1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
//! Constructing Conventional SSA form.
//!
//! Conventional SSA (CSSA) form is a subset of SSA form where any (transitively) phi-related
//! values do not interfere. We construct CSSA by building virtual registers that are as large as
//! possible and inserting copies where necessary such that all argument values passed to a block
//! parameter will belong to the same virtual register as the block parameter value itself.
use crate::cursor::{Cursor, EncCursor};
use crate::dbg::DisplayList;
use crate::dominator_tree::{DominatorTree, DominatorTreePreorder};
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
use crate::fx::FxHashMap;
use crate::ir::{self, InstBuilder, ProgramOrder};
use crate::ir::{Block, ExpandedProgramPoint, Function, Inst, Value};
use crate::isa::{EncInfo, TargetIsa};
use crate::regalloc::affinity::Affinity;
use crate::regalloc::liveness::Liveness;
use crate::regalloc::virtregs::{VirtReg, VirtRegs};
use crate::timing;
use alloc::vec::Vec;
use core::cmp;
use core::fmt;
use core::iter;
use core::slice;
use log::debug;
// # Implementation
//
// The coalescing algorithm implemented follows this paper fairly closely:
//
// Budimlic, Z., Cooper, K. D., Harvey, T. J., et al. (2002). Fast copy coalescing and
// live-range identification (Vol. 37, pp. 25–32). ACM. https://doi.org/10.1145/543552.512534
//
// We use a more efficient dominator forest representation (a linear stack) described here:
//
// Boissinot, B., Darte, A., & Rastello, F. (2009). Revisiting out-of-SSA translation for
// correctness, code quality and efficiency.
//
// The algorithm has two main phases:
//
// Phase 1: Union-find.
//
// We use the union-find support in `VirtRegs` to build virtual registers such that block parameter
// values always belong to the same virtual register as their corresponding block arguments at the
// predecessor branches. Trivial interferences between parameter and argument value live ranges are
// detected and resolved before unioning congruence classes, but non-trivial interferences between
// values that end up in the same congruence class are possible.
//
// Phase 2: Dominator forests.
//
// The virtual registers formed in phase 1 can contain interferences that we need to detect and
// eliminate. By ordering the values in a virtual register according to a dominator tree pre-order,
// we can identify all interferences in the virtual register in linear time.
//
// Interfering values are isolated and virtual registers rebuilt.
/// Data structures to be used by the coalescing pass.
pub struct Coalescing {
preorder: DominatorTreePreorder,
forest: DomForest,
vcopies: VirtualCopies,
values: Vec<Value>,
predecessors: Vec<Inst>,
backedges: Vec<Inst>,
}
/// One-shot context created once per invocation.
struct Context<'a> {
isa: &'a dyn TargetIsa,
encinfo: EncInfo,
func: &'a mut Function,
cfg: &'a ControlFlowGraph,
domtree: &'a DominatorTree,
preorder: &'a DominatorTreePreorder,
liveness: &'a mut Liveness,
virtregs: &'a mut VirtRegs,
forest: &'a mut DomForest,
vcopies: &'a mut VirtualCopies,
values: &'a mut Vec<Value>,
predecessors: &'a mut Vec<Inst>,
backedges: &'a mut Vec<Inst>,
}
impl Coalescing {
/// Create a new coalescing pass.
pub fn new() -> Self {
Self {
forest: DomForest::new(),
preorder: DominatorTreePreorder::new(),
vcopies: VirtualCopies::new(),
values: Vec::new(),
predecessors: Vec::new(),
backedges: Vec::new(),
}
}
/// Clear all data structures in this coalescing pass.
pub fn clear(&mut self) {
self.forest.clear();
self.vcopies.clear();
self.values.clear();
self.predecessors.clear();
self.backedges.clear();
}
/// Convert `func` to Conventional SSA form and build virtual registers in the process.
pub fn conventional_ssa(
&mut self,
isa: &dyn TargetIsa,
func: &mut Function,
cfg: &ControlFlowGraph,
domtree: &DominatorTree,
liveness: &mut Liveness,
virtregs: &mut VirtRegs,
) {
let _tt = timing::ra_cssa();
debug!("Coalescing for:\n{}", func.display(isa));
self.preorder.compute(domtree, &func.layout);
let mut context = Context {
isa,
encinfo: isa.encoding_info(),
func,
cfg,
domtree,
preorder: &self.preorder,
liveness,
virtregs,
forest: &mut self.forest,
vcopies: &mut self.vcopies,
values: &mut self.values,
predecessors: &mut self.predecessors,
backedges: &mut self.backedges,
};
// Run phase 1 (union-find) of the coalescing algorithm on the current function.
for &block in domtree.cfg_postorder() {
context.union_find_block(block);
}
context.finish_union_find();
// Run phase 2 (dominator forests) on the current function.
context.process_vregs();
}
}
/// Phase 1: Union-find.
