1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
/*!
This module provides forward and reverse substring search routines.

Unlike the standard library's substring search routines, these work on
arbitrary bytes. For all non-empty needles, these routines will report exactly
the same values as the corresponding routines in the standard library. For
the empty needle, the standard library reports matches only at valid UTF-8
boundaries, where as these routines will report matches at every position.

Other than being able to work on arbitrary bytes, the primary reason to prefer
these routines over the standard library routines is that these will generally
be faster. In some cases, significantly so.

# Example: iterating over substring matches

This example shows how to use [`find_iter`] to find occurrences of a substring
in a haystack.

```
use memchr::memmem;

let haystack = b"foo bar foo baz foo";

let mut it = memmem::find_iter(haystack, "foo");
assert_eq!(Some(0), it.next());
assert_eq!(Some(8), it.next());
assert_eq!(Some(16), it.next());
assert_eq!(None, it.next());
```

# Example: iterating over substring matches in reverse

This example shows how to use [`rfind_iter`] to find occurrences of a substring
in a haystack starting from the end of the haystack.

**NOTE:** This module does not implement double ended iterators, so reverse
searches aren't done by calling `rev` on a forward iterator.

```
use memchr::memmem;

let haystack = b"foo bar foo baz foo";

let mut it = memmem::rfind_iter(haystack, "foo");
assert_eq!(Some(16), it.next());
assert_eq!(Some(8), it.next());
assert_eq!(Some(0), it.next());
assert_eq!(None, it.next());
```

# Example: repeating a search for the same needle

It may be possible for the overhead of constructing a substring searcher to be
measurable in some workloads. In cases where the same needle is used to search
many haystacks, it is possible to do construction once and thus to avoid it for
subsequent searches. This can be done with a [`Finder`] (or a [`FinderRev`] for
reverse searches).

```
use memchr::memmem;

let finder = memmem::Finder::new("foo");

assert_eq!(Some(4), finder.find(b"baz foo quux"));
assert_eq!(None, finder.find(b"quux baz bar"));
```
*/

pub use self::prefilter::Prefilter;

use crate::{
    cow::CowBytes,
    memmem::{
        prefilter::{Pre, PrefilterFn, PrefilterState},
        rabinkarp::NeedleHash,
        rarebytes::RareNeedleBytes,
    },
};

/// Defines a suite of quickcheck properties for forward and reverse
/// substring searching.
///
/// This is defined in this specific spot so that it can be used freely among
/// the different substring search implementations. I couldn't be bothered to
/// fight with the macro-visibility rules enough to figure out how to stuff it
/// somewhere more convenient.
#[cfg(all(test, feature = "std"))]
macro_rules! define_memmem_quickcheck_tests {
    ($fwd:expr, $rev:expr) => {
        use crate::memmem::proptests;

        quickcheck::quickcheck! {
            fn qc_fwd_prefix_is_substring(bs: Vec<u8>) -> bool {
                proptests::prefix_is_substring(false, &bs, $fwd)
            }

            fn qc_fwd_suffix_is_substring(bs: Vec<u8>) -> bool {
                proptests::suffix_is_substring(false, &bs, $fwd)
            }

            fn qc_fwd_matches_naive(
                haystack: Vec<u8>,
                needle: Vec<u8>
            ) -> bool {
                proptests::matches_naive(false, &haystack, &needle, $fwd)
            }

            fn qc_rev_prefix_is_substring(bs: Vec<u8>) -> bool {
                proptests::prefix_is_substring(true, &bs, $rev)
            }

            fn qc_rev_suffix_is_substring(bs: Vec<u8>) -> bool {
                proptests::suffix_is_substring(true, &bs, $rev)
            }

            fn qc_rev_matches_naive(
                haystack: Vec<u8>,
                needle: Vec<u8>
            ) -> bool {
                proptests::matches_naive(true, &haystack, &needle, $rev)
            }
        }
    };
}

/// Defines a suite of "simple" hand-written tests for a substring
/// implementation.
///
/// This is defined here for the same reason that
/// define_memmem_quickcheck_tests is defined here.
#[cfg(test)]
macro_rules! define_memmem_simple_tests {
    ($fwd:expr, $rev:expr) => {
        use crate::memmem::testsimples;

        #[test]
        fn simple_forward() {
            testsimples::run_search_tests_fwd($fwd);
        }

        #[test]
        fn simple_reverse() {
            testsimples::run_search_tests_rev($rev);
        }
    };
}

mod byte_frequencies;
#[cfg(all(target_arch = "x86_64", memchr_runtime_simd))]
mod genericsimd;
mod prefilter;
mod rabinkarp;
mod rarebytes;
mod twoway;
mod util;
// SIMD is only supported on x86_64 currently.
#[cfg(target_arch = "x86_64")]
mod vector;
#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
mod x86;

