1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
//! Analysis in support of copy coalescing for the backtracking allocator.
//!
//! This detects and collects information about all copy coalescing
//! opportunities in the incoming function.  It does not use that information
//! at all -- that is for the main allocation loop and the spill slot allocator
//! to do.
//!
//! Coalescing analysis creates 4 pieces of information:
//!
//! * a map from `VirtualRangeIx` to a set of `Hint`s (see below) which state a
//!   preference for which register that range would prefer to be allocated to.
//!
//! * equivalence class groupings for the virtual ranges.  Two virtual ranges
//!   will be assigned the same equivalence class if there is a move instruction
//!   that transfers a value from one range to the other.  The equivalence
//!   classes created are the transitive closure of this pairwise relation.
//!
//! * a simple mapping from instruction index to bool, indicating those
//! instructions that are moves between virtual registers, and that have been
//! used to construct the equivalence classes above.
//!
//! * a mapping from virtual registers to virtual ranges.  This is really
//!   produced as a side-effect of computing the above three elements, but is
//!   useful in its own right and so is also returned.

#![allow(non_snake_case)]
#![allow(non_camel_case_types)]

use log::{debug, info, log_enabled, Level};
use smallvec::{smallvec, SmallVec};

use crate::data_structures::{
    InstIx, InstPoint, Map, MoveInfo, MoveInfoElem, RangeFrag, RangeFragIx, RealRange, RealRangeIx,
    RealReg, RealRegUniverse, RegToRangesMaps, SpillCost, TypedIxVec, VirtualRange, VirtualRangeIx,
    VirtualReg,
};
use crate::union_find::{ToFromU32, UnionFind, UnionFindEquivClasses};
use crate::Function;

//=============================================================================
//
// *** Some important comments about the interaction between this coalescing
// *** analysis, the main allocation loop and the spill slot allocator.
//
// The main allocation loop tries to assign the same register to all the
// VirtualRanges in an equivalence class.  Similarly, the spill slot allocator
// tries to allocate the same spill slot to all the VirtualRanges in an
// equivalence class.  In most cases they are successful, and so the moves
// between those VirtualRanges will later disappear.  However, the complete
// story is not quite so simple.
//
// It is only safe to assign the VirtualRanges in the same equivalence class
// to a single register or spill slot if those VirtualRanges are
// non-overlapping.  That is, if their overall collection of RangeFrags is
// disjoint.  If two such VirtualRanges overlapped, then they could be
// carrying different values, and so they would need separate registers or
// spill slots.
//
// Most of the time, these equivalence classes are indeed internally
// non-overlapping.  But that's just luck -- that's how the input VCode mostly
// is.  The coalescing analysis *doesn't* properly check for overlaps within an
// equivalence class, so it can be the case that the members of an equivalence
// class overlap.  The users of that information -- the main allocation loop
// and the spill slot allocator -- currently check for, and handle, such
// situations.  So the generated allocation is correct.
//
// It does, however, cause imprecision and unnecessary spilling, and, in the
// main allocation loop, slightly increased evictions.
//
// The "proper" fix for all this would be to fix the coalescing analysis so as
// only to build non-internally-overlapping VirtualRange equivalence classes.
// However, that sounds expensive.  Instead there is a half-hearted effort
// made to avoid creating equivalence classes whose elements (VirtualRanges)
// overlap.  This is done by doing an overlap check on two VirtualRanges
// connected by a move, and not merging their equivalence classes if they
// overlap.  That helps, but it doesn't completely avoid the problem because
// there might be overlaps between other members (VirtualRanges) of the
// about-to-be-merged equivalence classes.

