1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
//! Register allocator coloring pass.
//!
//! The coloring pass assigns a physical register to every SSA value with a register affinity,
//! under the assumption that the register pressure has been lowered sufficiently by spilling and
//! splitting.
//!
//! # Preconditions
//!
//! The coloring pass doesn't work on arbitrary code. Certain preconditions must be satisfied:
//!
//! 1. All instructions must be legalized and assigned an encoding. The encoding recipe guides the
//! register assignments and provides exact constraints.
//!
//! 2. Instructions with tied operands must be in a coloring-friendly state. Specifically, the
//! values used by the tied operands must be killed by the instruction. This can be achieved by
//! inserting a `copy` to a new value immediately before the two-address instruction.
//!
//! 3. If a value is bound to more than one operand on the same instruction, the operand
//! constraints must be compatible. This can also be achieved by inserting copies so the
//! incompatible operands get different values.
//!
//! 4. The register pressure must be lowered sufficiently by inserting spill code. Register
//! operands are allowed to read spilled values, but each such instance must be counted as using
//! a register.
//!
//! 5. The code must be in Conventional SSA form. Among other things, this means that values passed
//! as arguments when branching to a block must belong to the same virtual register as the
//! corresponding block argument value.
//!
//! # Iteration order
//!
//! The SSA property guarantees that whenever the live range of two values overlap, one of the
//! values will be live at the definition point of the other value. If we visit the instructions in
//! a topological order relative to the dominance relation, we can assign colors to the values
//! defined by the instruction and only consider the colors of other values that are live at the
//! instruction.
//!
//! The first time we see a branch to a block, the block's argument values are colored to match the
//! registers currently holding branch argument values passed to the predecessor branch. By
//! visiting blocks in a CFG topological order, we guarantee that at least one predecessor branch has
//! been visited before the destination block. Therefore, the block's arguments are already colored.
//!
//! The exception is the entry block whose arguments are colored from the ABI requirements.
use crate::cursor::{Cursor, EncCursor};
use crate::dominator_tree::DominatorTree;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::{ArgumentLoc, InstBuilder, ValueDef};
use crate::ir::{Block, Function, Inst, InstructionData, Layout, Opcode, SigRef, Value, ValueLoc};
use crate::isa::{regs_overlap, RegClass, RegInfo, RegUnit};
use crate::isa::{ConstraintKind, EncInfo, OperandConstraint, RecipeConstraints, TargetIsa};
use crate::packed_option::PackedOption;
use crate::regalloc::affinity::Affinity;
use crate::regalloc::diversion::RegDiversions;
use crate::regalloc::live_value_tracker::{LiveValue, LiveValueTracker};
use crate::regalloc::liveness::Liveness;
use crate::regalloc::liverange::LiveRange;
use crate::regalloc::register_set::RegisterSet;
use crate::regalloc::solver::{Solver, SolverError};
use crate::timing;
use core::mem;
use log::debug;
/// Data structures for the coloring pass.
///
/// These are scratch space data structures that can be reused between invocations.
pub struct Coloring {
divert: RegDiversions,
solver: Solver,
}
/// Kinds of ABI parameters.
enum AbiParams {
Parameters(SigRef),
Returns,
}
/// Bundle of references that the coloring algorithm needs.
///
/// Some of the needed mutable references are passed around as explicit function arguments so we
/// can avoid many fights with the borrow checker over mutable borrows of `self`. This includes the
/// `Function` and `LiveValueTracker` references.
///
/// Immutable context information and mutable references that don't need to be borrowed across
/// method calls should go in this struct.
struct Context<'a> {
// Current instruction as well as reference to function and ISA.
cur: EncCursor<'a>,
// Cached ISA information.
// We save it here to avoid frequent virtual function calls on the `TargetIsa` trait object.
reginfo: RegInfo,
encinfo: EncInfo,
// References to contextual data structures we need.
cfg: &'a ControlFlowGraph,
domtree: &'a DominatorTree,
liveness: &'a mut Liveness,
// References to working set data structures.
// If we need to borrow out of a data structure across a method call, it must be passed as a
// function argument instead, see the `LiveValueTracker` arguments.
divert: &'a mut RegDiversions,
solver: &'a mut Solver,
// Pristine set of registers that the allocator can use.
// This set remains immutable, we make clones.
usable_regs: RegisterSet,
uses_pinned_reg: bool,
}
impl Coloring {
/// Allocate scratch space data structures for the coloring pass.
pub fn new() -> Self {
Self {
divert: RegDiversions::new(),
solver: Solver::new(),
}
}
/// Clear all data structures in this coloring pass.
pub fn clear(&mut self) {
self.divert.clear();
self.solver.clear();
}
/// Run the coloring algorithm over `func`.
pub fn run(
&mut self,
isa: &dyn TargetIsa,
func: &mut Function,
cfg: &ControlFlowGraph,
domtree: &DominatorTree,
liveness: &mut Liveness,
tracker: &mut LiveValueTracker,
) {
let _tt = timing::ra_coloring();
debug!("Coloring for:\n{}", func.display(isa));
let mut ctx = Context {
usable_regs: isa.allocatable_registers(func),
uses_pinned_reg: isa.flags().enable_pinned_reg(),
cur: EncCursor::new(func, isa),
reginfo: isa.register_info(),
encinfo: isa.encoding_info(),
cfg,
domtree,
liveness,
divert: &mut self.divert,
solver: &mut self.solver,
};
ctx.run(tracker)
}
}
impl<'a> Context<'a> {
/// Is the pinned register usage enabled, and is this register the pinned register?
