1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use super::*;

use crate::{K_VALUE, ALPHA_VALUE};
use crate::kbucket::{Key, KeyBytes, Distance};
use libp2p_core::PeerId;
use std::{time::Duration, iter::FromIterator, num::NonZeroUsize};
use std::collections::btree_map::{BTreeMap, Entry};
use wasm_timer::Instant;

pub mod disjoint;

/// A peer iterator for a dynamically changing list of peers, sorted by increasing
/// distance to a chosen target.
#[derive(Debug, Clone)]
pub struct ClosestPeersIter {
    config: ClosestPeersIterConfig,

    /// The target whose distance to any peer determines the position of
    /// the peer in the iterator.
    target: KeyBytes,

    /// The internal iterator state.
    state: State,

    /// The closest peers to the target, ordered by increasing distance.
    closest_peers: BTreeMap<Distance, Peer>,

    /// The number of peers for which the iterator is currently waiting for results.
    num_waiting: usize,
}

/// Configuration for a `ClosestPeersIter`.
#[derive(Debug, Clone)]
pub struct ClosestPeersIterConfig {
    /// Allowed level of parallelism.
    ///
    /// The `α` parameter in the Kademlia paper. The maximum number of peers that
    /// the iterator is allowed to wait for in parallel while iterating towards the closest
    /// nodes to a target. Defaults to `ALPHA_VALUE`.
    pub parallelism: NonZeroUsize,

    /// Number of results (closest peers) to search for.
    ///
    /// The number of closest peers for which the iterator must obtain successful results
    /// in order to finish successfully. Defaults to `K_VALUE`.
    pub num_results: NonZeroUsize,

    /// The timeout for a single peer.
    ///
    /// If a successful result is not reported for a peer within this timeout
    /// window, the iterator considers the peer unresponsive and will not wait for
    /// the peer when evaluating the termination conditions, until and unless a
    /// result is delivered. Defaults to `10` seconds.
    pub peer_timeout: Duration,
}

impl Default for ClosestPeersIterConfig {
    fn default() -> Self {
        ClosestPeersIterConfig {
            parallelism: ALPHA_VALUE,
            num_results: K_VALUE,
            peer_timeout: Duration::from_secs(10),
        }
    }
}

impl ClosestPeersIter {
    /// Creates a new iterator with a default configuration.
    pub fn new<I>(target: KeyBytes, known_closest_peers: I) -> Self
    where
        I: IntoIterator<Item = Key<PeerId>>
    {
        Self::with_config(ClosestPeersIterConfig::default(), target, known_closest_peers)
    }

    /// Creates a new iterator with the given configuration.
    pub fn with_config<I, T>(config: ClosestPeersIterConfig, target: T, known_closest_peers: I) -> Self
    where
        I: IntoIterator<Item = Key<PeerId>>,
        T: Into<KeyBytes>
    {
        let target = target.into();

        // Initialise the closest peers to start the iterator with.
        let closest_peers = BTreeMap::from_iter(
            known_closest_peers
                .into_iter()
                .map(|key| {
                    let distance = key.distance(&target);
                    let state = PeerState::NotContacted;
                    (distance, Peer { key, state })
                })
                .take(K_VALUE.into()));

        // The iterator initially makes progress by iterating towards the target.
        let state = State::Iterating { no_progress : 0 };

        ClosestPeersIter {
            config,
            target,
            state,
            closest_peers,
            num_waiting: 0
        }
    }

    /// Callback for delivering the result of a successful request to a peer.
    ///
    /// Delivering results of requests back to the iterator allows the iterator to make
    /// progress. The iterator is said to make progress either when the given
    /// `closer_peers` contain a peer closer to the target than any peer seen so far,
    /// or when the iterator did not yet accumulate `num_results` closest peers and
    /// `closer_peers` contains a new peer, regardless of its distance to the target.
    ///
    /// If the iterator is currently waiting for a result from `peer`,
    /// the iterator state is updated and `true` is returned. In that
    /// case, after calling this function, `next` should eventually be
    /// called again to obtain the new state of the iterator.
    ///
    /// If the iterator is finished, it is not currently waiting for a
    /// result from `peer`, or a result for `peer` has already been reported,
    /// calling this function has no effect and `false` is returned.
    pub fn on_success<I>(&mut self, peer: &PeerId, closer_peers: I) -> bool
    where
        I: IntoIterator<Item = PeerId>
    {
        if let State::Finished = self.state {
            return false
        }

        let key = Key::from(*peer);
        let distance = key.distance(&self.target);

