1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
use std::cmp;
use std::collections::BTreeMap;
use std::sync::Arc;
use wasmtime_environ::entity::EntityRef;
use wasmtime_environ::ir;
use wasmtime_environ::wasm::FuncIndex;
use wasmtime_environ::{FunctionAddressMap, Module, TrapInformation};
use wasmtime_jit::{CompiledModule, SymbolizeContext};
#[derive(Default)]
pub struct StoreFrameInfo {
/// An internal map that keeps track of backtrace frame information for
/// each module.
///
/// This map is morally a map of ranges to a map of information for that
/// module. Each module is expected to reside in a disjoint section of
/// contiguous memory. No modules can overlap.
///
/// The key of this map is the highest address in the module and the value
/// is the module's information, which also contains the start address.
ranges: BTreeMap<usize, ModuleFrameInfo>,
}
struct ModuleFrameInfo {
start: usize,
functions: BTreeMap<usize, FunctionInfo>,
module: Arc<Module>,
symbolize: Option<SymbolizeContext>,
has_unparsed_debuginfo: bool,
}
struct FunctionInfo {
start: usize,
index: FuncIndex,
traps: Vec<TrapInformation>,
instr_map: FunctionAddressMap,
}
impl StoreFrameInfo {
/// Fetches frame information about a program counter in a backtrace.
///
/// Returns an object if this `pc` is known to some previously registered
/// module, or returns `None` if no information can be found. The boolean
/// returned indicates whether the original module has unparsed debug
/// information due to the compiler's configuration.
pub fn lookup_frame_info(&self, pc: usize) -> Option<(FrameInfo, bool)> {
let (module, func) = self.func(pc)?;
// Use our relative position from the start of the function to find the
// machine instruction that corresponds to `pc`, which then allows us to
// map that to a wasm original source location.
let rel_pos = (pc - func.start) as u32;
let pos = match func
.instr_map
.instructions
.binary_search_by_key(&rel_pos, |map| map.code_offset)
{
// Exact hit!
Ok(pos) => Some(pos),
// This *would* be at the first slot in the array, so no
// instructions cover `pc`.
Err(0) => None,
// This would be at the `nth` slot, so we're at the `n-1`th slot.
Err(n) => Some(n - 1),
};
// In debug mode for now assert that we found a mapping for `pc` within
// the function, because otherwise something is buggy along the way and
// not accounting for all the instructions. This isn't super critical
// though so we can omit this check in release mode.
debug_assert!(pos.is_some(), "failed to find instruction for {:x}", pc);
let instr = match pos {
Some(pos) => func.instr_map.instructions[pos].srcloc,
None => func.instr_map.start_srcloc,
};
// Use our wasm-relative pc to symbolize this frame. If there's a
// symbolication context (dwarf debug info) available then we can try to
// look this up there.
//
// Note that dwarf pcs are code-section-relative, hence the subtraction
// from the location of `instr`. Also note that all errors are ignored
// here for now since technically wasm modules can always have any
// custom section contents.
let mut symbols = Vec::new();
if let Some(s) = &module.symbolize {
let to_lookup = (instr.bits() as u64) - s.code_section_offset();
if let Ok(mut frames) = s.addr2line().find_frames(to_lookup) {
while let Ok(Some(frame)) = frames.next() {
symbols.push(FrameSymbol {
name: frame
.function
.as_ref()
.and_then(|l| l.raw_name().ok())
.map(|s| s.to_string()),
file: frame
.location
.as_ref()
.and_then(|l| l.file)
.map(|s| s.to_string()),
line: frame.location.as_ref().and_then(|l| l.line),
column: frame.location.as_ref().and_then(|l| l.column),
});
}
}
}
Some((
FrameInfo {
module_name: module.module.name.clone(),
func_index: func.index.index() as u32,
func_name: module.module.func_names.get(&func.index).cloned(),
instr,
func_start: func.instr_map.start_srcloc,
symbols,
},
module.has_unparsed_debuginfo,
))
}
/// Returns whether the `pc` specified is contaained within some module's
/// function.
pub fn contains_pc(&self, pc: usize) -> bool {
self.func(pc).is_some()
}
/// Fetches trap information about a program counter in a backtrace.