#[inline]
fn is_pinned_reg(&self, rc: RegClass, reg: RegUnit) -> bool {
rc.is_pinned_reg(self.uses_pinned_reg, reg)
}
/// Run the coloring algorithm.
fn run(&mut self, tracker: &mut LiveValueTracker) {
self.cur
.func
.locations
.resize(self.cur.func.dfg.num_values());
// Visit blocks in reverse post-order. We need to ensure that at least one predecessor has
// been visited before each block. That guarantees that the block arguments have been colored.
for &block in self.domtree.cfg_postorder().iter().rev() {
self.visit_block(block, tracker);
}
}
/// Visit `block`, assuming that the immediate dominator has already been visited.
fn visit_block(&mut self, block: Block, tracker: &mut LiveValueTracker) {
debug!("Coloring {}:", block);
let mut regs = self.visit_block_header(block, tracker);
tracker.drop_dead_params();
// Now go through the instructions in `block` and color the values they define.
self.cur.goto_top(block);
while let Some(inst) = self.cur.next_inst() {
self.cur.use_srcloc(inst);
let opcode = self.cur.func.dfg[inst].opcode();
if !opcode.is_ghost() {
// This is an instruction which either has an encoding or carries ABI-related
// register allocation constraints.
let enc = self.cur.func.encodings[inst];
let constraints = self.encinfo.operand_constraints(enc);
if self.visit_inst(inst, constraints, tracker, &mut regs) {
self.replace_global_defines(inst, tracker);
// Restore cursor location after `replace_global_defines` moves it.
// We want to revisit the copy instructions it inserted.
self.cur.goto_inst(inst);
}
} else {
// This is a ghost instruction with no encoding and no extra constraints.
let (_throughs, kills) = tracker.process_ghost(inst);
self.process_ghost_kills(kills, &mut regs);
}
tracker.drop_dead(inst);
// We are not able to insert any regmove for diversion or un-diversion after the first
// branch. Instead, we record the diversion to be restored at the entry of the next block,
// which should have a single predecessor.
if opcode.is_branch() {
// The next instruction is necessarily an unconditional branch.
if let Some(branch) = self.cur.next_inst() {
debug!(
"Skip coloring {}\n from {}\n with diversions {}",
self.cur.display_inst(branch),
regs.input.display(&self.reginfo),
self.divert.display(&self.reginfo)
);
use crate::ir::instructions::BranchInfo::*;
let target = match self.cur.func.dfg.analyze_branch(branch) {
NotABranch | Table(_, _) => panic!(
"unexpected instruction {} after a conditional branch",
self.cur.display_inst(branch)
),
SingleDest(block, _) => block,
};
// We have a single branch with a single target, and a block with a single
// predecessor. Thus we can forward the diversion set to the next block.
if self.cfg.pred_iter(target).count() == 1 {
// Transfer the diversion to the next block.
self.divert
.save_for_block(&mut self.cur.func.entry_diversions, target);
debug!(
"Set entry-diversion for {} to\n {}",
target,
self.divert.display(&self.reginfo)
);
} else {
debug_assert!(
self.divert.is_empty(),
"Divert set is non-empty after the terminator."
);
}
assert_eq!(
self.cur.next_inst(),
None,
"Unexpected instruction after a branch group."
);
} else {
assert!(opcode.is_terminator());
}
}
}
}
/// Visit the `block` header.
///
/// Initialize the set of live registers and color the arguments to `block`.
fn visit_block_header(
&mut self,
block: Block,
tracker: &mut LiveValueTracker,
) -> AvailableRegs {
// Reposition the live value tracker and deal with the block arguments.
tracker.block_top(
block,
&self.cur.func.dfg,
self.liveness,
&self.cur.func.layout,
self.domtree,
);
// Copy the content of the registered diversions to be reused at the
// entry of this basic block.
self.divert.at_block(&self.cur.func.entry_diversions, block);
debug!(
"Start {} with entry-diversion set to\n {}",
block,
self.divert.display(&self.reginfo)
);
if self.cur.func.layout.entry_block() == Some(block) {
// Parameters on the entry block have ABI constraints.
self.color_entry_params(tracker.live())
} else {
// The live-ins and parameters of a non-entry block have already been assigned a register.
// Reconstruct the allocatable set.
self.livein_regs(tracker.live())
}
}
/// Initialize a set of allocatable registers from the values that are live-in to a block.
/// These values must already be colored when the dominating blocks were processed.
///
/// Also process the block arguments which were colored when the first predecessor branch was
/// encountered.
fn livein_regs(&self, live: &[LiveValue]) -> AvailableRegs {
// Start from the registers that are actually usable. We don't want to include any reserved
// registers in the set.
let mut regs = AvailableRegs::new(&self.usable_regs);
for lv in live.iter().filter(|lv| !lv.is_dead) {
debug!(
"Live-in: {}:{} in {}",
lv.value,
lv.affinity.display(&self.reginfo),
self.divert
.get(lv.value, &self.cur.func.locations)
.display(&self.reginfo)
);
if let Affinity::Reg(rci) = lv.affinity {
let rc = self.reginfo.rc(rci);
let loc = self.cur.func.locations[lv.value];
let reg = match loc {
ValueLoc::Reg(reg) => reg,
ValueLoc::Unassigned => panic!("Live-in {} wasn't assigned", lv.value),
ValueLoc::Stack(ss) => {
panic!("Live-in {} is in {}, should be register", lv.value, ss)
}
};
if lv.is_local {
regs.take(rc, reg, lv.is_local);
} else {
let loc = self.divert.get(lv.value, &self.cur.func.locations);
let reg_divert = match loc {
ValueLoc::Reg(reg) => reg,
ValueLoc::Unassigned => {
panic!("Diversion: Live-in {} wasn't assigned", lv.value)
}
ValueLoc::Stack(ss) => panic!(
"Diversion: Live-in {} is in {}, should be register",
lv.value, ss
),
};
regs.take_divert(rc, reg, reg_divert);
}
}
}
regs
}
/// Color the parameters on the entry block.