        // Mark the peer as succeeded.
        match self.closest_peers.entry(distance) {
            Entry::Vacant(..) => return false,
            Entry::Occupied(mut e) => match e.get().state {
                PeerState::Waiting(..) => {
                    debug_assert!(self.num_waiting > 0);
                    self.num_waiting -= 1;
                    e.get_mut().state = PeerState::Succeeded;
                }
                PeerState::Unresponsive => {
                    e.get_mut().state = PeerState::Succeeded;
                }
                PeerState::NotContacted
                    | PeerState::Failed
                    | PeerState::Succeeded => return false
            }
        }

        let num_closest = self.closest_peers.len();
        let mut progress = false;

        // Incorporate the reported closer peers into the iterator.
        for peer in closer_peers {
            let key = peer.into();
            let distance = self.target.distance(&key);
            let peer = Peer { key, state: PeerState::NotContacted };
            self.closest_peers.entry(distance).or_insert(peer);
            // The iterator makes progress if the new peer is either closer to the target
            // than any peer seen so far (i.e. is the first entry), or the iterator did
            // not yet accumulate enough closest peers.
            progress = self.closest_peers.keys().next() == Some(&distance)
                || num_closest < self.config.num_results.get();
        }

        // Update the iterator state.
        self.state = match self.state {
            State::Iterating { no_progress } => {
                let no_progress = if progress { 0 } else { no_progress + 1 };
                if no_progress >= self.config.parallelism.get() {
                    State::Stalled
                } else {
                    State::Iterating { no_progress }
                }
            }
            State::Stalled =>
                if progress {
                    State::Iterating { no_progress: 0 }
                } else {
                    State::Stalled
                }
            State::Finished => State::Finished
        };

        true
    }

    /// Callback for informing the iterator about a failed request to a peer.
    ///
    /// If the iterator is currently waiting for a result from `peer`,
    /// the iterator state is updated and `true` is returned. In that
    /// case, after calling this function, `next` should eventually be
    /// called again to obtain the new state of the iterator.
    ///
    /// If the iterator is finished, it is not currently waiting for a
    /// result from `peer`, or a result for `peer` has already been reported,
    /// calling this function has no effect and `false` is returned.
    pub fn on_failure(&mut self, peer: &PeerId) -> bool {
        if let State::Finished = self.state {
            return false
        }

        let key = Key::from(*peer);
        let distance = key.distance(&self.target);

        match self.closest_peers.entry(distance) {
            Entry::Vacant(_) => return false,
            Entry::Occupied(mut e) => match e.get().state {
                PeerState::Waiting(_) => {
                    debug_assert!(self.num_waiting > 0);
                    self.num_waiting -= 1;
                    e.get_mut().state = PeerState::Failed
                }
                PeerState::Unresponsive => {
                    e.get_mut().state = PeerState::Failed
                }
                PeerState::NotContacted
                    | PeerState::Failed
                    | PeerState::Succeeded => return false
            }
        }

        true
    }

    /// Returns the list of peers for which the iterator is currently waiting
    /// for results.
    pub fn waiting(&self) -> impl Iterator<Item = &PeerId> {
        self.closest_peers.values().filter_map(|peer|
            match peer.state {
                PeerState::Waiting(..) => Some(peer.key.preimage()),
                _ => None
            })
    }

    /// Returns the number of peers for which the iterator is currently
    /// waiting for results.
    pub fn num_waiting(&self) -> usize {
        self.num_waiting
    }

    /// Returns true if the iterator is waiting for a response from the given peer.
    pub fn is_waiting(&self, peer: &PeerId) -> bool {
        self.waiting().any(|p| peer == p)
    }

    /// Advances the state of the iterator, potentially getting a new peer to contact.
    pub fn next(&mut self, now: Instant) -> PeersIterState<'_> {
        if let State::Finished = self.state {
            return PeersIterState::Finished
        }