//=============================================================================
// Coalescing analysis: Hints
//
// A coalescing hint for a virtual live range.  The u32 is an arbitrary
// "weight" value which indicates a relative strength-of-preference for the
// hint.  It exists because a VLR can have arbitrarily many copy
// instructions at its "boundary", and hence arbitrarily many hints.  Of
// course the allocator core can honour at most one of them, so it needs a
// way to choose between them.  In this implementation, the u32s are simply
// the estimated execution count of the associated copy instruction.
#[derive(Clone)]
pub enum Hint {
    // I would like to have the same real register as some other virtual range.
    SameAs(VirtualRangeIx, u32),
    // I would like to have exactly this real register.
    Exactly(RealReg, u32),
}
fn show_hint(h: &Hint, univ: &RealRegUniverse) -> String {
    match h {
        Hint::SameAs(vlrix, weight) => format!("(SameAs {:?}, weight={})", vlrix, weight),
        Hint::Exactly(rreg, weight) => format!(
            "(Exactly {}, weight={})",
            rreg.to_reg().show_with_rru(&univ),
            weight
        ),
    }
}
impl Hint {
    #[inline(always)]
    fn get_weight(&self) -> u32 {
        match self {
            Hint::SameAs(_vlrix, weight) => *weight,
            Hint::Exactly(_rreg, weight) => *weight,
        }
    }
}

// We need this in order to construct a UnionFind<VirtualRangeIx>.
impl ToFromU32 for VirtualRangeIx {
    fn to_u32(x: VirtualRangeIx) -> u32 {
        x.get()
    }
    fn from_u32(x: u32) -> VirtualRangeIx {
        VirtualRangeIx::new(x)
    }
}

//=============================================================================
// Coalescing analysis: top level function

// This performs coalescing analysis and returns info as a 3-tuple.  Note that
// it also may change the spill costs for some of the VLRs in `vlr_env` to
// better reflect the spill cost situation in the presence of coalescing.
#[inline(never)]
pub fn do_coalescing_analysis<F: Function>(
    func: &F,
    univ: &RealRegUniverse,
    rlr_env: &TypedIxVec<RealRangeIx, RealRange>,
    vlr_env: &mut TypedIxVec<VirtualRangeIx, VirtualRange>,
    frag_env: &TypedIxVec<RangeFragIx, RangeFrag>,
    reg_to_ranges_maps: &RegToRangesMaps,
    move_info: &MoveInfo,
) -> (
    TypedIxVec<VirtualRangeIx, SmallVec<[Hint; 8]>>,
    UnionFindEquivClasses<VirtualRangeIx>,
    TypedIxVec<InstIx, bool>,
) {
    info!("");
    info!("do_coalescing_analysis: begin");