///
/// The two entry points for phase 1 are `union_find_block()` and `finish_union_find`.
impl<'a> Context<'a> {
/// Run the union-find algorithm on the parameter values on `block`.
///
/// This ensure that all block parameters will belong to the same virtual register as their
/// corresponding arguments at all predecessor branches.
pub fn union_find_block(&mut self, block: Block) {
let num_params = self.func.dfg.num_block_params(block);
if num_params == 0 {
return;
}
self.isolate_conflicting_params(block, num_params);
for i in 0..num_params {
self.union_pred_args(block, i);
}
}
// Identify block parameter values that are live at one of the predecessor branches.
//
// Such a parameter value will conflict with any argument value at the predecessor branch, so
// it must be isolated by inserting a copy.
fn isolate_conflicting_params(&mut self, block: Block, num_params: usize) {
debug_assert_eq!(num_params, self.func.dfg.num_block_params(block));
// The only way a parameter value can interfere with a predecessor branch is if the block is
// dominating the predecessor branch. That is, we are looking for loop back-edges.
for BlockPredecessor {
block: pred_block,
inst: pred_inst,
} in self.cfg.pred_iter(block)
{
// The quick pre-order dominance check is accurate because the block parameter is defined
// at the top of the block before any branches.
if !self.preorder.dominates(block, pred_block) {
continue;
}
debug!(
" - checking {} params at back-edge {}: {}",
num_params,
pred_block,
self.func.dfg.display_inst(pred_inst, self.isa)
);
// Now `pred_inst` is known to be a back-edge, so it is possible for parameter values
// to be live at the use.
for i in 0..num_params {
let param = self.func.dfg.block_params(block)[i];
if self.liveness[param].reaches_use(pred_inst, pred_block, &self.func.layout) {
self.isolate_param(block, param);
}
}
}
}
// Union block parameter value `num` with the corresponding block arguments on the predecessor
// branches.
//
// Detect cases where the argument value is live-in to `block` so it conflicts with any block
// parameter. Isolate the argument in those cases before unioning it with the parameter value.
fn union_pred_args(&mut self, block: Block, argnum: usize) {
let param = self.func.dfg.block_params(block)[argnum];
for BlockPredecessor {
block: pred_block,
inst: pred_inst,
} in self.cfg.pred_iter(block)
{
let arg = self.func.dfg.inst_variable_args(pred_inst)[argnum];
// Never coalesce incoming function parameters on the stack. These parameters are
// pre-spilled, and the rest of the virtual register would be forced to spill to the
// `incoming_arg` stack slot too.
if let ir::ValueDef::Param(def_block, def_num) = self.func.dfg.value_def(arg) {
if Some(def_block) == self.func.layout.entry_block()
&& self.func.signature.params[def_num].location.is_stack()
{
debug!("-> isolating function stack parameter {}", arg);
let new_arg = self.isolate_arg(pred_block, pred_inst, argnum, arg);
self.virtregs.union(param, new_arg);
continue;
}
}
// Check for basic interference: If `arg` overlaps a value defined at the entry to
// `block`, it can never be used as a block argument.
let interference = {
let lr = &self.liveness[arg];
// There are two ways the argument value can interfere with `block`:
//
// 1. It is defined in a dominating block and live-in to `block`.
// 2. If is itself a parameter value for `block`. This case should already have been
// eliminated by `isolate_conflicting_params()`.
debug_assert!(
lr.def() != block.into(),
"{} parameter {} was missed by isolate_conflicting_params()",
block,
arg
);
// The only other possibility is that `arg` is live-in to `block`.
lr.is_livein(block, &self.func.layout)
};
if interference {
let new_arg = self.isolate_arg(pred_block, pred_inst, argnum, arg);
self.virtregs.union(param, new_arg);
} else {
self.virtregs.union(param, arg);
}
}
}
// Isolate block parameter value `param` on `block`.
