at this point avoids quite a number of
// resize-reallocations later.
let mut many_frags_info = ManyFragsInfoR {
sorted_firsts: Vec::with_capacity(2 * reg_to_ranges_maps.many_frags_thresh),
sorted_lasts: Vec::with_capacity(2 * reg_to_ranges_maps.many_frags_thresh),
};
let rlrixs = ®_to_ranges_maps.rreg_to_rlrs_map[*rreg_no as usize];
for rlrix in rlrixs {
for fix in &rlr_env[*rlrix].sorted_frags.frag_ixs {
let frag = &frag_env[*fix];
many_frags_info.sorted_firsts.push((frag.first, *rlrix));
many_frags_info.sorted_lasts.push((frag.last, *rlrix));
}
}
many_frags_info
.sorted_firsts
.sort_unstable_by_key(|&(point, _)| point);
many_frags_info
.sorted_lasts
.sort_unstable_by_key(|&(point, _)| point);
debug_assert!(many_frags_info.sorted_firsts.len() == many_frags_info.sorted_lasts.len());
// Because the RangeFrags for any reg (virtual or real) are non-overlapping, it follows
// that both the sorted first points and sorted last points contain no duplicates. (In
// fact the implied condition (no duplicates) is weaker than the premise
// (non-overlapping), but this is nevertheless correct.)
for i in 1..(many_frags_info.sorted_firsts.len()) {
debug_assert!(
many_frags_info.sorted_firsts[i - 1].0 < many_frags_info.sorted_firsts[i].0
);
}
for i in 1..(many_frags_info.sorted_lasts.len()) {
debug_assert!(
many_frags_info.sorted_lasts[i - 1].0 < many_frags_info.sorted_lasts[i].0
);
}
r_many_map.insert(*rreg_no, many_frags_info);
}
// And the same for virtual regs.
struct ManyFragsInfoV {
sorted_firsts: Vec<(InstPoint, VirtualRangeIx)>,
sorted_lasts: Vec<(InstPoint, VirtualRangeIx)>,
}
let v_many_card = reg_to_ranges_maps.vregs_with_many_frags.len();
let mut v_many_map = Map::<u32 /*VirtualReg index*/, ManyFragsInfoV>::default();
v_many_map.reserve(v_many_card);
for vreg_no in ®_to_ranges_maps.vregs_with_many_frags {
let mut many_frags_info = ManyFragsInfoV {
sorted_firsts: Vec::with_capacity(2 * reg_to_ranges_maps.many_frags_thresh),
sorted_lasts: Vec::with_capacity(2 * reg_to_ranges_maps.many_frags_thresh),
};
let vlrixs = ®_to_ranges_maps.vreg_to_vlrs_map[*vreg_no as usize];
for vlrix in vlrixs {
for frag in &vlr_env[*vlrix].sorted_frags.frags {
many_frags_info.sorted_firsts.push((frag.first, *vlrix));
many_frags_info.sorted_lasts.push((frag.last, *vlrix));
}
}
many_frags_info
.sorted_firsts
.sort_unstable_by_key(|&(point, _)| point);
many_frags_info
.sorted_lasts
.sort_unstable_by_key(|&(point, _)| point);
debug_assert!(many_frags_info.sorted_firsts.len() == many_frags_info.sorted_lasts.len());
for i in 1..(many_frags_info.sorted_firsts.len()) {
debug_assert!(
many_frags_info.sorted_firsts[i - 1].0 < many_frags_info.sorted_firsts[i].0
);
}
for i in 1..(many_frags_info.sorted_lasts.len()) {
debug_assert!(
many_frags_info.sorted_lasts[i - 1].0 < many_frags_info.sorted_lasts[i].0
);
}
v_many_map.insert(*vreg_no, many_frags_info);
}
// There now follows the abovementioned four (well, actually, eight) closures, which are
// used to find out whether a real or virtual reg has a last use or first def at some
// instruction. This is the central activity of the coalescing analysis -- finding move
// instructions that are the last def for the src reg and the first def for the dst reg.