        // Count the number of peers that returned a result. If there is a
        // request in progress to one of the `num_results` closest peers, the
        // counter is set to `None` as the iterator can only finish once
        // `num_results` closest peers have responded (or there are no more
        // peers to contact, see `num_waiting`).
        let mut result_counter = Some(0);

        // Check if the iterator is at capacity w.r.t. the allowed parallelism.
        let at_capacity = self.at_capacity();

        for peer in self.closest_peers.values_mut() {
            match peer.state {
                PeerState::Waiting(timeout) => {
                    if now >= timeout {
                        // Unresponsive peers no longer count towards the limit for the
                        // bounded parallelism, though they might still be ongoing and
                        // their results can still be delivered to the iterator.
                        debug_assert!(self.num_waiting > 0);
                        self.num_waiting -= 1;
                        peer.state = PeerState::Unresponsive
                    }
                    else if at_capacity {
                        // The iterator is still waiting for a result from a peer and is
                        // at capacity w.r.t. the maximum number of peers being waited on.
                        return PeersIterState::WaitingAtCapacity
                    }
                    else {
                        // The iterator is still waiting for a result from a peer and the
                        // `result_counter` did not yet reach `num_results`. Therefore
                        // the iterator is not yet done, regardless of already successful
                        // queries to peers farther from the target.
                        result_counter = None;
                    }
                }

                PeerState::Succeeded =>
                    if let Some(ref mut cnt) = result_counter {
                        *cnt += 1;
                        // If `num_results` successful results have been delivered for the
                        // closest peers, the iterator is done.
                        if *cnt >= self.config.num_results.get() {
                            self.state = State::Finished;
                            return PeersIterState::Finished
                        }
                    }

                PeerState::NotContacted =>
                    if !at_capacity {
                        let timeout = now + self.config.peer_timeout;
                        peer.state = PeerState::Waiting(timeout);
                        self.num_waiting += 1;
                        return PeersIterState::Waiting(Some(Cow::Borrowed(peer.key.preimage())))
                    } else {
                        return PeersIterState::WaitingAtCapacity
                    }

                PeerState::Unresponsive | PeerState::Failed => {
                    // Skip over unresponsive or failed peers.
                }
            }
        }

        if self.num_waiting > 0 {
            // The iterator is still waiting for results and not at capacity w.r.t.
            // the allowed parallelism, but there are no new peers to contact
            // at the moment.
            PeersIterState::Waiting(None)
        } else {
            // The iterator is finished because all available peers have been contacted
            // and the iterator is not waiting for any more results.
            self.state = State::Finished;
            PeersIterState::Finished
        }
    }

    /// Immediately transitions the iterator to [`PeersIterState::Finished`].
    pub fn finish(&mut self) {
        self.state = State::Finished
    }

    /// Checks whether the iterator has finished.
    pub fn is_finished(&self) -> bool {
        self.state == State::Finished
    }

    /// Consumes the iterator, returning the closest peers.
    pub fn into_result(self) -> impl Iterator<Item = PeerId> {
        self.closest_peers
            .into_iter()
            .filter_map(|(_, peer)| {
                if let PeerState::Succeeded = peer.state {
                    Some(peer.key.into_preimage())
                } else {
                    None
                }
            })
            .take(self.config.num_results.get())
    }

    /// Checks if the iterator is at capacity w.r.t. the permitted parallelism.
    ///
    /// While the iterator is stalled, up to `num_results` parallel requests
    /// are allowed. This is a slightly more permissive variant of the
    /// requirement that the initiator "resends the FIND_NODE to all of the
    /// k closest nodes it has not already queried".
    fn at_capacity(&self) -> bool {
        match self.state {
            State::Stalled => self.num_waiting >= usize::max(
                self.config.num_results.get(), self.config.parallelism.get()
            ),
            State::Iterating { .. } => self.num_waiting >= self.config.parallelism.get(),
            State::Finished => true
        }
    }
}

////////////////////////////////////////////////////////////////////////////////
// Private state