//
// When `param=v10`:
//
// block1(v10: i32):
// foo
//
// becomes:
//
// block1(v11: i32):
// v10 = copy v11
// foo
//
// This function inserts the copy and updates the live ranges of the old and new parameter
// values. Returns the new parameter value.
fn isolate_param(&mut self, block: Block, param: Value) -> Value {
debug_assert_eq!(
self.func.dfg.value_def(param).pp(),
ExpandedProgramPoint::Block(block)
);
let ty = self.func.dfg.value_type(param);
let new_val = self.func.dfg.replace_block_param(param, ty);
// Insert a copy instruction at the top of `block`.
let mut pos = EncCursor::new(self.func, self.isa).at_first_inst(block);
if let Some(inst) = pos.current_inst() {
pos.use_srcloc(inst);
}
pos.ins().with_result(param).copy(new_val);
let inst = pos.built_inst();
self.liveness.move_def_locally(param, inst);
debug!(
"-> inserted {}, following {}({}: {})",
pos.display_inst(inst),
block,
new_val,
ty
);
// Create a live range for the new value.
// TODO: Should we handle ghost values?
let affinity = Affinity::new(
&self
.encinfo
.operand_constraints(pos.func.encodings[inst])
.expect("Bad copy encoding")
.outs[0],
);
self.liveness.create_dead(new_val, block, affinity);
self.liveness
.extend_locally(new_val, block, inst, &pos.func.layout);
new_val
}
// Isolate the block argument `pred_val` from the predecessor `(pred_block, pred_inst)`.
//
// It is assumed that `pred_inst` is a branch instruction in `pred_block` whose `argnum`'th block
// argument is `pred_val`. Since the argument value interferes with the corresponding block
// parameter at the destination, a copy is used instead:
//
// brnz v1, block2(v10)
//
// Becomes:
//
// v11 = copy v10
// brnz v1, block2(v11)
//
// This way the interference with the block parameter is avoided.
//
// A live range for the new value is created while the live range for `pred_val` is left
// unaltered.
//
// The new argument value is returned.
fn isolate_arg(
&mut self,
pred_block: Block,
pred_inst: Inst,
argnum: usize,
pred_val: Value,
) -> Value {
let mut pos = EncCursor::new(self.func, self.isa).at_inst(pred_inst);
pos.use_srcloc(pred_inst);
let copy = pos.ins().copy(pred_val);
let inst = pos.built_inst();
// Create a live range for the new value.
// TODO: Handle affinity for ghost values.
let affinity = Affinity::new(
&self
.encinfo
.operand_constraints(pos.func.encodings[inst])
.expect("Bad copy encoding")
.outs[0],
);
self.liveness.create_dead(copy, inst, affinity);
self.liveness
.extend_locally(copy, pred_block, pred_inst, &pos.func.layout);
pos.func.dfg.inst_variable_args_mut(pred_inst)[argnum] = copy;
debug!(
"-> inserted {}, before {}: {}",
pos.display_inst(inst),
pred_block,
pos.display_inst(pred_inst)
);
copy
}
/// Finish the union-find part of the coalescing algorithm.
///
/// This builds the initial set of virtual registers as the transitive/reflexive/symmetric
/// closure of the relation formed by block parameter-argument pairs found by `union_find_block()`.
fn finish_union_find(&mut self) {
self.virtregs.finish_union_find(None);
debug!("After union-find phase:{}", self.virtregs);
}
}
/// Phase 2: Dominator forests.
///
/// The main entry point is `process_vregs()`.
impl<'a> Context<'a> {
/// Check al virtual registers for interference and fix conflicts.
pub fn process_vregs(&mut self) {
for vreg in self.virtregs.all_virtregs() {
self.process_vreg(vreg);
}
}
// Check `vreg` for interferences and fix conflicts.
fn process_vreg(&mut self, vreg: VirtReg) {
if !self.check_vreg(vreg) {
self.synthesize_vreg(vreg);
}
}
// Check `vreg` for interferences.
//
// We use a Budimlic dominator forest to check for interferences between the values in `vreg`
// and identify values that should be isolated.