/// Returns an iterator over all occurrences of a substring in a haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar foo baz foo";
/// let mut it = memmem::find_iter(haystack, b"foo");
/// assert_eq!(Some(0), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(16), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn find_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
    haystack: &'h [u8],
    needle: &'n N,
) -> FindIter<'h, 'n> {
    FindIter::new(haystack, Finder::new(needle))
}

/// Returns a reverse iterator over all occurrences of a substring in a
/// haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar foo baz foo";
/// let mut it = memmem::rfind_iter(haystack, b"foo");
/// assert_eq!(Some(16), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(0), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn rfind_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
    haystack: &'h [u8],
    needle: &'n N,
) -> FindRevIter<'h, 'n> {
    FindRevIter::new(haystack, FinderRev::new(needle))
}

/// Returns the index of the first occurrence of the given needle.
///
/// Note that if you're are searching for the same needle in many different
/// small haystacks, it may be faster to initialize a [`Finder`] once,
/// and reuse it for each search.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), memmem::find(haystack, b"foo"));
/// assert_eq!(Some(4), memmem::find(haystack, b"bar"));
/// assert_eq!(None, memmem::find(haystack, b"quux"));
/// ```
#[inline]
pub fn find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
    if haystack.len() < 64 {
        rabinkarp::find(haystack, needle)
    } else {
        Finder::new(needle).find(haystack)
    }
}

/// Returns the index of the last occurrence of the given needle.
///
/// Note that if you're are searching for the same needle in many different
/// small haystacks, it may be faster to initialize a [`FinderRev`] once,
/// and reuse it for each search.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), memmem::rfind(haystack, b"foo"));
/// assert_eq!(Some(4), memmem::rfind(haystack, b"bar"));
/// assert_eq!(Some(8), memmem::rfind(haystack, b"ba"));
/// assert_eq!(None, memmem::rfind(haystack, b"quux"));
/// ```
#[inline]
pub fn rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
    if haystack.len() < 64 {
        rabinkarp::rfind(haystack, needle)
    } else {
        FinderRev::new(needle).rfind(haystack)
    }
}

/// An iterator over non-overlapping substring matches.
///
/// Matches are reported by the byte offset at which they begin.
///
/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
/// needle.
#[derive(Debug)]
pub struct FindIter<'h, 'n> {
    haystack: &'h [u8],
    prestate: PrefilterState,
    finder: Finder<'n>,
    pos: usize,
}

impl<'h, 'n> FindIter<'h, 'n> {
    #[inline(always)]
    pub(crate) fn new(
        haystack: &'h [u8],
        finder: Finder<'n>,
    ) -> FindIter<'h, 'n> {
        let prestate = finder.searcher.prefilter_state();
        FindIter { haystack, prestate, finder, pos: 0 }
    }
}

impl<'h, 'n> Iterator for FindIter<'h, 'n> {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        if self.pos > self.haystack.len() {
            return None;
        }
        let result = self
            .finder
            .searcher
            .find(&mut self.prestate, &self.haystack[self.pos..]);
        match result {
            None => None,
            Some(i) => {
                let pos = self.pos + i;
                self.pos = pos + core::cmp::max(1, self.finder.needle().len());
                Some(pos)
            }
        }
    }
}

/// An iterator over non-overlapping substring matches in reverse.
///
/// Matches are reported by the byte offset at which they begin.
///
/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
/// needle.
#[derive(Debug)]
pub struct FindRevIter<'h, 'n> {
    haystack: &'h [u8],
    finder: FinderRev<'n>,
    /// When searching with an empty needle, this gets set to `None` after
    /// we've yielded the last element at `0`.
    pos: Option<usize>,
}

impl<'h, 'n> FindRevIter<'h, 'n> {
    #[inline(always)]
    pub(crate) fn new(
        haystack: &'h [u8],
        finder: FinderRev<'n>,
    ) -> FindRevIter<'h, 'n> {
        let pos = Some(haystack.len());
        FindRevIter { haystack, finder, pos }
    }
}

impl<'h, 'n> Iterator for FindRevIter<'h, 'n> {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        let pos = match self.pos {
            None => return None,
            Some(pos) => pos,
        };
        let result = self.finder.rfind(&self.haystack[..pos]);
        match result {
            None => None,
            Some(i) => {
                if pos == i {
                    self.pos = pos.checked_sub(1);
                } else {
                    self.pos = Some(i);
                }
                Some(i)
            }
        }
    }
}

/// A single substring searcher fixed to a particular needle.
///
/// The purpose of this type is to permit callers to construct a substring
/// searcher that can be used to search haystacks without the overhead of
/// constructing the searcher in the first place. This is a somewhat niche
/// concern when it's necessary to re-use the same needle to search multiple
/// different haystacks with as little overhead as possible. In general, using
/// [`find`] is good enough, but `Finder` is useful when you can meaningfully
/// observe searcher construction time in a profile.
///
/// When the `std` feature is enabled, then this type has an `into_owned`
/// version which permits building a `Finder` that is not connected to
/// the lifetime of its needle.
#[derive(Clone, Debug)]
pub struct Finder<'n> {
    searcher: Searcher<'n>,
}

impl<'n> Finder<'n> {
    /// Create a new finder for the given needle.
    #[inline]
    pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> Finder<'n> {
        FinderBuilder::new().build_forward(needle)
    }