///
/// These are function parameters that should already have assigned register units in the
/// function signature.
///
/// Return the set of remaining allocatable registers after filtering out the dead arguments.
fn color_entry_params(&mut self, args: &[LiveValue]) -> AvailableRegs {
let sig = &self.cur.func.signature;
debug_assert_eq!(sig.params.len(), args.len());
let mut regs = AvailableRegs::new(&self.usable_regs);
for (lv, abi) in args.iter().zip(&sig.params) {
match lv.affinity {
Affinity::Reg(rci) => {
let rc = self.reginfo.rc(rci);
if let ArgumentLoc::Reg(reg) = abi.location {
if !lv.is_dead {
regs.take(rc, reg, lv.is_local);
}
self.cur.func.locations[lv.value] = ValueLoc::Reg(reg);
} else {
// This should have been fixed by the reload pass.
panic!(
"Entry arg {} has {} affinity, but ABI {}",
lv.value,
lv.affinity.display(&self.reginfo),
abi.display(&self.reginfo)
);
}
}
// The spiller will have assigned an incoming stack slot already.
Affinity::Stack => debug_assert!(abi.location.is_stack()),
// This is a ghost value, unused in the function. Don't assign it to a location
// either.
Affinity::Unassigned => {}
}
}
regs
}
/// Program the input-side ABI constraints for `inst` into the constraint solver.
///
/// ABI constraints are the fixed register assignments useds for calls and returns.
fn program_input_abi(&mut self, inst: Inst, abi_params: AbiParams) {
let abi_types = match abi_params {
AbiParams::Parameters(sig) => &self.cur.func.dfg.signatures[sig].params,
AbiParams::Returns => &self.cur.func.signature.returns,
};
for (abi, &value) in abi_types
.iter()
.zip(self.cur.func.dfg.inst_variable_args(inst))
{
if let ArgumentLoc::Reg(reg) = abi.location {
if let Affinity::Reg(rci) = self
.liveness
.get(value)
.expect("ABI register must have live range")
.affinity
{
let rc = self.reginfo.rc(rci);
let cur_reg = self.divert.reg(value, &self.cur.func.locations);
self.solver.reassign_in(value, rc, cur_reg, reg);
} else {
panic!("ABI argument {} should be in a register", value);
}
}
}
}
/// Color the values defined by `inst` and insert any necessary shuffle code to satisfy
/// instruction constraints.
///
/// Update `regs` to reflect the allocated registers after `inst`, including removing any dead
/// or killed values from the set.
///
/// Returns true when the global values defined by `inst` must be replaced by local values.
fn visit_inst(
&mut self,
inst: Inst,
constraints: Option<&RecipeConstraints>,
tracker: &mut LiveValueTracker,
regs: &mut AvailableRegs,
) -> bool {
debug!(
"Coloring {}\n from {}",
self.cur.display_inst(inst),
regs.input.display(&self.reginfo),
);
// block whose arguments should be colored to match the current branch instruction's
// arguments.
let mut color_dest_args = None;
// Program the solver with register constraints for the input side.
self.solver.reset(®s.input);
if let Some(constraints) = constraints {
self.program_input_constraints(inst, constraints.ins);
}
let call_sig = self.cur.func.dfg.call_signature(inst);
if let Some(sig) = call_sig {
self.program_input_abi(inst, AbiParams::Parameters(sig));
} else if self.cur.func.dfg[inst].opcode().is_return() {
self.program_input_abi(inst, AbiParams::Returns);
} else if self.cur.func.dfg[inst].opcode().is_branch() {
// This is a branch, so we need to make sure that globally live values are in their
// global registers. For blocks that take arguments, we also need to place the argument
// values in the expected registers.
if let Some(dest) = self.cur.func.dfg[inst].branch_destination() {
if self.program_block_arguments(inst, dest) {
color_dest_args = Some(dest);
}
} else {
// This is a multi-way branch like `br_table`. We only support arguments on
// single-destination branches.
debug_assert_eq!(
self.cur.func.dfg.inst_variable_args(inst).len(),
0,
"Can't handle block arguments: {}",
self.cur.display_inst(inst)
);
self.undivert_regs(|lr, _| !lr.is_local());
}
}
if self.solver.has_fixed_input_conflicts() {
self.divert_fixed_input_conflicts(tracker.live());
}
self.solver.inputs_done();
// Update the live value tracker with this instruction.
let (throughs, kills, defs) = tracker.process_inst(inst, &self.cur.func.dfg, self.liveness);
// Get rid of the killed values.