/// Internal state of the iterator.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
enum State {
    /// The iterator is making progress by iterating towards `num_results` closest
    /// peers to the target with a maximum of `parallelism` peers for which the
    /// iterator is waiting for results at a time.
    ///
    /// > **Note**: When the iterator switches back to `Iterating` after being
    /// > `Stalled`, it may temporarily be waiting for more than `parallelism`
    /// > results from peers, with new peers only being considered once
    /// > the number pending results drops below `parallelism`.
    Iterating {
        /// The number of consecutive results that did not yield a peer closer
        /// to the target. When this number reaches `parallelism` and no new
        /// peer was discovered or at least `num_results` peers are known to
        /// the iterator, it is considered `Stalled`.
        no_progress: usize,
    },

    /// A iterator is stalled when it did not make progress after `parallelism`
    /// consecutive successful results (see `on_success`).
    ///
    /// While the iterator is stalled, the maximum allowed parallelism for pending
    /// results is increased to `num_results` in an attempt to finish the iterator.
    /// If the iterator can make progress again upon receiving the remaining
    /// results, it switches back to `Iterating`. Otherwise it will be finished.
    Stalled,

    /// The iterator is finished.
    ///
    /// A iterator finishes either when it has collected `num_results` results
    /// from the closest peers (not counting those that failed or are unresponsive)
    /// or because the iterator ran out of peers that have not yet delivered
    /// results (or failed).
    Finished
}

/// Representation of a peer in the context of a iterator.
#[derive(Debug, Clone)]
struct Peer {
    key: Key<PeerId>,
    state: PeerState
}

/// The state of a single `Peer`.
#[derive(Debug, Copy, Clone)]
enum PeerState {
    /// The peer has not yet been contacted.
    ///
    /// This is the starting state for every peer.
    NotContacted,

    /// The iterator is waiting for a result from the peer.
    Waiting(Instant),

    /// A result was not delivered for the peer within the configured timeout.
    ///
    /// The peer is not taken into account for the termination conditions
    /// of the iterator until and unless it responds.
    Unresponsive,

    /// Obtaining a result from the peer has failed.
    ///
    /// This is a final state, reached as a result of a call to `on_failure`.
    Failed,

    /// A successful result from the peer has been delivered.
    ///
    /// This is a final state, reached as a result of a call to `on_success`.
    Succeeded,
}

#[cfg(test)]
mod tests {
    use super::*;
    use libp2p_core::{PeerId, multihash::{Code, Multihash}};
    use quickcheck::*;
    use rand::{Rng, rngs::StdRng, SeedableRng};
    use std::{iter, time::Duration};

    fn random_peers<R: Rng>(n: usize, g: &mut R) -> Vec<PeerId> {
        (0 .. n).map(|_| PeerId::from_multihash(
            Multihash::wrap(Code::Sha2_256.into(), &g.gen::<[u8; 32]>()).unwrap()
        ).unwrap()).collect()
    }

    fn sorted<T: AsRef<KeyBytes>>(target: &T, peers: &Vec<Key<PeerId>>) -> bool {
        peers.windows(2).all(|w| w[0].distance(&target) < w[1].distance(&target))
    }

    impl Arbitrary for ClosestPeersIter {
        fn arbitrary<G: Gen>(g: &mut G) -> ClosestPeersIter {
            let known_closest_peers = random_peers(g.gen_range(1, 60), g)
                .into_iter()
                .map(Key::from);
            let target = Key::from(Into::<Multihash>::into(PeerId::random()));
            let config = ClosestPeersIterConfig {
                parallelism: NonZeroUsize::new(g.gen_range(1, 10)).unwrap(),
                num_results: NonZeroUsize::new(g.gen_range(1, 25)).unwrap(),
                peer_timeout: Duration::from_secs(g.gen_range(10, 30)),
            };
            ClosestPeersIter::with_config(config, target, known_closest_peers)
        }
    }

    #[derive(Clone, Debug)]
    struct Seed([u8; 32]);

    impl Arbitrary for Seed {
        fn arbitrary<G: Gen>(g: &mut G) -> Seed {
            Seed(g.gen())
        }
    }