    /// Returns the index of the first occurrence of this needle in the given
    /// haystack.
    ///
    /// # Complexity
    ///
    /// This routine is guaranteed to have worst case linear time complexity
    /// with respect to both the needle and the haystack. That is, this runs
    /// in `O(needle.len() + haystack.len())` time.
    ///
    /// This routine is also guaranteed to have worst case constant space
    /// complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memchr::memmem::Finder;
    ///
    /// let haystack = b"foo bar baz";
    /// assert_eq!(Some(0), Finder::new("foo").find(haystack));
    /// assert_eq!(Some(4), Finder::new("bar").find(haystack));
    /// assert_eq!(None, Finder::new("quux").find(haystack));
    /// ```
    pub fn find(&self, haystack: &[u8]) -> Option<usize> {
        self.searcher.find(&mut self.searcher.prefilter_state(), haystack)
    }

    /// Returns an iterator over all occurrences of a substring in a haystack.
    ///
    /// # Complexity
    ///
    /// This routine is guaranteed to have worst case linear time complexity
    /// with respect to both the needle and the haystack. That is, this runs
    /// in `O(needle.len() + haystack.len())` time.
    ///
    /// This routine is also guaranteed to have worst case constant space
    /// complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memchr::memmem::Finder;
    ///
    /// let haystack = b"foo bar foo baz foo";
    /// let finder = Finder::new(b"foo");
    /// let mut it = finder.find_iter(haystack);
    /// assert_eq!(Some(0), it.next());
    /// assert_eq!(Some(8), it.next());
    /// assert_eq!(Some(16), it.next());
    /// assert_eq!(None, it.next());
    /// ```
    #[inline]
    pub fn find_iter<'a, 'h>(
        &'a self,
        haystack: &'h [u8],
    ) -> FindIter<'h, 'a> {
        FindIter::new(haystack, self.as_ref())
    }

    /// Convert this finder into its owned variant, such that it no longer
    /// borrows the needle.
    ///
    /// If this is already an owned finder, then this is a no-op. Otherwise,
    /// this copies the needle.
    ///
    /// This is only available when the `std` feature is enabled.
    #[cfg(feature = "std")]
    #[inline]
    pub fn into_owned(self) -> Finder<'static> {
        Finder { searcher: self.searcher.into_owned() }
    }

    /// Convert this finder into its borrowed variant.
    ///
    /// This is primarily useful if your finder is owned and you'd like to
    /// store its borrowed variant in some intermediate data structure.
    ///
    /// Note that the lifetime parameter of the returned finder is tied to the
    /// lifetime of `self`, and may be shorter than the `'n` lifetime of the
    /// needle itself. Namely, a finder's needle can be either borrowed or
    /// owned, so the lifetime of the needle returned must necessarily be the
    /// shorter of the two.
    #[inline]
    pub fn as_ref(&self) -> Finder<'_> {
        Finder { searcher: self.searcher.as_ref() }
    }

    /// Returns the needle that this finder searches for.
    ///
    /// Note that the lifetime of the needle returned is tied to the lifetime
    /// of the finder, and may be shorter than the `'n` lifetime. Namely, a
    /// finder's needle can be either borrowed or owned, so the lifetime of the
    /// needle returned must necessarily be the shorter of the two.
    #[inline]
    pub fn needle(&self) -> &[u8] {
        self.searcher.needle()
    }
}

/// A single substring reverse searcher fixed to a particular needle.
///
/// The purpose of this type is to permit callers to construct a substring
/// searcher that can be used to search haystacks without the overhead of
/// constructing the searcher in the first place. This is a somewhat niche
/// concern when it's necessary to re-use the same needle to search multiple
/// different haystacks with as little overhead as possible. In general,
/// using [`rfind`] is good enough, but `FinderRev` is useful when you can
/// meaningfully observe searcher construction time in a profile.
///
/// When the `std` feature is enabled, then this type has an `into_owned`
/// version which permits building a `FinderRev` that is not connected to
/// the lifetime of its needle.
#[derive(Clone, Debug)]
pub struct FinderRev<'n> {
    searcher: SearcherRev<'n>,
}

impl<'n> FinderRev<'n> {
    /// Create a new reverse finder for the given needle.
    #[inline]
    pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> FinderRev<'n> {
        FinderBuilder::new().build_reverse(needle)
    }