pub fn lookup_trap_info(&self, pc: usize) -> Option<&TrapInformation> {
let (_module, func) = self.func(pc)?;
let idx = func
.traps
.binary_search_by_key(&((pc - func.start) as u32), |info| info.code_offset)
.ok()?;
Some(&func.traps[idx])
}
fn func(&self, pc: usize) -> Option<(&ModuleFrameInfo, &FunctionInfo)> {
let (end, info) = self.ranges.range(pc..).next()?;
if pc < info.start || *end < pc {
return None;
}
let (end, func) = info.functions.range(pc..).next()?;
if pc < func.start || *end < pc {
return None;
}
Some((info, func))
}
/// Registers a new compiled module's frame information.
///
/// This function will register the `names` information for all of the
/// compiled functions within `module`. If the `module` has no functions
/// then `None` will be returned. Otherwise the returned object, when
/// dropped, will be used to unregister all name information from this map.
pub fn register(&mut self, module: &CompiledModule) {
let mut min = usize::max_value();
let mut max = 0;
let mut functions = BTreeMap::new();
for (i, allocated, traps, address_map) in module.trap_information() {
let (start, end) = unsafe {
let ptr = (*allocated).as_ptr();
let len = (*allocated).len();
// First and last byte of the function text.
(ptr as usize, ptr as usize + len - 1)
};
// Skip empty functions.
if end < start {
continue;
}
min = cmp::min(min, start);
max = cmp::max(max, end);
let func = FunctionInfo {
start,
index: module.module().func_index(i),
traps: traps.to_vec(),
instr_map: address_map.clone(),
};
assert!(functions.insert(end, func).is_none());
}
if functions.len() == 0 {
return;
}
// First up assert that our chunk of jit functions doesn't collide with
// any other known chunks of jit functions...
if let Some((_, prev)) = self.ranges.range(max..).next() {
assert!(prev.start > max);
}
if let Some((prev_end, _)) = self.ranges.range(..=min).next_back() {
assert!(*prev_end < min);
}
// ... then insert our range and assert nothing was there previously
let prev = self.ranges.insert(
max,
ModuleFrameInfo {
start: min,
functions,
module: module.module().clone(),
symbolize: module.symbolize_context().ok().and_then(|c| c),
has_unparsed_debuginfo: module.has_unparsed_debuginfo(),
},
);
assert!(prev.is_none());
}
}
/// Description of a frame in a backtrace for a [`Trap`].
///
/// Whenever a WebAssembly trap occurs an instance of [`Trap`] is created. Each
/// [`Trap`] has a backtrace of the WebAssembly frames that led to the trap, and
/// each frame is described by this structure.
///
/// [`Trap`]: crate::Trap
#[derive(Debug)]
pub struct FrameInfo {
module_name: Option<String>,
func_index: u32,
func_name: Option<String>,
func_start: ir::SourceLoc,
instr: ir::SourceLoc,
symbols: Vec<FrameSymbol>,
}
/// Debug information for a symbol that is attached to a [`FrameInfo`].
///
/// When DWARF debug information is present in a wasm file then this structure
/// can be found on a [`FrameInfo`] and can be used to learn about filenames,
/// line numbers, etc, which are the origin of a function in a stack trace.
#[derive(Debug)]
pub struct FrameSymbol {
name: Option<String>,
file: Option<String>,
line: Option<u32>,
column: Option<u32>,
}
impl FrameInfo {
/// Returns the WebAssembly function index for this frame.
///
/// This function index is the index in the function index space of the
/// WebAssembly module that this frame comes from.
pub fn func_index(&self) -> u32 {
self.func_index
}
/// Returns the identifer of the module that this frame is for.
///
/// Module identifiers are present in the `name` section of a WebAssembly
/// binary, but this may not return the exact item in the `name` section.
/// Module names can be overwritten at construction time or perhaps inferred
/// from file names. The primary purpose of this function is to assist in
/// debugging and therefore may be tweaked over time.
///
/// This function returns `None` when no name can be found or inferred.
pub fn module_name(&self) -> Option<&str> {
self.module_name.as_deref()
}
/// Returns a descriptive name of the function for this frame, if one is
/// available.