for lv in kills {
if let Affinity::Reg(rci) = lv.affinity {
let rc = self.reginfo.rc(rci);
let reg = self.divert.reg(lv.value, &self.cur.func.locations);
if self.is_pinned_reg(rc, reg) {
// Don't kill the pinned reg, either in the local or global register sets.
debug_assert!(lv.is_local, "pinned register SSA value can't be global");
continue;
}
debug!(
" kill {} in {} ({} {})",
lv.value,
self.reginfo.display_regunit(reg),
if lv.is_local { "local" } else { "global" },
rc
);
self.solver.add_kill(lv.value, rc, reg);
// Update the global register set which has no diversions.
if !lv.is_local {
regs.global
.free(rc, self.cur.func.locations[lv.value].unwrap_reg());
}
}
}
// This aligns with the " from" line at the top of the function.
debug!(" glob {}", regs.global.display(&self.reginfo));
// This flag is set when the solver failed to find a solution for the global defines that
// doesn't interfere with `regs.global`. We need to rewrite all of `inst`s global defines
// as local defines followed by copies.
let mut replace_global_defines = false;
// Program the fixed output constraints before the general defines. This allows us to
// detect conflicts between fixed outputs and tied operands where the input value hasn't
// been converted to a solver variable.
if let Some(constraints) = constraints {
if constraints.fixed_outs {
self.program_fixed_outputs(
constraints.outs,
defs,
throughs,
&mut replace_global_defines,
®s.global,
);
}
}
if let Some(sig) = call_sig {
self.program_output_abi(
sig,
defs,
throughs,
&mut replace_global_defines,
®s.global,
);
}
if let Some(constraints) = constraints {
self.program_output_constraints(
inst,
constraints.outs,
defs,
&mut replace_global_defines,
®s.global,
);
}
// Finally, we've fully programmed the constraint solver.
// We expect a quick solution in most cases.
let is_reload = match &self.cur.func.dfg[inst] {
InstructionData::Unary {
opcode: Opcode::Fill,
..
} => true,
_ => false,
};
let output_regs = self
.solver
.quick_solve(®s.global, is_reload)
.unwrap_or_else(|_| {
debug!("quick_solve failed for {}", self.solver);
self.iterate_solution(
throughs,
®s.global,
&mut replace_global_defines,
is_reload,
)
});
// The solution and/or fixed input constraints may require us to shuffle the set of live
// registers around.
self.shuffle_inputs(&mut regs.input);
// If this is the first time we branch to `dest`, color its arguments to match the current
// register state.
if let Some(dest) = color_dest_args {
self.color_block_params(inst, dest);
}
// Apply the solution to the defs.
for v in self.solver.vars().iter().filter(|&v| v.is_define()) {
self.cur.func.locations[v.value] = ValueLoc::Reg(v.solution);
}
// Tied defs are not part of the solution above.
// Copy register assignments from tied inputs to tied outputs.
if let Some(constraints) = constraints {
if constraints.tied_ops {
for (constraint, lv) in constraints.outs.iter().zip(defs) {
if let ConstraintKind::Tied(num) = constraint.kind {
let arg = self.cur.func.dfg.inst_args(inst)[num as usize];
let reg = self.divert.reg(arg, &self.cur.func.locations);
self.cur.func.locations[lv.value] = ValueLoc::Reg(reg);
}
}
}
}
// Update `regs` for the next instruction.
regs.input = output_regs;
for lv in defs {
let loc = self.cur.func.locations[lv.value];
debug!(
" color {} -> {}{}",
lv.value,
loc.display(&self.reginfo),
if lv.is_local {
""
} else if replace_global_defines {
" (global to be replaced)"
} else {
" (global)"
}
);
if let Affinity::Reg(rci) = lv.affinity {
let rc = self.reginfo.rc(rci);
let reg = loc.unwrap_reg();
debug_assert!(
!self.is_pinned_reg(rc, reg)
|| self.cur.func.dfg[inst].opcode() == Opcode::GetPinnedReg,
"pinned register may not be part of outputs for '{}'.",
self.cur.func.dfg[inst].opcode()
);
if self.is_pinned_reg(rc, reg) {
continue;
}
// Remove the dead defs.
if lv.endpoint == inst {
regs.input.free(rc, reg);
debug_assert!(lv.is_local);
}
// Track globals in their undiverted locations.
if !lv.is_local && !replace_global_defines {
regs.global.take(rc, reg);
}
}
}
self.forget_diverted(kills);
replace_global_defines
}
/// Program the input-side constraints for `inst` into the constraint solver.
fn program_input_constraints(&mut self, inst: Inst, constraints: &[OperandConstraint]) {
for (constraint, &arg_val) in constraints
.iter()
.zip(self.cur.func.dfg.inst_args(inst))
.filter(|&(constraint, _)| constraint.kind != ConstraintKind::Stack)
{
// Reload pass is supposed to ensure that all arguments to register operands are
// already in a register.
let cur_reg = self.divert.reg(arg_val, &self.cur.func.locations);
match constraint.kind {
ConstraintKind::FixedReg(regunit) => {
// Add the fixed constraint even if `cur_reg == regunit`.