// ---------------- Range checks for VirtualRegs: last use ----------------
// Checks whether `vreg` has a last use at `iix`.u.
let doesVRegHaveLastUseAt_LINEAR = |vreg: VirtualReg, iix: InstIx| -> Option<VirtualRangeIx> {
let point_to_find = InstPoint::new_use(iix);
let vreg_no = vreg.get_index();
let vlrixs = ®_to_ranges_maps.vreg_to_vlrs_map[vreg_no];
for vlrix in vlrixs {
for frag in &vlr_env[*vlrix].sorted_frags.frags {
if frag.last == point_to_find {
return Some(*vlrix);
}
}
}
None
};
let doesVRegHaveLastUseAt = |vreg: VirtualReg, iix: InstIx| -> Option<VirtualRangeIx> {
let point_to_find = InstPoint::new_use(iix);
let vreg_no = vreg.get_index();
let mut binary_search_result = None;
if let Some(ref mfi) = v_many_map.get(&(vreg_no as u32)) {
match mfi
.sorted_lasts
.binary_search_by_key(&point_to_find, |(point, _)| *point)
{
Ok(found_at_ix) => binary_search_result = Some(mfi.sorted_lasts[found_at_ix].1),
Err(_) => {}
}
}
match binary_search_result {
None => doesVRegHaveLastUseAt_LINEAR(vreg, iix),
Some(_) => {
debug_assert!(binary_search_result == doesVRegHaveLastUseAt_LINEAR(vreg, iix));
binary_search_result
}
}
};
// ---------------- Range checks for VirtualRegs: first def ----------------
// Checks whether `vreg` has a first def at `iix`.d.
let doesVRegHaveFirstDefAt_LINEAR = |vreg: VirtualReg, iix: InstIx| -> Option<VirtualRangeIx> {
let point_to_find = InstPoint::new_def(iix);
let vreg_no = vreg.get_index();
let vlrixs = ®_to_ranges_maps.vreg_to_vlrs_map[vreg_no];
for vlrix in vlrixs {
for frag in &vlr_env[*vlrix].sorted_frags.frags {
if frag.first == point_to_find {
return Some(*vlrix);
}
}
}
None
};
let doesVRegHaveFirstDefAt = |vreg: VirtualReg, iix: InstIx| -> Option<VirtualRangeIx> {
let point_to_find = InstPoint::new_def(iix);
let vreg_no = vreg.get_index();
let mut binary_search_result = None;
if let Some(ref mfi) = v_many_map.get(&(vreg_no as u32)) {
match mfi
.sorted_firsts
.binary_search_by_key(&point_to_find, |(point, _)| *point)
{
Ok(found_at_ix) => binary_search_result = Some(mfi.sorted_firsts[found_at_ix].1),
Err(_) => {}
}
}
match binary_search_result {
None => doesVRegHaveFirstDefAt_LINEAR(vreg, iix),
Some(_) => {
debug_assert!(binary_search_result == doesVRegHaveFirstDefAt_LINEAR(vreg, iix));
binary_search_result
}
}
};
// ---------------- Range checks for RealRegs: last use ----------------
// Checks whether `rreg` has a last use at `iix`.u.
let doesRRegHaveLastUseAt_LINEAR = |rreg: RealReg, iix: InstIx| -> Option<RealRangeIx> {
let point_to_find = InstPoint::new_use(iix);
let rreg_no = rreg.get_index();
let rlrixs = ®_to_ranges_maps.rreg_to_rlrs_map[rreg_no];
for rlrix in rlrixs {
let frags = &rlr_env[*rlrix].sorted_frags;
for fix in &frags.frag_ixs {
let frag = &frag_env[*fix];
if frag.last == point_to_find {
return Some(*rlrix);
}
}
}
None
};
let doesRRegHaveLastUseAt = |rreg: RealReg, iix: InstIx| -> Option<RealRangeIx> {
let point_to_find = InstPoint::new_use(iix);
let rreg_no = rreg.get_index();
let mut binary_search_result = None;
if let Some(ref mfi) = r_many_map.get(&(rreg_no as u32)) {
match mfi
.sorted_lasts
.binary_search_by_key(&point_to_find, |(point, _)| *point)
{
Ok(found_at_ix) => binary_search_result = Some(mfi.sorted_lasts[found_at_ix].1),
Err(_) => {}
}
}
match binary_search_result {
None => doesRRegHaveLastUseAt_LINEAR(rreg, iix),
Some(_) => {
debug_assert!(binary_search_result == doesRRegHaveLastUseAt_LINEAR(rreg, iix));
binary_search_result
}
}
};
// ---------------- Range checks for RealRegs: first def ----------------
// Checks whether `rreg` has a first def at `iix`.d.
