1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
//! Branch relaxation and offset computation.
//!
//! # block header offsets
//!
//! Before we can generate binary machine code for branch instructions, we need to know the final
//! offsets of all the block headers in the function. This information is encoded in the
//! `func.offsets` table.
//!
//! # Branch relaxation
//!
//! Branch relaxation is the process of ensuring that all branches in the function have enough
//! range to encode their destination. It is common to have multiple branch encodings in an ISA.
//! For example, x86 branches can have either an 8-bit or a 32-bit displacement.
//!
//! On RISC architectures, it can happen that conditional branches have a shorter range than
//! unconditional branches:
//!
//! ```clif
//!     brz v1, block17
//! ```
//!
//! can be transformed into:
//!
//! ```clif
//!     brnz v1, block23
//!     jump block17
//! block23:
//! ```

use crate::binemit::{CodeInfo, CodeOffset};
use crate::cursor::{Cursor, FuncCursor};
use crate::dominator_tree::DominatorTree;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::{Block, Function, Inst, InstructionData, Opcode, Value, ValueList};
use crate::isa::{EncInfo, TargetIsa};
use crate::iterators::IteratorExtras;
use crate::regalloc::RegDiversions;
use crate::timing;
use crate::CodegenResult;
use core::convert::TryFrom;
use log::debug;

/// Relax branches and compute the final layout of block headers in `func`.
///
/// Fill in the `func.offsets` table so the function is ready for binary emission.
pub fn relax_branches(
    func: &mut Function,
    _cfg: &mut ControlFlowGraph,
    _domtree: &mut DominatorTree,
    isa: &dyn TargetIsa,
) -> CodegenResult<CodeInfo> {
    let _tt = timing::relax_branches();

    let encinfo = isa.encoding_info();

    // Clear all offsets so we can recognize blocks that haven't been visited yet.
    func.offsets.clear();
    func.offsets.resize(func.dfg.num_blocks());

    // Start by removing redundant jumps.
    fold_redundant_jumps(func, _cfg, _domtree);

    // Convert jumps to fallthrough instructions where possible.
    fallthroughs(func);

    let mut offset = 0;
    let mut divert = RegDiversions::new();

    // First, compute initial offsets for every block.
    {
        let mut cur = FuncCursor::new(func);
        while let Some(block) = cur.next_block() {
            divert.at_block(&cur.func.entry_diversions, block);
            cur.func.offsets[block] = offset;
            while let Some(inst) = cur.next_inst() {
                divert.apply(&cur.func.dfg[inst]);
                let enc = cur.func.encodings[inst];
                offset += encinfo.byte_size(enc, inst, &divert, &cur.func);
            }
        }
    }

    // Then, run the relaxation algorithm until it converges.
    let mut go_again = true;
    while go_again {
        go_again = false;
        offset = 0;

        // Visit all instructions in layout order.
        let mut cur = FuncCursor::new(func);
        while let Some(block) = cur.next_block() {
            divert.at_block(&cur.func.entry_diversions, block);

            // Record the offset for `block` and make sure we iterate until offsets are stable.
            if cur.func.offsets[block] != offset {
                cur.func.offsets[block] = offset;
                go_again = true;
            }

            while let Some(inst) = cur.next_inst() {
                divert.apply(&cur.func.dfg[inst]);

                let enc = cur.func.encodings[inst];

                // See if this is a branch has a range and a destination, and if the target is in
                // range.
                if let Some(range) = encinfo.branch_range(enc) {
                    if let Some(dest) = cur.func.dfg[inst].branch_destination() {
                        let dest_offset = cur.func.offsets[dest];
                        if !range.contains(offset, dest_offset) {
                            offset +=
                                relax_branch(&mut cur, &divert, offset, dest_offset, &encinfo, isa);
                            continue;
                        }
                    }
                }

                offset += encinfo.byte_size(enc, inst, &divert, &cur.func);
            }
        }
    }

    let code_size = offset;
    let jumptables = offset;

    for (jt, jt_data) in func.jump_tables.iter() {
        func.jt_offsets[jt] = offset;
        // TODO: this should be computed based on the min size needed to hold the furthest branch.
        offset += jt_data.len() as u32 * 4;
    }

    let jumptables_size = offset - jumptables;
    let rodata = offset;

    for constant in func.dfg.constants.entries_mut() {
        constant.set_offset(offset);
        offset +=
            u32::try_from(constant.len()).expect("Constants must have a length that fits in a u32")
    }

    let rodata_size = offset - rodata;

    Ok(CodeInfo {
        code_size,
        jumptables_size,
        rodata_size,
        total_size: offset,
    })
}