// It is possible that we will want to convert the value to a variable later,
// and this identity assignment prevents that from happening.
self.solver
.reassign_in(arg_val, constraint.regclass, cur_reg, regunit);
}
ConstraintKind::FixedTied(regunit) => {
// The pinned register may not be part of a fixed tied requirement. If this
// becomes the case, then it must be changed to a different register.
debug_assert!(
!self.is_pinned_reg(constraint.regclass, regunit),
"see comment above"
);
// See comment right above.
self.solver
.reassign_in(arg_val, constraint.regclass, cur_reg, regunit);
}
ConstraintKind::Tied(_) => {
if self.is_pinned_reg(constraint.regclass, cur_reg) {
// Divert the pinned register; it shouldn't be reused for a tied input.
if self.solver.can_add_var(constraint.regclass, cur_reg) {
self.solver.add_var(arg_val, constraint.regclass, cur_reg);
}
} else if !constraint.regclass.contains(cur_reg) {
self.solver.add_var(arg_val, constraint.regclass, cur_reg);
}
}
ConstraintKind::Reg => {
if !constraint.regclass.contains(cur_reg) {
self.solver.add_var(arg_val, constraint.regclass, cur_reg);
}
}
ConstraintKind::Stack => unreachable!(),
}
}
}
/// Program the complete set of input constraints into the solver.
///
/// The `program_input_constraints()` function above will not tell the solver about any values
/// that are already assigned to appropriate registers. This is normally fine, but if we want
/// to add additional variables to help the solver, we need to make sure that they are
/// constrained properly.
///
/// This function completes the work of `program_input_constraints()` by calling `add_var` for
/// all values used by the instruction.
fn program_complete_input_constraints(&mut self) {
let inst = self.cur.current_inst().expect("Not on an instruction");
let constraints = self
.encinfo
.operand_constraints(self.cur.func.encodings[inst])
.expect("Current instruction not encoded")
.ins;
for (constraint, &arg_val) in constraints.iter().zip(self.cur.func.dfg.inst_args(inst)) {
match constraint.kind {
ConstraintKind::Reg | ConstraintKind::Tied(_) => {
let cur_reg = self.divert.reg(arg_val, &self.cur.func.locations);
// This is the opposite condition of `program_input_constraints()`. The pinned
// register mustn't be added back as a variable.
if constraint.regclass.contains(cur_reg)
&& !self.is_pinned_reg(constraint.regclass, cur_reg)
{
// This code runs after calling `solver.inputs_done()` so we must identify
// the new variable as killed or live-through.
let layout = &self.cur.func.layout;
if self.liveness[arg_val].killed_at(inst, layout.pp_block(inst), layout) {
self.solver
.add_killed_var(arg_val, constraint.regclass, cur_reg);
} else {
self.solver
.add_through_var(arg_val, constraint.regclass, cur_reg);
}
}
}
ConstraintKind::FixedReg(_)
| ConstraintKind::FixedTied(_)
| ConstraintKind::Stack => {}
}
}
}
/// Prepare for a branch to `dest`.
///
/// 1. Any values that are live-in to `dest` must be un-diverted so they live in their globally
/// assigned register.
/// 2. If the `dest` block takes arguments, reassign the branch argument values to the matching
/// registers.
///
/// Returns true if this is the first time a branch to `dest` is seen, so the `dest` argument
/// values should be colored after `shuffle_inputs`.
fn program_block_arguments(&mut self, inst: Inst, dest: Block) -> bool {
// Find diverted registers that are live-in to `dest` and reassign them to their global
// home.
//
// Values with a global live range that are not live in to `dest` could appear as branch
// arguments, so they can't always be un-diverted.
self.undivert_regs(|lr, layout| lr.is_livein(dest, layout));
// Now handle the block arguments.
let br_args = self.cur.func.dfg.inst_variable_args(inst);
let dest_args = self.cur.func.dfg.block_params(dest);
debug_assert_eq!(br_args.len(), dest_args.len());
for (&dest_arg, &br_arg) in dest_args.iter().zip(br_args) {
// The first time we encounter a branch to `dest`, we get to pick the location. The
// following times we see a branch to `dest`, we must follow suit.
match self.cur.func.locations[dest_arg] {
ValueLoc::Unassigned => {
// This is the first branch to `dest`, so we should color `dest_arg` instead of
// `br_arg`. However, we don't know where `br_arg` will end up until
// after `shuffle_inputs`. See `color_block_params` below.
//
// It is possible for `dest_arg` to have no affinity, and then it should simply
// be ignored.
if self.liveness[dest_arg].affinity.is_reg() {
return true;
}
}
ValueLoc::Reg(dest_reg) => {
// We've branched to `dest` before. Make sure we use the correct argument
// registers by reassigning `br_arg`.
if let Affinity::Reg(rci) = self.liveness[br_arg].affinity {
let rc = self.reginfo.rc(rci);
let br_reg = self.divert.reg(br_arg, &self.cur.func.locations);
self.solver.reassign_in(br_arg, rc, br_reg, dest_reg);
} else {
panic!("Branch argument {} is not in a register", br_arg);
}
}
ValueLoc::Stack(ss) => {
// The spiller should already have given us identical stack slots.
debug_assert_eq!(ValueLoc::Stack(ss), self.cur.func.locations[br_arg]);
}
}
}
// No `dest` arguments need coloring.
false
}
/// Knowing that we've never seen a branch to `dest` before, color its parameters to match our
/// register state.