let doesRRegHaveFirstDefAt_LINEAR = |rreg: RealReg, iix: InstIx| -> Option<RealRangeIx> {
let point_to_find = InstPoint::new_def(iix);
let rreg_no = rreg.get_index();
let rlrixs = ®_to_ranges_maps.rreg_to_rlrs_map[rreg_no];
for rlrix in rlrixs {
let frags = &rlr_env[*rlrix].sorted_frags;
for fix in &frags.frag_ixs {
let frag = &frag_env[*fix];
if frag.first == point_to_find {
return Some(*rlrix);
}
}
}
None
};
let doesRRegHaveFirstDefAt = |rreg: RealReg, iix: InstIx| -> Option<RealRangeIx> {
let point_to_find = InstPoint::new_def(iix);
let rreg_no = rreg.get_index();
let mut binary_search_result = None;
if let Some(ref mfi) = r_many_map.get(&(rreg_no as u32)) {
match mfi
.sorted_firsts
.binary_search_by_key(&point_to_find, |(point, _)| *point)
{
Ok(found_at_ix) => binary_search_result = Some(mfi.sorted_firsts[found_at_ix].1),
Err(_) => {}
}
}
match binary_search_result {
None => doesRRegHaveFirstDefAt_LINEAR(rreg, iix),
Some(_) => {
debug_assert!(binary_search_result == doesRRegHaveFirstDefAt_LINEAR(rreg, iix));
binary_search_result
}
}
};
// Finally we come to the core logic of the coalescing analysis. It uses the complex
// hybrid-search mechanism described extensively above. The comments above however don't
// describe any of the logic after this point.
// RETURNED TO CALLER
// Hints for each VirtualRange. Note that the SmallVecs could contain duplicates, I
// suppose, for example if there are two identical copy insns at different points on the
// "boundary" for some VLR. I don't think it matters though since we're going to rank the
// hints by strength and then choose at most one.
let mut hints = TypedIxVec::<VirtualRangeIx, SmallVec<[Hint; 8]>>::new();
hints.resize(vlr_env.len(), smallvec![]);
// RETURNED TO CALLER
// A vector that simply records which insns are v-to-v boundary moves, as established by the
// analysis below. This info is collected here because (1) the caller (BT) needs to have it
// and (2) this is the first point at which we can efficiently compute it.
let mut is_vv_boundary_move = TypedIxVec::<InstIx, bool>::new();
is_vv_boundary_move.resize(func.insns().len() as u32, false);
// RETURNED TO CALLER (after finalisation)
// The virtual-to-virtual equivalence classes we're collecting.
let mut vlrEquivClassesUF = UnionFind::<VirtualRangeIx>::new(vlr_env.len() as usize);
// Not returned to caller; for use only in this function.
// A list of `VirtualRange`s for which the `total_cost` (hence also their
// `spill_cost`) should be adjusted downwards by the supplied `u32`. We
// can't do this directly in the loop below due to borrowing constraints,
// hence we collect the required info in this vector and do it in a second
// loop.
let mut decVLRcosts = Vec::<(VirtualRangeIx, VirtualRangeIx, u32)>::new();
for MoveInfoElem {
dst,
src,
iix,
est_freq,
..
} in &move_info.moves
{
debug!(
"connected by moves: {:?} {:?} <- {:?} (est_freq {})",
iix, dst, src, est_freq
);
match (dst.is_virtual(), src.is_virtual()) {
(true, true) => {
// Check for a V <- V hint.
let srcV = src.to_virtual_reg();
let dstV = dst.to_virtual_reg();
let mb_vlrixSrc = doesVRegHaveLastUseAt(srcV, *iix);
let mb_vlrixDst = doesVRegHaveFirstDefAt(dstV, *iix);
if mb_vlrixSrc.is_some() && mb_vlrixDst.is_some() {
let vlrixSrc = mb_vlrixSrc.unwrap();
let vlrixDst = mb_vlrixDst.unwrap();
// Per block comment at top of file, make a half-hearted
// attempt to avoid creating equivalence classes with
// internal overlaps. Note this can't be completely
// effective as presently implemented.
if !vlr_env[vlrixSrc].overlaps(&vlr_env[vlrixDst]) {
// Add hints for both VLRs, since we don't know which one will
// assign first. Indeed, a VLR may be assigned and un-assigned
// arbitrarily many times.
hints[vlrixSrc].push(Hint::SameAs(vlrixDst, *est_freq));
hints[vlrixDst].push(Hint::SameAs(vlrixSrc, *est_freq));
vlrEquivClassesUF.union(vlrixDst, vlrixSrc);
is_vv_boundary_move[*iix] = true;
// Reduce the total cost, and hence the spill cost, of
// both `vlrixSrc` and `vlrixDst`. This is so as to reduce to
// zero, the cost of a VLR whose only instructions are its
// v-v boundary copies.