//
// Returns true if `vreg` is free of interference.
fn check_vreg(&mut self, vreg: VirtReg) -> bool {
// Order the values according to the dominator pre-order of their definition.
let values = self.virtregs.sort_values(vreg, self.func, self.preorder);
debug!("Checking {} = {}", vreg, DisplayList(values));
// Now push the values in order to the dominator forest.
// This gives us the closest dominating value def for each of the values.
self.forest.clear();
for &value in values {
let node = Node::value(value, 0, self.func);
// Push this value and get the nearest dominating def back.
let parent = match self
.forest
.push_node(node, self.func, self.domtree, self.preorder)
{
None => continue,
Some(n) => n,
};
// Check for interference between `parent` and `value`. Since `parent` dominates
// `value`, we only have to check if it overlaps the definition.
if self.liveness[parent.value].overlaps_def(node.def, node.block, &self.func.layout) {
// The two values are interfering, so they can't be in the same virtual register.
debug!("-> interference: {} overlaps def of {}", parent, value);
return false;
}
}
// No interference found.
true
}
/// Destroy and rebuild `vreg` by iterative coalescing.
///
/// When detecting that a virtual register formed in phase 1 contains interference, we have to
/// start over in a more careful way. We'll split the vreg into individual values and then
/// reassemble virtual registers using an iterative algorithm of pairwise merging.
///
/// It is possible to recover multiple large virtual registers this way while still avoiding
/// a lot of copies.
fn synthesize_vreg(&mut self, vreg: VirtReg) {
self.vcopies.initialize(
self.virtregs.values(vreg),
self.func,
self.cfg,
self.preorder,
);
debug!(
"Synthesizing {} from {} branches and params {}",
vreg,
self.vcopies.branches.len(),
DisplayList(&self.vcopies.params)
);
self.virtregs.remove(vreg);
while let Some(param) = self.vcopies.next_param() {
self.merge_param(param);
self.vcopies.merged_param(param, self.func);
}
}
/// Merge block parameter value `param` with virtual registers at its predecessors.
fn merge_param(&mut self, param: Value) {
let (block, argnum) = match self.func.dfg.value_def(param) {
ir::ValueDef::Param(e, n) => (e, n),
ir::ValueDef::Result(_, _) => panic!("Expected parameter"),
};
// Collect all the predecessors and rearrange them.
//
// The order we process the predecessors matters because once one predecessor's virtual
// register is merged, it can cause interference with following merges. This means that the
// first predecessors processed are more likely to be copy-free. We want an ordering that
// is a) good for performance and b) as stable as possible. The pred_iter() iterator uses
// instruction numbers which is not great for reproducible test cases.
//
// First merge loop back-edges in layout order, on the theory that shorter back-edges are
// more sensitive to inserted copies.
//
// Second everything else in reverse layout order. Again, short forward branches get merged
// first. There can also be backwards branches mixed in here, though, as long as they are
// not loop backedges.
debug_assert!(self.predecessors.is_empty());
debug_assert!(self.backedges.is_empty());
for BlockPredecessor {
block: pred_block,
inst: pred_inst,
} in self.cfg.pred_iter(block)
{
if self.preorder.dominates(block, pred_block) {
self.backedges.push(pred_inst);
} else {
self.predecessors.push(pred_inst);
}
}
// Order instructions in reverse order so we can pop them off the back.
{
let l = &self.func.layout;
self.backedges.sort_unstable_by(|&a, &b| l.cmp(b, a));
self.predecessors.sort_unstable_by(|&a, &b| l.cmp(a, b));
self.predecessors.extend_from_slice(&self.backedges);
self.backedges.clear();
}
while let Some(pred_inst) = self.predecessors.pop() {
let arg = self.func.dfg.inst_variable_args(pred_inst)[argnum];
// We want to merge the vreg containing `param` with the vreg containing `arg`.
if self.try_merge_vregs(param, arg) {
continue;
}
// Can't merge because of interference. Insert a copy instead.
let pred_block = self.func.layout.pp_block(pred_inst);
let new_arg = self.isolate_arg(pred_block, pred_inst, argnum, arg);
self.virtregs
.insert_single(param, new_arg, self.func, self.preorder);
}
}
/// Merge the virtual registers containing `param` and `arg` if possible.
///
/// Use self.vcopies to check for virtual copy interference too.