///
/// This function is only called when `program_block_arguments()` returned `true`.
fn color_block_params(&mut self, inst: Inst, dest: Block) {
let br_args = self.cur.func.dfg.inst_variable_args(inst);
let dest_args = self.cur.func.dfg.block_params(dest);
debug_assert_eq!(br_args.len(), dest_args.len());
for (&dest_arg, &br_arg) in dest_args.iter().zip(br_args) {
match self.cur.func.locations[dest_arg] {
ValueLoc::Unassigned => {
if self.liveness[dest_arg].affinity.is_reg() {
let br_reg = self.divert.reg(br_arg, &self.cur.func.locations);
self.cur.func.locations[dest_arg] = ValueLoc::Reg(br_reg);
}
}
ValueLoc::Reg(_) => panic!("{} arg {} already colored", dest, dest_arg),
// Spilled value consistency is verified by `program_block_arguments()` above.
ValueLoc::Stack(_) => {}
}
}
}
/// Find all diverted registers where `pred` returns `true` and undo their diversion so they
/// are reallocated to their global register assignments.
fn undivert_regs<Pred>(&mut self, mut pred: Pred)
where
Pred: FnMut(&LiveRange, &Layout) -> bool,
{
for (&value, rdiv) in self.divert.iter() {
let lr = self
.liveness
.get(value)
.expect("Missing live range for diverted register");
if pred(lr, &self.cur.func.layout) {
if let Affinity::Reg(rci) = lr.affinity {
let rc = self.reginfo.rc(rci);
// Stack diversions should not be possible here. They only live transiently
// during `shuffle_inputs()`.
self.solver.reassign_in(
value,
rc,
rdiv.to.unwrap_reg(),
rdiv.from.unwrap_reg(),
);
} else {
panic!(
"Diverted register {} with {} affinity",
value,
lr.affinity.display(&self.reginfo)
);
}
}
}
}
/// Find existing live values that conflict with the fixed input register constraints programmed
/// into the constraint solver. Convert them to solver variables so they can be diverted.
fn divert_fixed_input_conflicts(&mut self, live: &[LiveValue]) {
for lv in live {
if let Affinity::Reg(rci) = lv.affinity {
let toprc = self.reginfo.toprc(rci);
let reg = self.divert.reg(lv.value, &self.cur.func.locations);
if self.solver.is_fixed_input_conflict(toprc, reg) {
debug!(
"adding var to divert fixed input conflict for {}",
toprc.info.display_regunit(reg)
);
self.solver.add_var(lv.value, toprc, reg);
}
}
}
}
/// Program any fixed-register output constraints into the solver. This may also detect
/// conflicts between live-through registers and fixed output registers. These live-through
/// values need to be turned into solver variables so they can be reassigned.
fn program_fixed_outputs(
&mut self,
constraints: &[OperandConstraint],
defs: &[LiveValue],
throughs: &[LiveValue],
replace_global_defines: &mut bool,
global_regs: &RegisterSet,
) {
for (constraint, lv) in constraints.iter().zip(defs) {
match constraint.kind {
ConstraintKind::FixedReg(reg) | ConstraintKind::FixedTied(reg) => {
self.add_fixed_output(lv.value, constraint.regclass, reg, throughs);
if !lv.is_local && !global_regs.is_avail(constraint.regclass, reg) {
debug!(
"Fixed output {} in {}:{} is not available in global regs",
lv.value,
constraint.regclass,
self.reginfo.display_regunit(reg)
);
*replace_global_defines = true;
}
}
ConstraintKind::Reg | ConstraintKind::Tied(_) | ConstraintKind::Stack => {}
}
}
}
/// Program the output-side ABI constraints for `inst` into the constraint solver.
///
/// That means return values for a call instruction.
fn program_output_abi(
&mut self,
sig: SigRef,
defs: &[LiveValue],
throughs: &[LiveValue],
replace_global_defines: &mut bool,
global_regs: &RegisterSet,
) {
// It's technically possible for a call instruction to have fixed results before the
// variable list of results, but we have no known instances of that.
// Just assume all results are variable return values.
debug_assert_eq!(defs.len(), self.cur.func.dfg.signatures[sig].returns.len());
for (i, lv) in defs.iter().enumerate() {
let abi = self.cur.func.dfg.signatures[sig].returns[i];
if let ArgumentLoc::Reg(reg) = abi.location {
if let Affinity::Reg(rci) = lv.affinity {
let rc = self.reginfo.rc(rci);
self.add_fixed_output(lv.value, rc, reg, throughs);
if !lv.is_local && !global_regs.is_avail(rc, reg) {
debug!(
"ABI output {} in {}:{} is not available in global regs",
lv.value,
rc,
self.reginfo.display_regunit(reg)
);
*replace_global_defines = true;
}
} else {
panic!("ABI argument {} should be in a register", lv.value);
}
}
}
}
/// Add a single fixed output value to the solver.
fn add_fixed_output(
&mut self,
value: Value,
rc: RegClass,
reg: RegUnit,
throughs: &[LiveValue],
) {
// Pinned register is already unavailable in the solver, since it is copied in the
// available registers on entry.
if !self.is_pinned_reg(rc, reg) && !self.solver.add_fixed_output(rc, reg) {
// The fixed output conflicts with some of the live-through registers.
for lv in throughs {
if let Affinity::Reg(rci) = lv.affinity {
let toprc2 = self.reginfo.toprc(rci);
let reg2 = self.divert.reg(lv.value, &self.cur.func.locations);
if regs_overlap(rc, reg, toprc2, reg2) {
// This live-through value is interfering with the fixed output assignment.