    // This function contains significant additional complexity due to the requirement to handle
    // pathological cases in reasonable time without unduly burdening the common cases.
    //
    // ========================================================================================
    //
    // The core questions that the coalescing analysis asks is:
    //
    //    For an instruction I and a reg V:
    //
    //    * does I start a live range fragment for V?  In other words, is it a "first def of V" ?
    //
    //    * and dually: does I end a live range fragment for V?  IOW, is it a "last use of V" ?
    //
    // V may be a real or virtual register -- we must handle both.  I is invariably a move
    // instruction.  We could ask such questions about other kinds of insns, but we don't care
    // about those.
    //
    // The reason we care about this is as follows.  If we can find some move insn I, which is
    // the last use of some reg V1 and the first def of some other reg V2, then V1 and V2 can at
    // least in principle be allocated to the same real register.
    //
    // Note that the "last" and "first" aspect is critical for correctness.  Consider this:
    //
    //       V1 = ...
    //   I   V2 = V1
    //   *   V2 = V2 - 99
    //   #   V3 = V1 + 47
    //
    // Here, I might be a first def of V2, but it's certainly not the last use of V1, and so if
    // we allocate V1 and V2 to the same real register, the insn marked * will trash the value
    // of V1 while it's still needed at #, and we'll create wrong code.  For the same reason, we
    // can only coalesce out a move if the destination is a first def.
    //
    // The use of names V* in the above example is slightly misleading.  As mentioned, the above
    // criteria apply to both real and virtual registers.  The only limitation is that,
    // obviously, we can't coalesce out a move if both registers involved are real.  But if only
    // one is real then we have at least the possibility to do that.
    //
    // Now to the question of compiler performance.  The simplest way to establish whether (for
    // example) I is a first def of V is to visit all of V's `RangeFrag`s, to see if any of them
    // start at `I.d`.  That can be done by iterating over all of the live ranges that belong to
    // V, and through each `RangeFrag` in each live range.  Hence it's a linear search through
    // V's `RangeFrag`s.
    //
    // For the vast majority of cases, this works well because most regs -- and especially, most
    // virtual regs, in code derived from an SSA precursor -- have short live ranges, and
    // usually only one, and so there are very few `RangeFrag`s to visit.  However, there are
    // cases where a register has many `RangeFrag`s -- we've seen inputs where that number
    // exceeds 100,000 -- in which case a linear search is disastrously slow.
    //
    // To fix this, there is a Plan B scheme for establishing the same facts.  It relies on the
    // observation that the `RangeFrag`s for each register are mutually non-overlapping.  Hence
    // their start points are all unique, so we can park them all in a vector, sort it, and
    // binary search it.  And the same for the end points.  This is the purpose of structs
    // `ManyFragsInfoR` and `ManyFragsInfoV` below.
    //
    // Although this plan keeps us out of performance black holes in pathological cases, it is
    // expensive in a constant-factors sense: it requires dynamic memory allocation for these
    // vectors, and it requires sorting them.  Hence we try to avoid it as much as possible, and
    // route almost all work via the simple linear-search scheme.
    //
    // The linear-vs-binary-search choice is made for each register individually.  Incoming
    // parameter `reg_to_ranges_maps` contains fields `r/vregs_with_many_frags`, and it is only
    // for those that sorted vectors are prepared.  Those vectors are tracked by the maps
    // `r/v_many_map` below.  `reg_to_ranges_maps` also contains field `many_frags_thresh` which
    // tells us what the size threshold actually was, and this is used to opportunistically
    // pre-size the vectors.  It's not required for correctness.
    //
    // All this complexity is bought together in the four closures `doesVRegHaveLastUseAt`,
    // `doesVRegHaveFirstDefAt`, `doesRRegHaveLastUseAt` and `doesRRegHaveFirstDefAt`.  In each
    // case, they first try to resolve the query by binary search, which usually fails, in which
    // case they fall back to a linear search, which will always give a correct result.  In
    // debug builds, if the binary search does produce an answer, it is crosschecked against the
    // linear search result.
    //
    // The duplication in the four closures is undesirable but hard to avoid.  The real- and
    // virtual-reg cases have different types.  Similarly, the first/last cases are slightly
    // different.  If there were a way to guarantee that rustc would inline closures, then it
    // might be worth trying to common them up, on the basis that rustc can inline and
    // specialise, leading back to what we currently have here.  However, in the absence of such
    // a facility, I didn't want to risk it, given that these closures are performance-critical.
    //
    // Finally, note that the coalescing analysis proper involves more than just the above
    // described searches, and one sees the code for the rest of it following the search
    // closures below.  However, the rest of it isn't performance critical, and is not described
    // in this comment.
    //
    // ========================================================================================

    // So, first: for the registers which `reg_to_ranges_maps` tells us have "many" fragments,
    // prepare the binary-search vectors.  This is done first for the real regs and then below
    // for virtual regs.