    /// Returns the index of the last occurrence of this needle in the given
    /// haystack.
    ///
    /// The haystack may be any type that can be cheaply converted into a
    /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
    ///
    /// # Complexity
    ///
    /// This routine is guaranteed to have worst case linear time complexity
    /// with respect to both the needle and the haystack. That is, this runs
    /// in `O(needle.len() + haystack.len())` time.
    ///
    /// This routine is also guaranteed to have worst case constant space
    /// complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memchr::memmem::FinderRev;
    ///
    /// let haystack = b"foo bar baz";
    /// assert_eq!(Some(0), FinderRev::new("foo").rfind(haystack));
    /// assert_eq!(Some(4), FinderRev::new("bar").rfind(haystack));
    /// assert_eq!(None, FinderRev::new("quux").rfind(haystack));
    /// ```
    pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> {
        self.searcher.rfind(haystack.as_ref())
    }

    /// Returns a reverse iterator over all occurrences of a substring in a
    /// haystack.
    ///
    /// # Complexity
    ///
    /// This routine is guaranteed to have worst case linear time complexity
    /// with respect to both the needle and the haystack. That is, this runs
    /// in `O(needle.len() + haystack.len())` time.
    ///
    /// This routine is also guaranteed to have worst case constant space
    /// complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memchr::memmem::FinderRev;
    ///
    /// let haystack = b"foo bar foo baz foo";
    /// let finder = FinderRev::new(b"foo");
    /// let mut it = finder.rfind_iter(haystack);
    /// assert_eq!(Some(16), it.next());
    /// assert_eq!(Some(8), it.next());
    /// assert_eq!(Some(0), it.next());
    /// assert_eq!(None, it.next());
    /// ```
    #[inline]
    pub fn rfind_iter<'a, 'h>(
        &'a self,
        haystack: &'h [u8],
    ) -> FindRevIter<'h, 'a> {
        FindRevIter::new(haystack, self.as_ref())
    }

    /// Convert this finder into its owned variant, such that it no longer
    /// borrows the needle.
    ///
    /// If this is already an owned finder, then this is a no-op. Otherwise,
    /// this copies the needle.
    ///
    /// This is only available when the `std` feature is enabled.
    #[cfg(feature = "std")]
    #[inline]
    pub fn into_owned(self) -> FinderRev<'static> {
        FinderRev { searcher: self.searcher.into_owned() }
    }

    /// Convert this finder into its borrowed variant.
    ///
    /// This is primarily useful if your finder is owned and you'd like to
    /// store its borrowed variant in some intermediate data structure.
    ///
    /// Note that the lifetime parameter of the returned finder is tied to the
    /// lifetime of `self`, and may be shorter than the `'n` lifetime of the
    /// needle itself. Namely, a finder's needle can be either borrowed or
    /// owned, so the lifetime of the needle returned must necessarily be the
    /// shorter of the two.
    #[inline]
    pub fn as_ref(&self) -> FinderRev<'_> {
        FinderRev { searcher: self.searcher.as_ref() }
    }

    /// Returns the needle that this finder searches for.
    ///
    /// Note that the lifetime of the needle returned is tied to the lifetime
    /// of the finder, and may be shorter than the `'n` lifetime. Namely, a
    /// finder's needle can be either borrowed or owned, so the lifetime of the
    /// needle returned must necessarily be the shorter of the two.
    #[inline]
    pub fn needle(&self) -> &[u8] {
        self.searcher.needle()
    }
}

/// A builder for constructing non-default forward or reverse memmem finders.
///
/// A builder is primarily useful for configuring a substring searcher.
/// Currently, the only configuration exposed is the ability to disable
/// heuristic prefilters used to speed up certain searches.
#[derive(Clone, Debug, Default)]
pub struct FinderBuilder {
    config: SearcherConfig,
}

impl FinderBuilder {
    /// Create a new finder builder with default settings.
    pub fn new() -> FinderBuilder {
        FinderBuilder::default()
    }

    /// Build a forward finder using the given needle from the current
    /// settings.
    pub fn build_forward<'n, B: ?Sized + AsRef<[u8]>>(
        &self,
        needle: &'n B,
    ) -> Finder<'n> {
        Finder { searcher: Searcher::new(self.config, needle.as_ref()) }
    }

    /// Build a reverse finder using the given needle from the current
    /// settings.
    pub fn build_reverse<'n, B: ?Sized + AsRef<[u8]>>(
        &self,
        needle: &'n B,
    ) -> FinderRev<'n> {
        FinderRev { searcher: SearcherRev::new(needle.as_ref()) }
    }

    /// Configure the prefilter setting for the finder.
    ///
    /// See the documentation for [`Prefilter`] for more discussion on why
    /// you might want to configure this.
    pub fn prefilter(&mut self, prefilter: Prefilter) -> &mut FinderBuilder {
        self.config.prefilter = prefilter;
        self
    }
}