// Convert it to a solver variable.
self.solver.add_through_var(lv.value, toprc2, reg2);
}
}
}
let ok = self.solver.add_fixed_output(rc, reg);
debug_assert!(ok, "Couldn't clear fixed output interference for {}", value);
}
self.cur.func.locations[value] = ValueLoc::Reg(reg);
}
/// Program the output-side constraints for `inst` into the constraint solver.
///
/// It is assumed that all fixed outputs have already been handled.
fn program_output_constraints(
&mut self,
inst: Inst,
constraints: &[OperandConstraint],
defs: &[LiveValue],
replace_global_defines: &mut bool,
global_regs: &RegisterSet,
) {
for (constraint, lv) in constraints.iter().zip(defs) {
match constraint.kind {
ConstraintKind::FixedReg(_)
| ConstraintKind::FixedTied(_)
| ConstraintKind::Stack => continue,
ConstraintKind::Reg => {
self.solver
.add_def(lv.value, constraint.regclass, !lv.is_local);
}
ConstraintKind::Tied(num) => {
// Find the input operand we're tied to.
// The solver doesn't care about the output value.
let arg = self.cur.func.dfg.inst_args(inst)[num as usize];
let reg = self.divert.reg(arg, &self.cur.func.locations);
if let Some(reg) =
self.solver
.add_tied_input(arg, constraint.regclass, reg, !lv.is_local)
{
// The value we're tied to has been assigned to a fixed register.
// We need to make sure that fixed output register is compatible with the
// global register set.
if !lv.is_local && !global_regs.is_avail(constraint.regclass, reg) {
debug!(
"Tied output {} in {}:{} is not available in global regs",
lv.value,
constraint.regclass,
self.reginfo.display_regunit(reg)
);
*replace_global_defines = true;
}
}
}
}
}
}
/// Try harder to find a solution to the constraint problem since `quick_solve()` failed.
///
/// We may need to move more registers around before a solution is possible. Use an iterative
/// algorithm that adds one more variable until a solution can be found.
fn iterate_solution(
&mut self,
throughs: &[LiveValue],
global_regs: &RegisterSet,
replace_global_defines: &mut bool,
is_reload: bool,
) -> RegisterSet {
// Make sure `try_add_var()` below doesn't create a variable with too loose constraints.
self.program_complete_input_constraints();
loop {
match self.solver.real_solve(global_regs, is_reload) {
Ok(regs) => return regs,
Err(SolverError::Divert(rc)) => {
// Do we have any live-through `rc` registers that are not already variables?
let added = self.try_add_var(rc, throughs);
debug_assert!(added, "Ran out of registers in {}", rc);
}
Err(SolverError::Global(_value)) => {
debug!(
"Not enough global registers for {}, trying as local",
_value
);
// We'll clear the `is_global` flag on all solver variables and instead make a
// note to replace all global defines with local defines followed by a copy.
*replace_global_defines = true;
self.solver.clear_all_global_flags();
}
};
}
}
/// Try to add an `rc` variable to the solver from the `throughs` set.
fn try_add_var(&mut self, rc: RegClass, throughs: &[LiveValue]) -> bool {
debug!("Trying to add a {} reg from {} values", rc, throughs.len());
for lv in throughs {
if let Affinity::Reg(rci) = lv.affinity {
// The new variable gets to roam the whole top-level register class because it is
// not actually constrained by the instruction. We just want it out of the way.
let toprc2 = self.reginfo.toprc(rci);
let reg2 = self.divert.reg(lv.value, &self.cur.func.locations);
if rc.contains(reg2)
&& self.solver.can_add_var(toprc2, reg2)
&& !self.is_live_on_outgoing_edge(lv.value)
{
self.solver.add_through_var(lv.value, toprc2, reg2);
return true;
}
}
}
false
}
/// Determine if `value` is live on a CFG edge from the current instruction.
///
/// This means that the current instruction is a branch and `value` is live in to one of the
/// branch destinations. Branch arguments and block parameters are not considered live on the
/// edge.
fn is_live_on_outgoing_edge(&self, value: Value) -> bool {
use crate::ir::instructions::BranchInfo::*;
let inst = self.cur.current_inst().expect("Not on an instruction");
let layout = &self.cur.func.layout;
match self.cur.func.dfg.analyze_branch(inst) {
NotABranch => false,
SingleDest(block, _) => {
let lr = &self.liveness[value];
lr.is_livein(block, layout)
}
Table(jt, block) => {
let lr = &self.liveness[value];
!lr.is_local()
&& (block.map_or(false, |block| lr.is_livein(block, layout))
|| self.cur.func.jump_tables[jt]
.iter()
.any(|block| lr.is_livein(*block, layout)))
}
}
}
/// Emit `regmove` instructions as needed to move the live registers into place before the
/// instruction. Also update `self.divert` accordingly.
///
/// The `self.cur` cursor is expected to point at the instruction. The register moves are
/// inserted before.
///
/// The solver needs to be reminded of the available registers before any moves are inserted.
fn shuffle_inputs(&mut self, regs: &mut RegisterSet) {
use crate::regalloc::solver::Move::*;
let spills = self.solver.schedule_moves(regs);
// The move operations returned by `schedule_moves` refer to emergency spill slots by
// consecutive indexes starting from 0. Map these to real stack slots.