///
/// Returns true if the virtual registers are successfully merged.
fn try_merge_vregs(&mut self, param: Value, arg: Value) -> bool {
if self.virtregs.same_class(param, arg) {
return true;
}
if !self.can_merge_vregs(param, arg) {
return false;
}
let _vreg = self.virtregs.unify(self.values);
debug!("-> merged into {} = {}", _vreg, DisplayList(self.values));
true
}
/// Check if it is possible to merge two virtual registers.
///
/// Also leave `self.values` with the ordered list of values in the merged vreg.
fn can_merge_vregs(&mut self, param: Value, arg: Value) -> bool {
// We only need an immutable function reference.
let func = &*self.func;
let domtree = self.domtree;
let preorder = self.preorder;
// Restrict the virtual copy nodes we look at and key the `set_id` and `value` properties
// of the nodes. Set_id 0 will be `param` and set_id 1 will be `arg`.
self.vcopies
.set_filter([param, arg], func, self.virtregs, preorder);
// Now create an ordered sequence of dom-forest nodes from three sources: The two virtual
// registers and the filtered virtual copies.
let v0 = self.virtregs.congruence_class(¶m);
let v1 = self.virtregs.congruence_class(&arg);
debug!(
" - set 0: {}\n - set 1: {}",
DisplayList(v0),
DisplayList(v1)
);
let nodes = MergeNodes::new(
func,
preorder,
MergeNodes::new(
func,
preorder,
v0.iter().map(|&value| Node::value(value, 0, func)),
v1.iter().map(|&value| Node::value(value, 1, func)),
),
self.vcopies.iter(func),
);
// Now push the values in order to the dominator forest.
// This gives us the closest dominating value def for each of the values.
self.forest.clear();
self.values.clear();
for node in nodes {
// Accumulate ordered values for the new vreg.
if node.is_value() {
self.values.push(node.value);
}
// Push this value and get the nearest dominating def back.
let parent = match self.forest.push_node(node, func, domtree, preorder) {
None => {
if node.is_vcopy {
self.forest.pop_last();
}
continue;
}
Some(n) => n,
};
if node.is_vcopy {
// Vcopy nodes don't represent interference if they are copies of the parent value.
// In that case, the node must be removed because the parent value can still be
// live belong the vcopy.
if parent.is_vcopy || node.value == parent.value {
self.forest.pop_last();
continue;
}
// Check if the parent value interferes with the virtual copy.
let inst = node.def.unwrap_inst();
if node.set_id != parent.set_id
&& self.liveness[parent.value].reaches_use(inst, node.block, &self.func.layout)
{
debug!(
" - interference: {} overlaps vcopy at {}:{}",
parent,
node.block,
self.func.dfg.display_inst(inst, self.isa)
);
return false;
}
// Keep this vcopy on the stack. It will save us a few interference checks.
continue;
}
// Parent vcopies never represent any interference. We only keep them on the stack to
// avoid an interference check against a value higher up.
if parent.is_vcopy {
continue;
}
// Both node and parent are values, so check for interference.
debug_assert!(node.is_value() && parent.is_value());
if node.set_id != parent.set_id
&& self.liveness[parent.value].overlaps_def(node.def, node.block, &self.func.layout)
{
// The two values are interfering.
debug!(" - interference: {} overlaps def of {}", parent, node.value);
return false;
}
}
// The values vector should receive all values.
debug_assert_eq!(v0.len() + v1.len(), self.values.len());
// No interference found.
true
}
}
/// Dominator forest.
///
/// This is a utility type used for detecting interference in virtual registers, where each virtual
/// register is a list of values ordered according to the dominator tree pre-order.
///
/// The idea of a dominator forest was introduced on the Budimlic paper and the linear stack
/// representation in the Boissinot paper. Our version of the linear stack is slightly modified
/// because we have a pre-order of the dominator tree at the block granularity, not basic block
/// granularity.
///
/// Values are pushed in dominator tree pre-order of their definitions, and for each value pushed,
/// `push_node` will return the nearest previously pushed value that dominates the definition.
#[allow(dead_code)]
struct DomForest {
// Stack representing the rightmost edge of the dominator forest so far, ending in the last
// element of `values`.
//
// At all times, the block of each element in the stack dominates the block of the next one.
stack: Vec<Node>,
}
/// A node in the dominator forest.