/// Folds an instruction if it is a redundant jump.
/// Returns whether folding was performed (which invalidates the CFG).
fn try_fold_redundant_jump(
    func: &mut Function,
    cfg: &mut ControlFlowGraph,
    block: Block,
    first_inst: Inst,
) -> bool {
    let first_dest = match func.dfg[first_inst].branch_destination() {
        Some(block) => block, // The instruction was a single-target branch.
        None => {
            return false; // The instruction was either multi-target or not a branch.
        }
    };

    // For the moment, only attempt to fold a branch to a block that is parameterless.
    // These blocks are mainly produced by critical edge splitting.
    //
    // TODO: Allow folding blocks that define SSA values and function as phi nodes.
    if func.dfg.num_block_params(first_dest) != 0 {
        return false;
    }

    // Look at the first instruction of the first branch's destination.
    // If it is an unconditional branch, maybe the second jump can be bypassed.
    let second_inst = func.layout.first_inst(first_dest).expect("Instructions");
    if func.dfg[second_inst].opcode() != Opcode::Jump {
        return false;
    }

    // Now we need to fix up first_inst's block parameters to match second_inst's,
    // without changing the branch-specific arguments.
    //
    // The intermediary block is allowed to reference any SSA value that dominates it,
    // but that SSA value may not necessarily also dominate the instruction that's
    // being patched.

    // Get the arguments and parameters passed by the first branch.
    let num_fixed = func.dfg[first_inst]
        .opcode()
        .constraints()
        .num_fixed_value_arguments();
    let (first_args, first_params) = func.dfg[first_inst]
        .arguments(&func.dfg.value_lists)
        .split_at(num_fixed);

    // Get the parameters passed by the second jump.
    let num_fixed = func.dfg[second_inst]
        .opcode()
        .constraints()
        .num_fixed_value_arguments();
    let (_, second_params) = func.dfg[second_inst]
        .arguments(&func.dfg.value_lists)
        .split_at(num_fixed);
    let mut second_params = second_params.to_vec(); // Clone for rewriting below.

    // For each parameter passed by the second jump, if any of those parameters
    // was a block parameter, rewrite it to refer to the value that the first jump
    // passed in its parameters. Otherwise, make sure it dominates first_inst.
    //
    // For example: if we `block0: jump block1(v1)` to `block1(v2): jump block2(v2)`,
    // we want to rewrite the original jump to `jump block2(v1)`.
    let block_params: &[Value] = func.dfg.block_params(first_dest);
    debug_assert!(block_params.len() == first_params.len());

    for value in second_params.iter_mut() {
        if let Some((n, _)) = block_params.iter().enumerate().find(|(_, &p)| p == *value) {
            // This value was the Nth parameter passed to the second_inst's block.
            // Rewrite it as the Nth parameter passed by first_inst.
            *value = first_params[n];
        }
    }

    // Build a value list of first_args (unchanged) followed by second_params (rewritten).
    let arguments_vec: alloc::vec::Vec<_> = first_args
        .iter()
        .chain(second_params.iter())
        .copied()
        .collect();
    let value_list = ValueList::from_slice(&arguments_vec, &mut func.dfg.value_lists);

    func.dfg[first_inst].take_value_list(); // Drop the current list.
    func.dfg[first_inst].put_value_list(value_list); // Put the new list.

    // Bypass the second jump.
    // This can disconnect the Block containing `second_inst`, to be cleaned up later.
    let second_dest = func.dfg[second_inst].branch_destination().expect("Dest");
    func.change_branch_destination(first_inst, second_dest);
    cfg.recompute_block(func, block);

    // The previously-intermediary Block may now be unreachable. Update CFG.
    if cfg.pred_iter(first_dest).count() == 0 {
        // Remove all instructions from that block.
        while let Some(inst) = func.layout.first_inst(first_dest) {
            func.layout.remove_inst(inst);
        }

        // Remove the block...
        cfg.recompute_block(func, first_dest); // ...from predecessor lists.
        func.layout.remove_block(first_dest); // ...from the layout.
    }

    true
}

/// Redirects `jump` instructions that point to other `jump` instructions to the final destination.
/// This transformation may orphan some blocks.
fn fold_redundant_jumps(
    func: &mut Function,
    cfg: &mut ControlFlowGraph,
    domtree: &mut DominatorTree,
) {
    let mut folded = false;

    // Postorder iteration guarantees that a chain of jumps is visited from
    // the end of the chain to the start of the chain.
    for &block in domtree.cfg_postorder() {
        // Only proceed if the first terminator instruction is a single-target branch.
        let first_inst = func
            .layout
            .last_inst(block)
            .expect("Block has no terminator");
        folded |= try_fold_redundant_jump(func, cfg, block, first_inst);