    #[test]
    fn new_iter() {
        fn prop(iter: ClosestPeersIter) {
            let target = iter.target.clone();

            let (keys, states): (Vec<_>, Vec<_>) = iter.closest_peers
                .values()
                .map(|e| (e.key.clone(), &e.state))
                .unzip();

            let none_contacted = states
                .iter()
                .all(|s| match s {
                    PeerState::NotContacted => true,
                    _ => false
                });

            assert!(none_contacted,
                    "Unexpected peer state in new iterator.");
            assert!(sorted(&target, &keys),
                    "Closest peers in new iterator not sorted by distance to target.");
            assert_eq!(iter.num_waiting(), 0,
                       "Unexpected peers in progress in new iterator.");
            assert_eq!(iter.into_result().count(), 0,
                       "Unexpected closest peers in new iterator");
        }

        QuickCheck::new().tests(10).quickcheck(prop as fn(_) -> _)
    }

    #[test]
    fn termination_and_parallelism() {
        fn prop(mut iter: ClosestPeersIter, seed: Seed) {
            let now = Instant::now();
            let mut rng = StdRng::from_seed(seed.0);

            let mut expected = iter.closest_peers
                .values()
                .map(|e| e.key.clone())
                .collect::<Vec<_>>();
            let num_known = expected.len();
            let max_parallelism = usize::min(iter.config.parallelism.get(), num_known);

            let target = iter.target.clone();
            let mut remaining;
            let mut num_failures = 0;

            'finished: loop {
                if expected.len() == 0 {
                    break;
                }
                // Split off the next up to `parallelism` expected peers.
                else if expected.len() < max_parallelism {
                    remaining = Vec::new();
                }
                else {
                    remaining = expected.split_off(max_parallelism);
                }

                // Advance for maximum parallelism.
                for k in expected.iter() {
                    match iter.next(now) {
                        PeersIterState::Finished => break 'finished,
                        PeersIterState::Waiting(Some(p)) => assert_eq!(&*p, k.preimage()),
                        PeersIterState::Waiting(None) => panic!("Expected another peer."),
                        PeersIterState::WaitingAtCapacity => panic!("Unexpectedly reached capacity.")
                    }
                }
                let num_waiting = iter.num_waiting();
                assert_eq!(num_waiting, expected.len());

                // Check the bounded parallelism.
                if iter.at_capacity() {
                    assert_eq!(iter.next(now), PeersIterState::WaitingAtCapacity)
                }

                // Report results back to the iterator with a random number of "closer"
                // peers or an error, thus finishing the "in-flight requests".
                for (i, k) in expected.iter().enumerate() {
                    if rng.gen_bool(0.75) {
                        let num_closer = rng.gen_range(0, iter.config.num_results.get() + 1);
                        let closer_peers = random_peers(num_closer, &mut rng);
                        remaining.extend(closer_peers.iter().cloned().map(Key::from));
                        iter.on_success(k.preimage(), closer_peers);
                    } else {
                        num_failures += 1;
                        iter.on_failure(k.preimage());
                    }
                    assert_eq!(iter.num_waiting(), num_waiting - (i + 1));
                }

                // Re-sort the remaining expected peers for the next "round".
                remaining.sort_by_key(|k| target.distance(&k));

                expected = remaining
            }

            // The iterator must be finished.
            assert_eq!(iter.next(now), PeersIterState::Finished);
            assert_eq!(iter.state, State::Finished);

            // Determine if all peers have been contacted by the iterator. This _must_ be
            // the case if the iterator finished with fewer than the requested number
            // of results.
            let all_contacted = iter.closest_peers.values().all(|e| match e.state {
                PeerState::NotContacted | PeerState::Waiting { .. } => false,
                _ => true
            });

            let target = iter.target.clone();
            let num_results = iter.config.num_results;
            let result = iter.into_result();
            let closest = result.map(Key::from).collect::<Vec<_>>();

            assert!(sorted(&target, &closest));

            if closest.len() < num_results.get() {
                // The iterator returned fewer results than requested. Therefore
                // either the initial number of known peers must have been
                // less than the desired number of results, or there must
                // have been failures.
                assert!(num_known < num_results.get() || num_failures > 0);
                // All peers must have been contacted.
                assert!(all_contacted, "Not all peers have been contacted.");
            } else {
                assert_eq!(num_results.get(), closest.len(), "Too  many results.");
            }
        }