/// The internal implementation of a forward substring searcher.
///
/// The reality is that this is a "meta" searcher. Namely, depending on a
/// variety of parameters (CPU support, target, needle size, haystack size and
/// even dynamic properties such as prefilter effectiveness), the actual
/// algorithm employed to do substring search may change.
#[derive(Clone, Debug)]
struct Searcher<'n> {
    /// The actual needle we're searching for.
    ///
    /// A CowBytes is like a Cow<[u8]>, except in no_std environments, it is
    /// specialized to a single variant (the borrowed form).
    needle: CowBytes<'n>,
    /// A collection of facts computed on the needle that are useful for more
    /// than one substring search algorithm.
    ninfo: NeedleInfo,
    /// A prefilter function, if it was deemed appropriate.
    ///
    /// Some substring search implementations (like Two-Way) benefit greatly
    /// if we can quickly find candidate starting positions for a match.
    prefn: Option<PrefilterFn>,
    /// The actual substring implementation in use.
    kind: SearcherKind,
}

/// A collection of facts computed about a search needle.
///
/// We group these things together because it's useful to be able to hand them
/// to prefilters or substring algorithms that want them.
#[derive(Clone, Copy, Debug)]
pub(crate) struct NeedleInfo {
    /// The offsets of "rare" bytes detected in the needle.
    ///
    /// This is meant to be a heuristic in order to maximize the effectiveness
    /// of vectorized code. Namely, vectorized code tends to focus on only
    /// one or two bytes. If we pick bytes from the needle that occur
    /// infrequently, then more time will be spent in the vectorized code and
    /// will likely make the overall search (much) faster.
    ///
    /// Of course, this is only a heuristic based on a background frequency
    /// distribution of bytes. But it tends to work very well in practice.
    pub(crate) rarebytes: RareNeedleBytes,
    /// A Rabin-Karp hash of the needle.
    ///
    /// This is store here instead of in a more specific Rabin-Karp search
    /// since Rabin-Karp may be used even if another SearchKind corresponds
    /// to some other search implementation. e.g., If measurements suggest RK
    /// is faster in some cases or if a search implementation can't handle
    /// particularly small haystack. (Moreover, we cannot use RK *generally*,
    /// since its worst case time is multiplicative. Instead, we only use it
    /// some small haystacks, where "small" is a constant.)
    pub(crate) nhash: NeedleHash,
}

/// Configuration for substring search.
#[derive(Clone, Copy, Debug, Default)]
struct SearcherConfig {
    /// This permits changing the behavior of the prefilter, since it can have
    /// a variable impact on performance.
    prefilter: Prefilter,
}

#[derive(Clone, Debug)]
enum SearcherKind {
    /// A special case for empty needles. An empty needle always matches, even
    /// in an empty haystack.
    Empty,
    /// This is used whenever the needle is a single byte. In this case, we
    /// always use memchr.
    OneByte(u8),
    /// Two-Way is the generic work horse and is what provides our additive
    /// linear time guarantee. In general, it's used when the needle is bigger
    /// than 8 bytes or so.
    TwoWay(twoway::Forward),
    #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
    GenericSIMD128(x86::sse::Forward),
    #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
    GenericSIMD256(x86::avx::Forward),
}

impl<'n> Searcher<'n> {
    #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
    fn new(config: SearcherConfig, needle: &'n [u8]) -> Searcher<'n> {
        use self::SearcherKind::*;

        let ninfo = NeedleInfo::new(needle);
        let prefn =
            prefilter::forward(&config.prefilter, &ninfo.rarebytes, needle);
        let kind = if needle.len() == 0 {
            Empty
        } else if needle.len() == 1 {
            OneByte(needle[0])
        } else if let Some(fwd) = x86::avx::Forward::new(&ninfo, needle) {
            GenericSIMD256(fwd)
        } else if let Some(fwd) = x86::sse::Forward::new(&ninfo, needle) {
            GenericSIMD128(fwd)
        } else {
            TwoWay(twoway::Forward::new(needle))
        };
        Searcher { needle: CowBytes::new(needle), ninfo, prefn, kind }
    }

    #[cfg(not(all(not(miri), target_arch = "x86_64", memchr_runtime_simd)))]
    fn new(config: SearcherConfig, needle: &'n [u8]) -> Searcher<'n> {
        use self::SearcherKind::*;

        let ninfo = NeedleInfo::new(needle);
        let prefn =
            prefilter::forward(&config.prefilter, &ninfo.rarebytes, needle);
        let kind = if needle.len() == 0 {
            Empty
        } else if needle.len() == 1 {
            OneByte(needle[0])
        } else {
            TwoWay(twoway::Forward::new(needle))
        };
        Searcher { needle: CowBytes::new(needle), ninfo, prefn, kind }
    }