///
/// The name of this function may come from the `name` section of the
/// WebAssembly binary, or wasmtime may try to infer a better name for it if
/// not available, for example the name of the export if it's exported.
///
/// This return value is primarily used for debugging and human-readable
/// purposes for things like traps. Note that the exact return value may be
/// tweaked over time here and isn't guaranteed to be something in
/// particular about a wasm module due to its primary purpose of assisting
/// in debugging.
///
/// This function returns `None` when no name could be inferred.
pub fn func_name(&self) -> Option<&str> {
self.func_name.as_deref()
}
/// Returns the offset within the original wasm module this frame's program
/// counter was at.
///
/// The offset here is the offset from the beginning of the original wasm
/// module to the instruction that this frame points to.
pub fn module_offset(&self) -> usize {
self.instr.bits() as usize
}
/// Returns the offset from the original wasm module's function to this
/// frame's program counter.
///
/// The offset here is the offset from the beginning of the defining
/// function of this frame (within the wasm module) to the instruction this
/// frame points to.
pub fn func_offset(&self) -> usize {
(self.instr.bits() - self.func_start.bits()) as usize
}
/// Returns the debug symbols found, if any, for this function frame.
///
/// When a wasm program is compiled with DWARF debug information then this
/// function may be populated to return symbols which contain extra debug
/// information about a frame including the filename and line number. If no
/// debug information was found or if it was malformed then this will return
/// an empty array.
pub fn symbols(&self) -> &[FrameSymbol] {
&self.symbols
}
}
impl FrameSymbol {
/// Returns the function name associated with this symbol.
///
/// Note that this may not be present with malformed debug information, or
/// the debug information may not include it. Also note that the symbol is
/// frequently mangled, so you might need to run some form of demangling
/// over it.
pub fn name(&self) -> Option<&str> {
self.name.as_deref()
}
/// Returns the source code filename this symbol was defined in.
///
/// Note that this may not be present with malformed debug information, or
/// the debug information may not include it.
pub fn file(&self) -> Option<&str> {
self.file.as_deref()
}
/// Returns the 1-indexed source code line number this symbol was defined
/// on.
///
/// Note that this may not be present with malformed debug information, or
/// the debug information may not include it.
pub fn line(&self) -> Option<u32> {
self.line
}
/// Returns the 1-indexed source code column number this symbol was defined
/// on.
///
/// Note that this may not be present with malformed debug information, or
/// the debug information may not include it.
pub fn column(&self) -> Option<u32> {
self.column
}
}
#[test]
fn test_frame_info() -> Result<(), anyhow::Error> {
use crate::*;
let store = Store::default();
let module = Module::new(
store.engine(),
r#"
(module
(func (export "add") (param $x i32) (param $y i32) (result i32) (i32.add (local.get $x) (local.get $y)))
(func (export "sub") (param $x i32) (param $y i32) (result i32) (i32.sub (local.get $x) (local.get $y)))
(func (export "mul") (param $x i32) (param $y i32) (result i32) (i32.mul (local.get $x) (local.get $y)))
(func (export "div_s") (param $x i32) (param $y i32) (result i32) (i32.div_s (local.get $x) (local.get $y)))
(func (export "div_u") (param $x i32) (param $y i32) (result i32) (i32.div_u (local.get $x) (local.get $y)))
(func (export "rem_s") (param $x i32) (param $y i32) (result i32) (i32.rem_s (local.get $x) (local.get $y)))
(func (export "rem_u") (param $x i32) (param $y i32) (result i32) (i32.rem_u (local.get $x) (local.get $y)))
)
"#,
)?;
// Create an instance to ensure the frame information is registered.
Instance::new(&store, &module, &[])?;
let info = store.frame_info().borrow();
for (i, alloc) in module.compiled_module().finished_functions() {
let (start, end) = unsafe {
let ptr = (**alloc).as_ptr();
let len = (**alloc).len();
(ptr as usize, ptr as usize + len)
};
for pc in start..end {
let (frame, _) = info.lookup_frame_info(pc).unwrap();
assert!(frame.func_index() == i.as_u32());
}
}
Ok(())
}