debug!("reduce cost of {:?} and {:?}", vlrixSrc, vlrixDst);
decVLRcosts.push((vlrixSrc, vlrixDst, 1 * est_freq));
}
}
}
(true, false) => {
// Check for a V <- R hint.
let srcR = src.to_real_reg();
let dstV = dst.to_virtual_reg();
let mb_rlrSrc = doesRRegHaveLastUseAt(srcR, *iix);
let mb_vlrDst = doesVRegHaveFirstDefAt(dstV, *iix);
if mb_rlrSrc.is_some() && mb_vlrDst.is_some() {
let vlrDst = mb_vlrDst.unwrap();
hints[vlrDst].push(Hint::Exactly(srcR, *est_freq));
}
}
(false, true) => {
// Check for a R <- V hint.
let srcV = src.to_virtual_reg();
let dstR = dst.to_real_reg();
let mb_vlrSrc = doesVRegHaveLastUseAt(srcV, *iix);
let mb_rlrDst = doesRRegHaveFirstDefAt(dstR, *iix);
if mb_vlrSrc.is_some() && mb_rlrDst.is_some() {
let vlrSrc = mb_vlrSrc.unwrap();
hints[vlrSrc].push(Hint::Exactly(dstR, *est_freq));
}
}
(false, false) => {
// This is a real-to-real move. There's nothing we can do. Ignore it.
}
}
}
// Now decrease the `total_cost` and `spill_cost` fields of selected
// `VirtualRange`s, as detected by the previous loop. Don't decrease the
// `spill_cost` literally to zero; doing that causes various assertion
// failures and boundary problems later on, in the `CommitmentMap`s. In
// such a case, make the `spill_cost` be tiny but nonzero.
fn decrease_vlr_total_cost_by(vlr: &mut VirtualRange, decrease_total_cost_by: u32) {
// Adjust `total_cost`.
if vlr.total_cost < decrease_total_cost_by {
vlr.total_cost = 0;
} else {
vlr.total_cost -= decrease_total_cost_by;
}
// And recompute `spill_cost` accordingly.
if vlr.total_cost == 0 {
vlr.spill_cost = SpillCost::finite(1.0e-6);
} else {
assert!(vlr.size > 0);
vlr.spill_cost = SpillCost::finite(vlr.total_cost as f32 / vlr.size as f32);
}
}
for (vlrix1, vlrix2, decrease_total_cost_by) in decVLRcosts {
decrease_vlr_total_cost_by(&mut vlr_env[vlrix1], decrease_total_cost_by);
decrease_vlr_total_cost_by(&mut vlr_env[vlrix2], decrease_total_cost_by);
}
// For the convenience of the allocator core, sort the hints for each VLR so
// as to move the most preferred to the front.
for hints_for_one_vlr in hints.iter_mut() {
hints_for_one_vlr.sort_by(|h1, h2| h2.get_weight().partial_cmp(&h1.get_weight()).unwrap());
}
let vlrEquivClasses: UnionFindEquivClasses<VirtualRangeIx> =
vlrEquivClassesUF.get_equiv_classes();
if log_enabled!(Level::Debug) {
debug!("Revised VLRs:");
let mut n = 0;
for vlr in vlr_env.iter() {
debug!("{:<4?} {:?}", VirtualRangeIx::new(n), vlr);
n += 1;
}
debug!("Coalescing hints:");
n = 0;
for hints_for_one_vlr in hints.iter() {
let mut s = "".to_string();
for hint in hints_for_one_vlr {
s = s + &show_hint(hint, &univ) + &" ".to_string();
}
debug!(" hintsfor {:<4?} = {}", VirtualRangeIx::new(n), s);
n += 1;
}
for n in 0..vlr_env.len() {
let vlrix = VirtualRangeIx::new(n);
let mut tmpvec = vec![];
for elem in vlrEquivClasses.equiv_class_elems_iter(vlrix) {
tmpvec.reverse();
tmpvec.push(elem);
}
debug!(" eclassof {:?} = {:?}", vlrix, tmpvec);
}
for (b, i) in is_vv_boundary_move.iter().zip(0..) {
if *b {
debug!(" vv_boundary_move at {:?}", InstIx::new(i));
}
}
}
info!("do_coalescing_analysis: end");
info!("");
(hints, vlrEquivClasses, is_vv_boundary_move)
}