    /// Return a fresh prefilter state that can be used with this searcher.
    /// A prefilter state is used to track the effectiveness of a searcher's
    /// prefilter for speeding up searches. Therefore, the prefilter state
    /// should generally be reused on subsequent searches (such as in an
    /// iterator). For searches on a different haystack, then a new prefilter
    /// state should be used.
    ///
    /// This always initializes a valid (but possibly inert) prefilter state
    /// even if this searcher does not have a prefilter enabled.
    fn prefilter_state(&self) -> PrefilterState {
        if self.prefn.is_none() {
            PrefilterState::inert()
        } else {
            PrefilterState::new()
        }
    }

    fn needle(&self) -> &[u8] {
        self.needle.as_slice()
    }

    fn as_ref(&self) -> Searcher<'_> {
        use self::SearcherKind::*;

        let kind = match self.kind {
            Empty => Empty,
            OneByte(b) => OneByte(b),
            TwoWay(tw) => TwoWay(tw),
            #[cfg(all(
                not(miri),
                target_arch = "x86_64",
                memchr_runtime_simd
            ))]
            GenericSIMD128(gs) => GenericSIMD128(gs),
            #[cfg(all(
                not(miri),
                target_arch = "x86_64",
                memchr_runtime_simd
            ))]
            GenericSIMD256(gs) => GenericSIMD256(gs),
        };
        Searcher {
            needle: CowBytes::new(self.needle()),
            ninfo: self.ninfo,
            prefn: self.prefn,
            kind,
        }
    }

    #[cfg(feature = "std")]
    fn into_owned(self) -> Searcher<'static> {
        use self::SearcherKind::*;

        let kind = match self.kind {
            Empty => Empty,
            OneByte(b) => OneByte(b),
            TwoWay(tw) => TwoWay(tw),
            #[cfg(all(
                not(miri),
                target_arch = "x86_64",
                memchr_runtime_simd
            ))]
            GenericSIMD128(gs) => GenericSIMD128(gs),
            #[cfg(all(
                not(miri),
                target_arch = "x86_64",
                memchr_runtime_simd
            ))]
            GenericSIMD256(gs) => GenericSIMD256(gs),
        };
        Searcher {
            needle: self.needle.into_owned(),
            ninfo: self.ninfo,
            prefn: self.prefn,
            kind,
        }
    }

    /// Implements forward substring search by selecting the implementation
    /// chosen at construction and executing it on the given haystack with the
    /// prefilter's current state of effectiveness.
    #[inline(always)]
    fn find(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
    ) -> Option<usize> {
        use self::SearcherKind::*;

        let needle = self.needle();
        if haystack.len() < needle.len() {
            return None;
        }
        match self.kind {
            Empty => Some(0),
            OneByte(b) => crate::memchr(b, haystack),
            TwoWay(ref tw) => {
                // For very short haystacks (e.g., where the prefilter probably
                // can't run), it's faster to just run RK.
                if rabinkarp::is_fast(haystack, needle) {
                    rabinkarp::find_with(&self.ninfo.nhash, haystack, needle)
                } else {
                    self.find_tw(tw, state, haystack, needle)
                }
            }
            #[cfg(all(
                not(miri),
                target_arch = "x86_64",
                memchr_runtime_simd
            ))]
            GenericSIMD128(ref gs) => {
                // The SIMD matcher can't handle particularly short haystacks,
                // so we fall back to RK in these cases.
                if haystack.len() < gs.min_haystack_len() {
                    rabinkarp::find_with(&self.ninfo.nhash, haystack, needle)
                } else {
                    gs.find(haystack, needle)
                }
            }
            #[cfg(all(
                not(miri),
                target_arch = "x86_64",
                memchr_runtime_simd
            ))]
            GenericSIMD256(ref gs) => {
                // The SIMD matcher can't handle particularly short haystacks,
                // so we fall back to RK in these cases.
                if haystack.len() < gs.min_haystack_len() {
                    rabinkarp::find_with(&self.ninfo.nhash, haystack, needle)
                } else {
                    gs.find(haystack, needle)
                }
            }
        }
    }

    /// Calls Two-Way on the given haystack/needle.
    ///
    /// This is marked as unlineable since it seems to have a better overall
    /// effect on benchmarks. However, this is one of those cases where
    /// inlining it results an improvement in other benchmarks too, so I
    /// suspect we just don't have enough data yet to make the right call here.
    ///
    /// I suspect the main problem is that this function contains two different
    /// inlined copies of Two-Way: one with and one without prefilters enabled.
    #[inline(never)]
    fn find_tw(
        &self,
        tw: &twoway::Forward,
        state: &mut PrefilterState,
        haystack: &[u8],
        needle: &[u8],
    ) -> Option<usize> {
        if let Some(prefn) = self.prefn {
            // We used to look at the length of a haystack here. That is, if
            // it was too small, then don't bother with the prefilter. But two
            // things changed: the prefilter falls back to memchr for small
            // haystacks, and, above, Rabin-Karp is employed for tiny haystacks
            // anyway.
            if state.is_effective() {
                let mut pre = Pre { state, prefn, ninfo: &self.ninfo };
                return tw.find(Some(&mut pre), haystack, needle);
            }
        }
        tw.find(None, haystack, needle)
    }
}

impl NeedleInfo {
    pub(crate) fn new(needle: &[u8]) -> NeedleInfo {
        NeedleInfo {
            rarebytes: RareNeedleBytes::forward(needle),
            nhash: NeedleHash::forward(needle),
        }
    }
}