    struct ManyFragsInfoR {
        sorted_firsts: Vec<(InstPoint, RealRangeIx)>,
        sorted_lasts: Vec<(InstPoint, RealRangeIx)>,
    }
    let r_many_card = reg_to_ranges_maps.rregs_with_many_frags.len();
    let mut r_many_map = Map::<u32 /*RealReg index*/, ManyFragsInfoR>::default();
    r_many_map.reserve(r_many_card);

    for rreg_no in &reg_to_ranges_maps.rregs_with_many_frags {
        // `2 * reg_to_ranges_maps.many_frags_thresh` is clearly a heuristic hack, but we do
        // know for sure that each vector will contain at least
        // `reg_to_ranges_maps.many_frags_thresh` and very likely more.  And that threshold is
        // already quite high, so pre-sizing the vectors at this point avoids quite a number of
        // resize-reallocations later.
        let mut many_frags_info = ManyFragsInfoR {
            sorted_firsts: Vec::with_capacity(2 * reg_to_ranges_maps.many_frags_thresh),
            sorted_lasts: Vec::with_capacity(2 * reg_to_ranges_maps.many_frags_thresh),
        };
        let rlrixs = &reg_to_ranges_maps.rreg_to_rlrs_map[*rreg_no as usize];
        for rlrix in rlrixs {
            for fix in &rlr_env[*rlrix].sorted_frags.frag_ixs {
                let frag = &frag_env[*fix];
                many_frags_info.sorted_firsts.push((frag.first, *rlrix));
                many_frags_info.sorted_lasts.push((frag.last, *rlrix));
            }
        }
        many_frags_info
            .sorted_firsts
            .sort_unstable_by_key(|&(point, _)| point);
        many_frags_info
            .sorted_lasts
            .sort_unstable_by_key(|&(point, _)| point);
        debug_assert!(many_frags_info.sorted_firsts.len() == many_frags_info.sorted_lasts.len());
        // Because the RangeFrags for any reg (virtual or real) are non-overlapping, it follows
        // that both the sorted first points and sorted last points contain no duplicates.  (In
        // fact the implied condition (no duplicates) is weaker than the premise
        // (non-overlapping), but this is nevertheless correct.)
        for i in 1..(many_frags_info.sorted_firsts.len()) {
            debug_assert!(
                many_frags_info.sorted_firsts[i - 1].0 < many_frags_info.sorted_firsts[i].0
            );
        }
        for i in 1..(many_frags_info.sorted_lasts.len()) {
            debug_assert!(
                many_frags_info.sorted_lasts[i - 1].0 < many_frags_info.sorted_lasts[i].0
            );
        }
        r_many_map.insert(*rreg_no, many_frags_info);
    }

    // And the same for virtual regs.
    struct ManyFragsInfoV {
        sorted_firsts: Vec<(InstPoint, VirtualRangeIx)>,
        sorted_lasts: Vec<(InstPoint, VirtualRangeIx)>,
    }
    let v_many_card = reg_to_ranges_maps.vregs_with_many_frags.len();
    let mut v_many_map = Map::<u32 /*VirtualReg index*/, ManyFragsInfoV>::default();
    v_many_map.reserve(v_many_card);

    for vreg_no in &reg_to_ranges_maps.vregs_with_many_frags {
        let mut many_frags_info = ManyFragsInfoV {
            sorted_firsts: Vec::with_capacity(2 * reg_to_ranges_maps.many_frags_thresh),
            sorted_lasts: Vec::with_capacity(2 * reg_to_ranges_maps.many_frags_thresh),
        };
        let vlrixs = &reg_to_ranges_maps.vreg_to_vlrs_map[*vreg_no as usize];
        for vlrix in vlrixs {
            for frag in &vlr_env[*vlrix].sorted_frags.frags {
                many_frags_info.sorted_firsts.push((frag.first, *vlrix));
                many_frags_info.sorted_lasts.push((frag.last, *vlrix));
            }
        }
        many_frags_info
            .sorted_firsts
            .sort_unstable_by_key(|&(point, _)| point);
        many_frags_info
            .sorted_lasts
            .sort_unstable_by_key(|&(point, _)| point);
        debug_assert!(many_frags_info.sorted_firsts.len() == many_frags_info.sorted_lasts.len());
        for i in 1..(many_frags_info.sorted_firsts.len()) {
            debug_assert!(
                many_frags_info.sorted_firsts[i - 1].0 < many_frags_info.sorted_firsts[i].0
            );
        }
        for i in 1..(many_frags_info.sorted_lasts.len()) {
            debug_assert!(
                many_frags_info.sorted_lasts[i - 1].0 < many_frags_info.sorted_lasts[i].0
            );
        }
        v_many_map.insert(*vreg_no, many_frags_info);
    }