        QuickCheck::new().tests(10).quickcheck(prop as fn(_, _) -> _)
    }

    #[test]
    fn no_duplicates() {
        fn prop(mut iter: ClosestPeersIter, seed: Seed) -> bool {
            let now = Instant::now();
            let mut rng = StdRng::from_seed(seed.0);

            let closer = random_peers(1, &mut rng);

            // A first peer reports a "closer" peer.
            let peer1 = match iter.next(now) {
                PeersIterState::Waiting(Some(p)) => p.into_owned(),
                _ => panic!("No peer.")
            };
            iter.on_success(&peer1, closer.clone());
            // Duplicate result from te same peer.
            iter.on_success(&peer1, closer.clone());

            // If there is a second peer, let it also report the same "closer" peer.
            match iter.next(now) {
                PeersIterState::Waiting(Some(p)) => {
                    let peer2 = p.into_owned();
                    assert!(iter.on_success(&peer2, closer.clone()))
                }
                PeersIterState::Finished => {}
                _ => panic!("Unexpectedly iter state."),
            };

            // The "closer" peer must only be in the iterator once.
            let n = iter.closest_peers.values().filter(|e| e.key.preimage() == &closer[0]).count();
            assert_eq!(n, 1);

            true
        }

        QuickCheck::new().tests(10).quickcheck(prop as fn(_, _) -> _)
    }

    #[test]
    fn timeout() {
        fn prop(mut iter: ClosestPeersIter) -> bool {
            let mut now = Instant::now();
            let peer = iter.closest_peers.values().next().unwrap().key.clone().into_preimage();

            // Poll the iterator for the first peer to be in progress.
            match iter.next(now) {
                PeersIterState::Waiting(Some(id)) => assert_eq!(&*id, &peer),
                _ => panic!()
            }

            // Artificially advance the clock.
            now = now + iter.config.peer_timeout;

            // Advancing the iterator again should mark the first peer as unresponsive.
            let _ = iter.next(now);
            match &iter.closest_peers.values().next().unwrap() {
                Peer { key, state: PeerState::Unresponsive } => {
                    assert_eq!(key.preimage(), &peer);
                },
                Peer { state, .. } => panic!("Unexpected peer state: {:?}", state)
            }

            let finished = iter.is_finished();
            iter.on_success(&peer, iter::empty());
            let closest = iter.into_result().collect::<Vec<_>>();

            if finished {
                // Delivering results when the iterator already finished must have
                // no effect.
                assert_eq!(Vec::<PeerId>::new(), closest)
            } else {
                // Unresponsive peers can still deliver results while the iterator
                // is not finished.
                assert_eq!(vec![peer], closest)
            }
            true
        }

        QuickCheck::new().tests(10).quickcheck(prop as fn(_) -> _)
    }

    #[test]
    fn without_success_try_up_to_k_peers() {
        fn prop(mut iter: ClosestPeersIter) {
            let now = Instant::now();

            for _ in 0..(usize::min(iter.closest_peers.len(), K_VALUE.get())) {
                match iter.next(now) {
                    PeersIterState::Waiting(Some(p)) => {
                        let peer = p.clone().into_owned();
                        iter.on_failure(&peer);
                    },
                    _ => panic!("Expected iterator to yield another peer to query."),
                }
            }

            assert_eq!(PeersIterState::Finished, iter.next(now));
        }

        QuickCheck::new().tests(10).quickcheck(prop as fn(_))
    }

    fn stalled_at_capacity() {
        fn prop(mut iter: ClosestPeersIter) {
            iter.state = State::Stalled;

            for i in 0..usize::max(iter.config.parallelism.get(), iter.config.num_results.get()) {
                iter.num_waiting = i;
                assert!(
                    !iter.at_capacity(),
                    "Iterator should not be at capacity if less than \
                     `max(parallelism, num_results)` requests are waiting.",
                )
            }

            iter.num_waiting = usize::max(
                iter.config.parallelism.get(),
                iter.config.num_results.get(),
            );
            assert!(
                iter.at_capacity(),
                "Iterator should be at capacity if `max(parallelism, num_results)` requests are \
                 waiting.",
            )
        }

        QuickCheck::new().tests(10).quickcheck(prop as fn(_))
    }
}