#[derive(Clone, Copy, Debug)]
#[allow(dead_code)]
struct Node {
/// The program point where the live range is defined.
def: ExpandedProgramPoint,
/// block containing `def`.
block: Block,
/// Is this a virtual copy or a value?
is_vcopy: bool,
/// Set identifier.
set_id: u8,
/// For a value node: The value defined at `def`.
/// For a vcopy node: The relevant branch argument at `def`.
value: Value,
}
impl Node {
/// Create a node representing `value`.
pub fn value(value: Value, set_id: u8, func: &Function) -> Self {
let def = func.dfg.value_def(value).pp();
let block = func.layout.pp_block(def);
Self {
def,
block,
is_vcopy: false,
set_id,
value,
}
}
/// Create a node representing a virtual copy.
pub fn vcopy(branch: Inst, value: Value, set_id: u8, func: &Function) -> Self {
let def = branch.into();
let block = func.layout.pp_block(def);
Self {
def,
block,
is_vcopy: true,
set_id,
value,
}
}
/// IF this a value node?
pub fn is_value(&self) -> bool {
!self.is_vcopy
}
}
impl fmt::Display for Node {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.is_vcopy {
write!(f, "{}:vcopy({})@{}", self.set_id, self.value, self.block)
} else {
write!(f, "{}:{}@{}", self.set_id, self.value, self.block)
}
}
}
impl DomForest {
/// Create a new empty dominator forest.
pub fn new() -> Self {
Self { stack: Vec::new() }
}
/// Clear all data structures in this dominator forest.
pub fn clear(&mut self) {
self.stack.clear();
}
/// Add a single node to the forest.
///
/// Update the stack so its dominance invariants are preserved. Detect a parent node on the
/// stack which is the closest one dominating the new node and return it.
fn push_node(
&mut self,
node: Node,
func: &Function,
domtree: &DominatorTree,
preorder: &DominatorTreePreorder,
) -> Option<Node> {
// The stack contains the current sequence of dominating defs. Pop elements until we
// find one whose block dominates `node.block`.
while let Some(top) = self.stack.pop() {
if preorder.dominates(top.block, node.block) {
// This is the right insertion spot for `node`.
self.stack.push(top);
self.stack.push(node);
// We know here that `top.block` dominates `node.block`, and thus `node.def`. This does
// not necessarily mean that `top.def` dominates `node.def`, though. The `top.def`
// program point may be below the last branch in `top.block` that dominates
// `node.def`.
//
// We do know, though, that if there is a nearest value dominating `node.def`, it
// will be on the stack. We just need to find the last stack entry that actually
// dominates.
let mut last_dom = node.def;
for &n in self.stack.iter().rev().skip(1) {
// If the node is defined at the block header, it does in fact dominate
// everything else pushed on the stack.
let def_inst = match n.def {
ExpandedProgramPoint::Block(_) => return Some(n),
ExpandedProgramPoint::Inst(i) => i,
};
// We need to find the last program point in `n.block` to dominate `node.def`.
last_dom = match domtree.last_dominator(n.block, last_dom, &func.layout) {
None => n.block.into(),
Some(inst) => {
if func.layout.cmp(def_inst, inst) != cmp::Ordering::Greater {
return Some(n);
}
inst.into()
}
};
}
// No real dominator found on the stack.
return None;
}
}
// No dominators, start a new tree in the forest.
self.stack.push(node);
None
}
pub fn pop_last(&mut self) {
self.stack.pop().expect("Stack is empty");
}
}
/// Virtual copies.
///
/// When building a full virtual register at once, like phase 1 does with union-find, it is good
/// enough to check for interference between the values in the full virtual register like
/// `check_vreg()` does. However, in phase 2 we are doing pairwise merges of partial virtual
/// registers that don't represent the full transitive closure of the block argument-parameter
/// relation. This means that just checking for interference between values is inadequate.
///
/// Example:
///
/// v1 = iconst.i32 1
/// brnz v10, block1(v1)
/// v2 = iconst.i32 2
/// brnz v11, block1(v2)
/// return v1
///
/// block1(v3: i32):
/// v4 = iadd v3, v1
///
/// With just value interference checking, we could build the virtual register [v3, v1] since those
/// two values don't interfere. We can't merge v2 into this virtual register because v1 and v2
/// interfere. However, we can't resolve that interference either by inserting a copy:
///
/// v1 = iconst.i32 1
/// brnz v10, block1(v1)
/// v2 = iconst.i32 2
/// v20 = copy v2 <-- new value
/// brnz v11, block1(v20)
/// return v1
///
/// block1(v3: i32):
/// v4 = iadd v3, v1
///
/// The new value v20 still interferes with v1 because v1 is live across the "brnz v11" branch. We
/// shouldn't have placed v1 and v3 in the same virtual register to begin with.