    // There now follows the abovementioned four (well, actually, eight) closures, which are
    // used to find out whether a real or virtual reg has a last use or first def at some
    // instruction.  This is the central activity of the coalescing analysis -- finding move
    // instructions that are the last def for the src reg and the first def for the dst reg.

    // ---------------- Range checks for VirtualRegs: last use ----------------
    // Checks whether `vreg` has a last use at `iix`.u.

    let doesVRegHaveLastUseAt_LINEAR = |vreg: VirtualReg, iix: InstIx| -> Option<VirtualRangeIx> {
        let point_to_find = InstPoint::new_use(iix);
        let vreg_no = vreg.get_index();
        let vlrixs = &reg_to_ranges_maps.vreg_to_vlrs_map[vreg_no];
        for vlrix in vlrixs {
            for frag in &vlr_env[*vlrix].sorted_frags.frags {
                if frag.last == point_to_find {
                    return Some(*vlrix);
                }
            }
        }
        None
    };
    let doesVRegHaveLastUseAt = |vreg: VirtualReg, iix: InstIx| -> Option<VirtualRangeIx> {
        let point_to_find = InstPoint::new_use(iix);
        let vreg_no = vreg.get_index();
        let mut binary_search_result = None;
        if let Some(ref mfi) = v_many_map.get(&(vreg_no as u32)) {
            match mfi
                .sorted_lasts
                .binary_search_by_key(&point_to_find, |(point, _)| *point)
            {
                Ok(found_at_ix) => binary_search_result = Some(mfi.sorted_lasts[found_at_ix].1),
                Err(_) => {}
            }
        }
        match binary_search_result {
            None => doesVRegHaveLastUseAt_LINEAR(vreg, iix),
            Some(_) => {
                debug_assert!(binary_search_result == doesVRegHaveLastUseAt_LINEAR(vreg, iix));
                binary_search_result
            }
        }
    };

    // ---------------- Range checks for VirtualRegs: first def ----------------
    // Checks whether `vreg` has a first def at `iix`.d.

    let doesVRegHaveFirstDefAt_LINEAR = |vreg: VirtualReg, iix: InstIx| -> Option<VirtualRangeIx> {
        let point_to_find = InstPoint::new_def(iix);
        let vreg_no = vreg.get_index();
        let vlrixs = &reg_to_ranges_maps.vreg_to_vlrs_map[vreg_no];
        for vlrix in vlrixs {
            for frag in &vlr_env[*vlrix].sorted_frags.frags {
                if frag.first == point_to_find {
                    return Some(*vlrix);
                }
            }
        }
        None
    };
    let doesVRegHaveFirstDefAt = |vreg: VirtualReg, iix: InstIx| -> Option<VirtualRangeIx> {
        let point_to_find = InstPoint::new_def(iix);
        let vreg_no = vreg.get_index();
        let mut binary_search_result = None;
        if let Some(ref mfi) = v_many_map.get(&(vreg_no as u32)) {
            match mfi
                .sorted_firsts
                .binary_search_by_key(&point_to_find, |(point, _)| *point)
            {
                Ok(found_at_ix) => binary_search_result = Some(mfi.sorted_firsts[found_at_ix].1),
                Err(_) => {}
            }
        }
        match binary_search_result {
            None => doesVRegHaveFirstDefAt_LINEAR(vreg, iix),
            Some(_) => {
                debug_assert!(binary_search_result == doesVRegHaveFirstDefAt_LINEAR(vreg, iix));
                binary_search_result
            }
        }
    };