// It is very unlikely (impossible?) that we would need more than one spill per top-level
// register class, so avoid allocation by using a fixed array here.
let mut slot = [PackedOption::default(); 8];
debug_assert!(spills <= slot.len(), "Too many spills ({})", spills);
for m in self.solver.moves() {
match *m {
Reg {
value,
from,
to,
rc,
} => {
debug_assert!(
!self.is_pinned_reg(rc, to),
"pinned register used in a regmove"
);
self.divert.regmove(value, from, to);
self.cur.ins().regmove(value, from, to);
}
Spill {
value,
from,
to_slot,
..
} => {
debug_assert_eq!(slot[to_slot].expand(), None, "Overwriting slot in use");
let ss = self
.cur
.func
.stack_slots
.get_emergency_slot(self.cur.func.dfg.value_type(value), &slot[0..spills]);
slot[to_slot] = ss.into();
self.divert.regspill(value, from, ss);
self.cur.ins().regspill(value, from, ss);
}
Fill {
value,
from_slot,
to,
rc,
} => {
debug_assert!(
!self.is_pinned_reg(rc, to),
"pinned register used in a regfill"
);
// These slots are single use, so mark `ss` as available again.
let ss = slot[from_slot].take().expect("Using unallocated slot");
self.divert.regfill(value, ss, to);
self.cur.ins().regfill(value, ss, to);
}
}
}
}
/// Forget about any register diversions in `kills`.
fn forget_diverted(&mut self, kills: &[LiveValue]) {
if self.divert.is_empty() {
return;
}
for lv in kills {
if lv.affinity.is_reg() {
self.divert.remove(lv.value);
}
}
}
/// Replace all global values defined by `inst` with local values that are then copied into the
/// global value:
///
/// v1 = foo
///
/// becomes:
///
/// v20 = foo
/// v1 = copy v20
///
/// This is sometimes necessary when there are no global registers available that can satisfy
/// the constraints on the instruction operands.
///
fn replace_global_defines(&mut self, inst: Inst, tracker: &mut LiveValueTracker) {
debug!("Replacing global defs on {}", self.cur.display_inst(inst));
// We'll insert copies *after `inst`. Our caller will move the cursor back.
self.cur.next_inst();
// The tracker keeps the defs from `inst` at the end. Any dead defs have already been
// removed, so it's not obvious how many defs to process
for lv in tracker.live_mut().iter_mut().rev() {
// Keep going until we reach a value that is not defined by `inst`.
if match self.cur.func.dfg.value_def(lv.value) {
ValueDef::Result(i, _) => i != inst,
_ => true,
} {
break;
}
if lv.is_local || !lv.affinity.is_reg() {
continue;
}
// Now `lv.value` is globally live and defined by `inst`. Replace it with a local live
// range that is copied after `inst`.
let ty = self.cur.func.dfg.value_type(lv.value);
let local = self.cur.func.dfg.replace_result(lv.value, ty);
self.cur.ins().with_result(lv.value).copy(local);
let copy = self.cur.built_inst();
// Create a live range for `local: inst -> copy`.
self.liveness.create_dead(local, inst, lv.affinity);
self.liveness.extend_locally(
local,
self.cur.func.layout.pp_block(inst),
copy,
&self.cur.func.layout,
);
// Move the definition of the global `lv.value`.
self.liveness.move_def_locally(lv.value, copy);
// Transfer the register coloring to `local`.
let loc = mem::replace(&mut self.cur.func.locations[lv.value], ValueLoc::default());
self.cur.func.locations[local] = loc;
// Update `lv` to reflect the new `local` live range.
lv.value = local;
lv.endpoint = copy;
lv.is_local = true;
debug!(
" + {} with {} in {}",
self.cur.display_inst(copy),
local,
loc.display(&self.reginfo)
);
}
debug!("Done: {}", self.cur.display_inst(inst));
}
/// Process kills on a ghost instruction.
/// - Forget diversions.
/// - Free killed registers.
fn process_ghost_kills(&mut self, kills: &[LiveValue], regs: &mut AvailableRegs) {
for lv in kills {
if let Affinity::Reg(rci) = lv.affinity {
let rc = self.reginfo.rc(rci);
let loc = match self.divert.remove(lv.value) {
Some(loc) => loc,
None => self.cur.func.locations[lv.value],
};
regs.input.free(rc, loc.unwrap_reg());
if !lv.is_local {
regs.global
.free(rc, self.cur.func.locations[lv.value].unwrap_reg());
}
}
}
}
}
/// Keep track of the set of available registers in two interference domains: all registers
/// considering diversions and global registers not considering diversions.
struct AvailableRegs {
/// The exact set of registers available on the input side of the current instruction. This
/// takes into account register diversions, and it includes both local and global live ranges.
input: RegisterSet,
/// Registers available for allocating globally live values. This set ignores any local values,
/// and it does not account for register diversions.
///
/// Global values must be allocated out of this set because conflicts with other global values
/// can't be resolved with local diversions.
global: RegisterSet,
}
impl AvailableRegs {
/// Initialize both the input and global sets from `regs`.
pub fn new(regs: &RegisterSet) -> Self {
Self {
input: regs.clone(),
global: regs.clone(),
}
}
/// Take an un-diverted register from one or both sets.
pub fn take(&mut self, rc: RegClass, reg: RegUnit, is_local: bool) {
self.input.take(rc, reg);
if !is_local {
self.global.take(rc, reg);
}
}
/// Take a diverted register from both sets for a non-local allocation.
pub fn take_divert(&mut self, rc: RegClass, reg: RegUnit, reg_divert: RegUnit) {
self.input.take(rc, reg_divert);
self.global.take(rc, reg);
}
}