///
/// LLVM detects this form of interference by inserting copies in the predecessors of all phi
/// instructions, then attempting to delete the copies. This is quite expensive because it involves
/// creating a large number of copies and value.
///
/// We'll detect this form of interference with *virtual copies*: Each block parameter value that
/// hasn't yet been fully merged with its block argument values is given a set of virtual copies at
/// the predecessors. Any candidate value to be merged is checked for interference against both the
/// virtual register and the virtual copies.
///
/// In the general case, we're checking if two virtual registers can be merged, and both can
/// contain incomplete block parameter values with associated virtual copies.
///
/// The `VirtualCopies` struct represents a set of incomplete parameters and their associated
/// virtual copies. Given two virtual registers, it can produce an ordered sequence of nodes
/// representing the virtual copies in both vregs.
struct VirtualCopies {
// Incomplete block parameters. These don't need to belong to the same virtual register.
params: Vec<Value>,
// Set of `(branch, destination)` pairs. These are all the predecessor branches for the blocks
// whose parameters can be found in `params`.
//
// Ordered by dominator tree pre-order of the branch instructions.
branches: Vec<(Inst, Block)>,
// Filter for the currently active node iterator.
//
// A block => (set_id, num) entry means that branches to `block` are active in `set_id` with
// branch argument number `num`.
filter: FxHashMap<Block, (u8, usize)>,
}
impl VirtualCopies {
/// Create an empty VirtualCopies struct.
pub fn new() -> Self {
Self {
params: Vec::new(),
branches: Vec::new(),
filter: FxHashMap(),
}
}
/// Clear all state.
pub fn clear(&mut self) {
self.params.clear();
self.branches.clear();
self.filter.clear();
}
/// Initialize virtual copies from the (interfering) values in a union-find virtual register
/// that is going to be broken up and reassembled iteratively.
///
/// The values are assumed to be in domtree pre-order.
///
/// This will extract the block parameter values and associate virtual copies all of them.
pub fn initialize(
&mut self,
values: &[Value],
func: &Function,
cfg: &ControlFlowGraph,
preorder: &DominatorTreePreorder,
) {
self.clear();
let mut last_block = None;
for &val in values {
if let ir::ValueDef::Param(block, _) = func.dfg.value_def(val) {
self.params.push(val);
// We may have multiple parameters from the same block, but we only need to collect
// predecessors once. Also verify the ordering of values.
if let Some(last) = last_block {
match preorder.pre_cmp_block(last, block) {
cmp::Ordering::Less => {}
cmp::Ordering::Equal => continue,
cmp::Ordering::Greater => panic!("values in wrong order"),
}
}
// This block hasn't been seen before.
for BlockPredecessor {
inst: pred_inst, ..
} in cfg.pred_iter(block)
{
self.branches.push((pred_inst, block));
}
last_block = Some(block);
}
}
// Reorder the predecessor branches as required by the dominator forest.
self.branches
.sort_unstable_by(|&(a, _), &(b, _)| preorder.pre_cmp(a, b, &func.layout));
}
/// Get the next unmerged parameter value.
pub fn next_param(&self) -> Option<Value> {
self.params.last().cloned()
}
/// Indicate that `param` is now fully merged.
pub fn merged_param(&mut self, param: Value, func: &Function) {
let popped = self.params.pop();
debug_assert_eq!(popped, Some(param));
// The domtree pre-order in `self.params` guarantees that all parameters defined at the
// same block will be adjacent. This means we can see when all parameters at a block have been
// merged.
//
// We don't care about the last parameter - when that is merged we are done.
let last = match self.params.last() {
None => return,
Some(x) => *x,
};
let block = func.dfg.value_def(param).unwrap_block();
if func.dfg.value_def(last).unwrap_block() == block {
// We're not done with `block` parameters yet.
return;
}
// Alright, we know there are no remaining `block` parameters in `self.params`. This means we
// can get rid of the `block` predecessors in `self.branches`. We don't have to, the
// `VCopyIter` will just skip them, but this reduces its workload.
self.branches.retain(|&(_, dest)| dest != block);
}
/// Set a filter for the virtual copy nodes we're generating.