    // ---------------- Range checks for RealRegs: last use ----------------
    // Checks whether `rreg` has a last use at `iix`.u.

    let doesRRegHaveLastUseAt_LINEAR = |rreg: RealReg, iix: InstIx| -> Option<RealRangeIx> {
        let point_to_find = InstPoint::new_use(iix);
        let rreg_no = rreg.get_index();
        let rlrixs = &reg_to_ranges_maps.rreg_to_rlrs_map[rreg_no];
        for rlrix in rlrixs {
            let frags = &rlr_env[*rlrix].sorted_frags;
            for fix in &frags.frag_ixs {
                let frag = &frag_env[*fix];
                if frag.last == point_to_find {
                    return Some(*rlrix);
                }
            }
        }
        None
    };
    let doesRRegHaveLastUseAt = |rreg: RealReg, iix: InstIx| -> Option<RealRangeIx> {
        let point_to_find = InstPoint::new_use(iix);
        let rreg_no = rreg.get_index();
        let mut binary_search_result = None;
        if let Some(ref mfi) = r_many_map.get(&(rreg_no as u32)) {
            match mfi
                .sorted_lasts
                .binary_search_by_key(&point_to_find, |(point, _)| *point)
            {
                Ok(found_at_ix) => binary_search_result = Some(mfi.sorted_lasts[found_at_ix].1),
                Err(_) => {}
            }
        }
        match binary_search_result {
            None => doesRRegHaveLastUseAt_LINEAR(rreg, iix),
            Some(_) => {
                debug_assert!(binary_search_result == doesRRegHaveLastUseAt_LINEAR(rreg, iix));
                binary_search_result
            }
        }
    };

    // ---------------- Range checks for RealRegs: first def ----------------
    // Checks whether `rreg` has a first def at `iix`.d.

    let doesRRegHaveFirstDefAt_LINEAR = |rreg: RealReg, iix: InstIx| -> Option<RealRangeIx> {
        let point_to_find = InstPoint::new_def(iix);
        let rreg_no = rreg.get_index();
        let rlrixs = &reg_to_ranges_maps.rreg_to_rlrs_map[rreg_no];
        for rlrix in rlrixs {
            let frags = &rlr_env[*rlrix].sorted_frags;
            for fix in &frags.frag_ixs {
                let frag = &frag_env[*fix];
                if frag.first == point_to_find {
                    return Some(*rlrix);
                }
            }
        }
        None
    };
    let doesRRegHaveFirstDefAt = |rreg: RealReg, iix: InstIx| -> Option<RealRangeIx> {
        let point_to_find = InstPoint::new_def(iix);
        let rreg_no = rreg.get_index();
        let mut binary_search_result = None;
        if let Some(ref mfi) = r_many_map.get(&(rreg_no as u32)) {
            match mfi
                .sorted_firsts
                .binary_search_by_key(&point_to_find, |(point, _)| *point)
            {
                Ok(found_at_ix) => binary_search_result = Some(mfi.sorted_firsts[found_at_ix].1),
                Err(_) => {}
            }
        }
        match binary_search_result {
            None => doesRRegHaveFirstDefAt_LINEAR(rreg, iix),
            Some(_) => {
                debug_assert!(binary_search_result == doesRRegHaveFirstDefAt_LINEAR(rreg, iix));
                binary_search_result
            }
        }
    };

    // Finally we come to the core logic of the coalescing analysis.  It uses the complex
    // hybrid-search mechanism described extensively above.  The comments above however don't
    // describe any of the logic after this point.