/// The internal implementation of a reverse substring searcher.
///
/// See the forward searcher docs for more details. Currently, the reverse
/// searcher is considerably simpler since it lacks prefilter support. This
/// was done because it adds a lot of code, and more surface area to test. And
/// in particular, it's not clear whether a prefilter on reverse searching is
/// worth it. (If you have a compelling use case, please file an issue!)
#[derive(Clone, Debug)]
struct SearcherRev<'n> {
    /// The actual needle we're searching for.
    needle: CowBytes<'n>,
    /// A Rabin-Karp hash of the needle.
    nhash: NeedleHash,
    /// The actual substring implementation in use.
    kind: SearcherRevKind,
}

#[derive(Clone, Debug)]
enum SearcherRevKind {
    /// A special case for empty needles. An empty needle always matches, even
    /// in an empty haystack.
    Empty,
    /// This is used whenever the needle is a single byte. In this case, we
    /// always use memchr.
    OneByte(u8),
    /// Two-Way is the generic work horse and is what provides our additive
    /// linear time guarantee. In general, it's used when the needle is bigger
    /// than 8 bytes or so.
    TwoWay(twoway::Reverse),
}

impl<'n> SearcherRev<'n> {
    fn new(needle: &'n [u8]) -> SearcherRev<'n> {
        use self::SearcherRevKind::*;

        let kind = if needle.len() == 0 {
            Empty
        } else if needle.len() == 1 {
            OneByte(needle[0])
        } else {
            TwoWay(twoway::Reverse::new(needle))
        };
        SearcherRev {
            needle: CowBytes::new(needle),
            nhash: NeedleHash::reverse(needle),
            kind,
        }
    }

    fn needle(&self) -> &[u8] {
        self.needle.as_slice()
    }

    fn as_ref(&self) -> SearcherRev<'_> {
        use self::SearcherRevKind::*;

        let kind = match self.kind {
            Empty => Empty,
            OneByte(b) => OneByte(b),
            TwoWay(tw) => TwoWay(tw),
        };
        SearcherRev {
            needle: CowBytes::new(self.needle()),
            nhash: self.nhash,
            kind,
        }
    }

    #[cfg(feature = "std")]
    fn into_owned(self) -> SearcherRev<'static> {
        use self::SearcherRevKind::*;

        let kind = match self.kind {
            Empty => Empty,
            OneByte(b) => OneByte(b),
            TwoWay(tw) => TwoWay(tw),
        };
        SearcherRev {
            needle: self.needle.into_owned(),
            nhash: self.nhash,
            kind,
        }
    }

    /// Implements reverse substring search by selecting the implementation
    /// chosen at construction and executing it on the given haystack with the
    /// prefilter's current state of effectiveness.
    #[inline(always)]
    fn rfind(&self, haystack: &[u8]) -> Option<usize> {
        use self::SearcherRevKind::*;

        let needle = self.needle();
        if haystack.len() < needle.len() {
            return None;
        }
        match self.kind {
            Empty => Some(haystack.len()),
            OneByte(b) => crate::memrchr(b, haystack),
            TwoWay(ref tw) => {
                // For very short haystacks (e.g., where the prefilter probably
                // can't run), it's faster to just run RK.
                if rabinkarp::is_fast(haystack, needle) {
                    rabinkarp::rfind_with(&self.nhash, haystack, needle)
                } else {
                    tw.rfind(haystack, needle)
                }
            }
        }
    }
}

/// This module defines some generic quickcheck properties useful for testing
/// any substring search algorithm. It also runs those properties for the
/// top-level public API memmem routines. (The properties are also used to
/// test various substring search implementations more granularly elsewhere as
/// well.)
#[cfg(all(test, feature = "std", not(miri)))]
mod proptests {
    // N.B. This defines the quickcheck tests using the properties defined
    // below. Because of macro-visibility weirdness, the actual macro is
    // defined at the top of this file.
    define_memmem_quickcheck_tests!(super::find, super::rfind);

    /// Check that every prefix of the given byte string is a substring.
    pub(crate) fn prefix_is_substring(
        reverse: bool,
        bs: &[u8],
        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
    ) -> bool {
        if bs.is_empty() {
            return true;
        }
        for i in 0..(bs.len() - 1) {
            let prefix = &bs[..i];
            if reverse {
                assert_eq!(naive_rfind(bs, prefix), search(bs, prefix));
            } else {
                assert_eq!(naive_find(bs, prefix), search(bs, prefix));
            }
        }
        true
    }

    /// Check that every suffix of the given byte string is a substring.
    pub(crate) fn suffix_is_substring(
        reverse: bool,
        bs: &[u8],
        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
    ) -> bool {
        if bs.is_empty() {
            return true;
        }
        for i in 0..(bs.len() - 1) {
            let suffix = &bs[i..];
            if reverse {
                assert_eq!(naive_rfind(bs, suffix), search(bs, suffix));
            } else {
                assert_eq!(naive_find(bs, suffix), search(bs, suffix));
            }
        }
        true
    }