        // Also try the previous instruction.
        if let Some(prev_inst) = func.layout.prev_inst(first_inst) {
            folded |= try_fold_redundant_jump(func, cfg, block, prev_inst);
        }
    }

    // Folding jumps invalidates the dominator tree.
    if folded {
        domtree.compute(func, cfg);
    }
}

/// Convert `jump` instructions to `fallthrough` instructions where possible and verify that any
/// existing `fallthrough` instructions are correct.
fn fallthroughs(func: &mut Function) {
    for (block, succ) in func.layout.blocks().adjacent_pairs() {
        let term = func
            .layout
            .last_inst(block)
            .expect("block has no terminator.");
        if let InstructionData::Jump {
            ref mut opcode,
            destination,
            ..
        } = func.dfg[term]
        {
            match *opcode {
                Opcode::Fallthrough => {
                    // Somebody used a fall-through instruction before the branch relaxation pass.
                    // Make sure it is correct, i.e. the destination is the layout successor.
                    debug_assert_eq!(
                        destination, succ,
                        "Illegal fallthrough from {} to {}, but {}'s successor is {}",
                        block, destination, block, succ
                    )
                }
                Opcode::Jump => {
                    // If this is a jump to the successor block, change it to a fall-through.
                    if destination == succ {
                        *opcode = Opcode::Fallthrough;
                        func.encodings[term] = Default::default();
                    }
                }
                _ => {}
            }
        }
    }
}

/// Relax the branch instruction at `cur` so it can cover the range `offset - dest_offset`.
///
/// Return the size of the replacement instructions up to and including the location where `cur` is
/// left.
fn relax_branch(
    cur: &mut FuncCursor,
    divert: &RegDiversions,
    offset: CodeOffset,
    dest_offset: CodeOffset,
    encinfo: &EncInfo,
    isa: &dyn TargetIsa,
) -> CodeOffset {
    let inst = cur.current_inst().unwrap();
    debug!(
        "Relaxing [{}] {} for {:#x}-{:#x} range",
        encinfo.display(cur.func.encodings[inst]),
        cur.func.dfg.display_inst(inst, isa),
        offset,
        dest_offset
    );

    // Pick the smallest encoding that can handle the branch range.
    let dfg = &cur.func.dfg;
    let ctrl_type = dfg.ctrl_typevar(inst);
    if let Some(enc) = isa
        .legal_encodings(cur.func, &dfg[inst], ctrl_type)
        .filter(|&enc| {
            let range = encinfo.branch_range(enc).expect("Branch with no range");
            if !range.contains(offset, dest_offset) {
                debug!("  trying [{}]: out of range", encinfo.display(enc));
                false
            } else if encinfo.operand_constraints(enc)
                != encinfo.operand_constraints(cur.func.encodings[inst])
            {
                // Conservatively give up if the encoding has different constraints
                // than the original, so that we don't risk picking a new encoding
                // which the existing operands don't satisfy. We can't check for
                // validity directly because we don't have a RegDiversions active so
                // we don't know which registers are actually in use.
                debug!("  trying [{}]: constraints differ", encinfo.display(enc));
                false
            } else {
                debug!("  trying [{}]: OK", encinfo.display(enc));
                true
            }
        })
        .min_by_key(|&enc| encinfo.byte_size(enc, inst, &divert, &cur.func))
    {
        debug_assert!(enc != cur.func.encodings[inst]);
        cur.func.encodings[inst] = enc;
        return encinfo.byte_size(enc, inst, &divert, &cur.func);
    }

    // Note: On some RISC ISAs, conditional branches have shorter range than unconditional
    // branches, so one way of extending the range of a conditional branch is to invert its
    // condition and make it branch over an unconditional jump which has the larger range.
    //
    // Splitting the block is problematic this late because there may be register diversions in
    // effect across the conditional branch, and they can't survive the control flow edge to a new
    // block. We have two options for handling that:
    //
    // 1. Set a flag on the new block that indicates it wants the preserve the register diversions of
    //    its layout predecessor, or
    // 2. Use an encoding macro for the branch-over-jump pattern so we don't need to split the block.
    //
    // It seems that 1. would allow us to share code among RISC ISAs that need this.
    //
    // We can't allow register diversions to survive from the layout predecessor because the layout
    // predecessor could contain kill points for some values that are live in this block, and
    // diversions are not automatically cancelled when the live range of a value ends.

    // This assumes solution 2. above:
    panic!("No branch in range for {:#x}-{:#x}", offset, dest_offset);
}