    // RETURNED TO CALLER
    // Hints for each VirtualRange.  Note that the SmallVecs could contain duplicates, I
    // suppose, for example if there are two identical copy insns at different points on the
    // "boundary" for some VLR.  I don't think it matters though since we're going to rank the
    // hints by strength and then choose at most one.
    let mut hints = TypedIxVec::<VirtualRangeIx, SmallVec<[Hint; 8]>>::new();
    hints.resize(vlr_env.len(), smallvec![]);

    // RETURNED TO CALLER
    // A vector that simply records which insns are v-to-v boundary moves, as established by the
    // analysis below.  This info is collected here because (1) the caller (BT) needs to have it
    // and (2) this is the first point at which we can efficiently compute it.
    let mut is_vv_boundary_move = TypedIxVec::<InstIx, bool>::new();
    is_vv_boundary_move.resize(func.insns().len() as u32, false);

    // RETURNED TO CALLER (after finalisation)
    // The virtual-to-virtual equivalence classes we're collecting.
    let mut vlrEquivClassesUF = UnionFind::<VirtualRangeIx>::new(vlr_env.len() as usize);

    // Not returned to caller; for use only in this function.
    // A list of `VirtualRange`s for which the `total_cost` (hence also their
    // `spill_cost`) should be adjusted downwards by the supplied `u32`.  We
    // can't do this directly in the loop below due to borrowing constraints,
    // hence we collect the required info in this vector and do it in a second
    // loop.
    let mut decVLRcosts = Vec::<(VirtualRangeIx, VirtualRangeIx, u32)>::new();

    for MoveInfoElem {
        dst,
        src,
        iix,
        est_freq,
        ..
    } in &move_info.moves
    {
        debug!(
            "connected by moves: {:?} {:?} <- {:?} (est_freq {})",
            iix, dst, src, est_freq
        );
        match (dst.is_virtual(), src.is_virtual()) {
            (true, true) => {
                // Check for a V <- V hint.
                let srcV = src.to_virtual_reg();
                let dstV = dst.to_virtual_reg();
                let mb_vlrixSrc = doesVRegHaveLastUseAt(srcV, *iix);
                let mb_vlrixDst = doesVRegHaveFirstDefAt(dstV, *iix);
                if mb_vlrixSrc.is_some() && mb_vlrixDst.is_some() {
                    let vlrixSrc = mb_vlrixSrc.unwrap();
                    let vlrixDst = mb_vlrixDst.unwrap();
                    // Per block comment at top of file, make a half-hearted
                    // attempt to avoid creating equivalence classes with
                    // internal overlaps.  Note this can't be completely
                    // effective as presently implemented.
                    if !vlr_env[vlrixSrc].overlaps(&vlr_env[vlrixDst]) {
                        // Add hints for both VLRs, since we don't know which one will
                        // assign first.  Indeed, a VLR may be assigned and un-assigned
                        // arbitrarily many times.
                        hints[vlrixSrc].push(Hint::SameAs(vlrixDst, *est_freq));
                        hints[vlrixDst].push(Hint::SameAs(vlrixSrc, *est_freq));
                        vlrEquivClassesUF.union(vlrixDst, vlrixSrc);
                        is_vv_boundary_move[*iix] = true;
                        // Reduce the total cost, and hence the spill cost, of
                        // both `vlrixSrc` and `vlrixDst`.  This is so as to reduce to
                        // zero, the cost of a VLR whose only instructions are its
                        // v-v boundary copies.
                        debug!("reduce cost of {:?} and {:?}", vlrixSrc, vlrixDst);
                        decVLRcosts.push((vlrixSrc, vlrixDst, 1 * est_freq));
                    }
                }
            }
            (true, false) => {
                // Check for a V <- R hint.
                let srcR = src.to_real_reg();
                let dstV = dst.to_virtual_reg();
                let mb_rlrSrc = doesRRegHaveLastUseAt(srcR, *iix);
                let mb_vlrDst = doesVRegHaveFirstDefAt(dstV, *iix);
                if mb_rlrSrc.is_some() && mb_vlrDst.is_some() {
                    let vlrDst = mb_vlrDst.unwrap();
                    hints[vlrDst].push(Hint::Exactly(srcR, *est_freq));
                }
            }
            (false, true) => {
                // Check for a R <- V hint.
                let srcV = src.to_virtual_reg();
                let dstR = dst.to_real_reg();
                let mb_vlrSrc = doesVRegHaveLastUseAt(srcV, *iix);
                let mb_rlrDst = doesRRegHaveFirstDefAt(dstR, *iix);
                if mb_vlrSrc.is_some() && mb_rlrDst.is_some() {
                    let vlrSrc = mb_vlrSrc.unwrap();
                    hints[vlrSrc].push(Hint::Exactly(dstR, *est_freq));
                }
            }
            (false, false) => {
                // This is a real-to-real move.  There's nothing we can do.  Ignore it.
            }
        }
    }