    /// Check that naive substring search matches the result of the given search
    /// algorithm.
    pub(crate) fn matches_naive(
        reverse: bool,
        haystack: &[u8],
        needle: &[u8],
        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
    ) -> bool {
        if reverse {
            naive_rfind(haystack, needle) == search(haystack, needle)
        } else {
            naive_find(haystack, needle) == search(haystack, needle)
        }
    }

    /// Naively search forwards for the given needle in the given haystack.
    fn naive_find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
        if needle.is_empty() {
            return Some(0);
        } else if haystack.len() < needle.len() {
            return None;
        }
        for i in 0..(haystack.len() - needle.len() + 1) {
            if needle == &haystack[i..i + needle.len()] {
                return Some(i);
            }
        }
        None
    }

    /// Naively search in reverse for the given needle in the given haystack.
    fn naive_rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
        if needle.is_empty() {
            return Some(haystack.len());
        } else if haystack.len() < needle.len() {
            return None;
        }
        for i in (0..(haystack.len() - needle.len() + 1)).rev() {
            if needle == &haystack[i..i + needle.len()] {
                return Some(i);
            }
        }
        None
    }
}

/// This module defines some hand-written "simple" substring tests. It
/// also provides routines for easily running them on any substring search
/// implementation.
#[cfg(test)]
mod testsimples {
    define_memmem_simple_tests!(super::find, super::rfind);

    /// Each test is a (needle, haystack, expected_fwd, expected_rev) tuple.
    type SearchTest =
        (&'static str, &'static str, Option<usize>, Option<usize>);

    const SEARCH_TESTS: &'static [SearchTest] = &[
        ("", "", Some(0), Some(0)),
        ("", "a", Some(0), Some(1)),
        ("", "ab", Some(0), Some(2)),
        ("", "abc", Some(0), Some(3)),
        ("a", "", None, None),
        ("a", "a", Some(0), Some(0)),
        ("a", "aa", Some(0), Some(1)),
        ("a", "ba", Some(1), Some(1)),
        ("a", "bba", Some(2), Some(2)),
        ("a", "bbba", Some(3), Some(3)),
        ("a", "bbbab", Some(3), Some(3)),
        ("a", "bbbabb", Some(3), Some(3)),
        ("a", "bbbabbb", Some(3), Some(3)),
        ("a", "bbbbbb", None, None),
        ("ab", "", None, None),
        ("ab", "a", None, None),
        ("ab", "b", None, None),
        ("ab", "ab", Some(0), Some(0)),
        ("ab", "aab", Some(1), Some(1)),
        ("ab", "aaab", Some(2), Some(2)),
        ("ab", "abaab", Some(0), Some(3)),
        ("ab", "baaab", Some(3), Some(3)),
        ("ab", "acb", None, None),
        ("ab", "abba", Some(0), Some(0)),
        ("abc", "ab", None, None),
        ("abc", "abc", Some(0), Some(0)),
        ("abc", "abcz", Some(0), Some(0)),
        ("abc", "abczz", Some(0), Some(0)),
        ("abc", "zabc", Some(1), Some(1)),
        ("abc", "zzabc", Some(2), Some(2)),
        ("abc", "azbc", None, None),
        ("abc", "abzc", None, None),
        ("abczdef", "abczdefzzzzzzzzzzzzzzzzzzzz", Some(0), Some(0)),
        ("abczdef", "zzzzzzzzzzzzzzzzzzzzabczdef", Some(20), Some(20)),
        ("xyz", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaxyz", Some(32), Some(32)),
        // Failures caught by quickcheck.
        ("\u{0}\u{15}", "\u{0}\u{15}\u{15}\u{0}", Some(0), Some(0)),
        ("\u{0}\u{1e}", "\u{1e}\u{0}", None, None),
    ];

    /// Run the substring search tests. `search` should be a closure that
    /// accepts a haystack and a needle and returns the starting position
    /// of the first occurrence of needle in the haystack, or `None` if one
    /// doesn't exist.
    pub(crate) fn run_search_tests_fwd(
        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
    ) {
        for &(needle, haystack, expected_fwd, _) in SEARCH_TESTS {
            let (n, h) = (needle.as_bytes(), haystack.as_bytes());
            assert_eq!(
                expected_fwd,
                search(h, n),
                "needle: {:?}, haystack: {:?}, expected: {:?}",
                n,
                h,
                expected_fwd
            );
        }
    }

    /// Run the substring search tests. `search` should be a closure that
    /// accepts a haystack and a needle and returns the starting position of
    /// the last occurrence of needle in the haystack, or `None` if one doesn't
    /// exist.
    pub(crate) fn run_search_tests_rev(
        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
    ) {
        for &(needle, haystack, _, expected_rev) in SEARCH_TESTS {
            let (n, h) = (needle.as_bytes(), haystack.as_bytes());
            assert_eq!(
                expected_rev,
                search(h, n),
                "needle: {:?}, haystack: {:?}, expected: {:?}",
                n,
                h,
                expected_rev
            );
        }
    }
}