///
/// Only generate nodes for parameter values that are in the same congruence class as `reprs`.
/// Assign a set_id to each node corresponding to the index into `reprs` of the parameter's
/// congruence class.
pub fn set_filter(
&mut self,
reprs: [Value; 2],
func: &Function,
virtregs: &VirtRegs,
preorder: &DominatorTreePreorder,
) {
self.filter.clear();
// Parameters in `self.params` are ordered according to the domtree per-order, and they are
// removed from the back once they are fully merged. This means we can stop looking for
// parameters once we're beyond the last one.
let last_param = *self.params.last().expect("No more parameters");
let limit = func.dfg.value_def(last_param).unwrap_block();
for (set_id, repr) in reprs.iter().enumerate() {
let set_id = set_id as u8;
for &value in virtregs.congruence_class(repr) {
if let ir::ValueDef::Param(block, num) = func.dfg.value_def(value) {
if preorder.pre_cmp_block(block, limit) == cmp::Ordering::Greater {
// Stop once we're outside the bounds of `self.params`.
break;
}
self.filter.insert(block, (set_id, num));
}
}
}
}
/// Look up the set_id and argument number for `block` in the current filter.
///
/// Returns `None` if none of the currently active parameters are defined at `block`. Otherwise
/// returns `(set_id, argnum)` for an active parameter defined at `block`.
fn lookup(&self, block: Block) -> Option<(u8, usize)> {
self.filter.get(&block).cloned()
}
/// Get an iterator of dom-forest nodes corresponding to the current filter.
pub fn iter<'a>(&'a self, func: &'a Function) -> VCopyIter {
VCopyIter {
func,
vcopies: self,
branches: self.branches.iter(),
}
}
}
/// Virtual copy iterator.
///
/// This iterator produces dom-forest nodes corresponding to the current filter in the virtual
/// copies container.
struct VCopyIter<'a> {
func: &'a Function,
vcopies: &'a VirtualCopies,
branches: slice::Iter<'a, (Inst, Block)>,
}
impl<'a> Iterator for VCopyIter<'a> {
type Item = Node;
fn next(&mut self) -> Option<Node> {
while let Some(&(branch, dest)) = self.branches.next() {
if let Some((set_id, argnum)) = self.vcopies.lookup(dest) {
let arg = self.func.dfg.inst_variable_args(branch)[argnum];
return Some(Node::vcopy(branch, arg, set_id, self.func));
}
}
None
}
}
/// Node-merging iterator.
///
/// Given two ordered sequences of nodes, yield an ordered sequence containing all of them.
struct MergeNodes<'a, IA, IB>
where
IA: Iterator<Item = Node>,
IB: Iterator<Item = Node>,
{
a: iter::Peekable<IA>,
b: iter::Peekable<IB>,
layout: &'a ir::Layout,
preorder: &'a DominatorTreePreorder,
}
impl<'a, IA, IB> MergeNodes<'a, IA, IB>
where
IA: Iterator<Item = Node>,
IB: Iterator<Item = Node>,
{
pub fn new(func: &'a Function, preorder: &'a DominatorTreePreorder, a: IA, b: IB) -> Self {
MergeNodes {
a: a.peekable(),
b: b.peekable(),
layout: &func.layout,
preorder,
}
}
}
impl<'a, IA, IB> Iterator for MergeNodes<'a, IA, IB>
where
IA: Iterator<Item = Node>,
IB: Iterator<Item = Node>,
{
type Item = Node;
fn next(&mut self) -> Option<Node> {
let ord = match (self.a.peek(), self.b.peek()) {
(Some(a), Some(b)) => {
let layout = self.layout;
self.preorder
.pre_cmp_block(a.block, b.block)
.then_with(|| layout.cmp(a.def, b.def))
}
(Some(_), None) => cmp::Ordering::Less,
(None, Some(_)) => cmp::Ordering::Greater,
(None, None) => return None,
};
// When the nodes compare equal, prefer the `a` side.
if ord != cmp::Ordering::Greater {
self.a.next()
} else {
self.b.next()
}
}
}