    // Now decrease the `total_cost` and `spill_cost` fields of selected
    // `VirtualRange`s, as detected by the previous loop.  Don't decrease the
    // `spill_cost` literally to zero; doing that causes various assertion
    // failures and boundary problems later on, in the `CommitmentMap`s.  In
    // such a case, make the `spill_cost` be tiny but nonzero.
    fn decrease_vlr_total_cost_by(vlr: &mut VirtualRange, decrease_total_cost_by: u32) {
        // Adjust `total_cost`.
        if vlr.total_cost < decrease_total_cost_by {
            vlr.total_cost = 0;
        } else {
            vlr.total_cost -= decrease_total_cost_by;
        }
        // And recompute `spill_cost` accordingly.
        if vlr.total_cost == 0 {
            vlr.spill_cost = SpillCost::finite(1.0e-6);
        } else {
            assert!(vlr.size > 0);
            vlr.spill_cost = SpillCost::finite(vlr.total_cost as f32 / vlr.size as f32);
        }
    }

    for (vlrix1, vlrix2, decrease_total_cost_by) in decVLRcosts {
        decrease_vlr_total_cost_by(&mut vlr_env[vlrix1], decrease_total_cost_by);
        decrease_vlr_total_cost_by(&mut vlr_env[vlrix2], decrease_total_cost_by);
    }

    // For the convenience of the allocator core, sort the hints for each VLR so
    // as to move the most preferred to the front.
    for hints_for_one_vlr in hints.iter_mut() {
        hints_for_one_vlr.sort_by(|h1, h2| h2.get_weight().partial_cmp(&h1.get_weight()).unwrap());
    }

    let vlrEquivClasses: UnionFindEquivClasses<VirtualRangeIx> =
        vlrEquivClassesUF.get_equiv_classes();

    if log_enabled!(Level::Debug) {
        debug!("Revised VLRs:");
        let mut n = 0;
        for vlr in vlr_env.iter() {
            debug!("{:<4?}   {:?}", VirtualRangeIx::new(n), vlr);
            n += 1;
        }

        debug!("Coalescing hints:");
        n = 0;
        for hints_for_one_vlr in hints.iter() {
            let mut s = "".to_string();
            for hint in hints_for_one_vlr {
                s = s + &show_hint(hint, &univ) + &" ".to_string();
            }
            debug!("  hintsfor {:<4?} = {}", VirtualRangeIx::new(n), s);
            n += 1;
        }

        for n in 0..vlr_env.len() {
            let vlrix = VirtualRangeIx::new(n);
            let mut tmpvec = vec![];
            for elem in vlrEquivClasses.equiv_class_elems_iter(vlrix) {
                tmpvec.reverse();
                tmpvec.push(elem);
            }
            debug!("  eclassof {:?} = {:?}", vlrix, tmpvec);
        }

        for (b, i) in is_vv_boundary_move.iter().zip(0..) {
            if *b {
                debug!("  vv_boundary_move at {:?}", InstIx::new(i));
            }
        }
    }

    info!("do_coalescing_analysis: end");
    info!("");

    (hints, vlrEquivClasses, is_vv_boundary_move)
}