1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use crate::operators_validator::OperatorValidator;
use crate::{BinaryReader, Result, Type};
use crate::{FunctionBody, Operator, WasmFeatures, WasmModuleResources};

/// Validation context for a WebAssembly function.
///
/// This structure is created by
/// [`Validator::code_section_entry`](crate::Validator::code_section_entry)
/// and is created per-function in a WebAssembly module. This structure is
/// suitable for sending to other threads while the original
/// [`Validator`](crate::Validator) continues processing other functions.
pub struct FuncValidator<T> {
    validator: OperatorValidator,
    resources: T,
}

impl<T: WasmModuleResources> FuncValidator<T> {
    /// Creates a new `FuncValidator`.
    ///
    /// The returned `FuncValidator` can be used to validate a function with
    /// the type `ty` specified. The `resources` indicate what the containing
    /// module has for the function to use, and the `features` configure what
    /// WebAssembly proposals are enabled for this function.
    ///
    /// The returned validator can be used to then parse a [`FunctionBody`], for
    /// example, to read locals and validate operators.
    pub fn new(
        ty: u32,
        offset: usize,
        resources: T,
        features: &WasmFeatures,
    ) -> Result<FuncValidator<T>> {
        Ok(FuncValidator {
            validator: OperatorValidator::new(ty, offset, features, &resources)?,
            resources,
        })
    }

    /// Get the current height of the operand stack.
    ///
    /// This returns the height of the whole operand stack for this function,
    /// not just for the current control frame.
    pub fn operand_stack_height(&self) -> u32 {
        self.validator.operands.len() as u32
    }

    /// Convenience function to validate an entire function's body.
    ///
    /// You may not end up using this in final implementations because you'll
    /// often want to interleave validation with parsing.
    pub fn validate(&mut self, body: &FunctionBody<'_>) -> Result<()> {
        let mut reader = body.get_binary_reader();
        self.read_locals(&mut reader)?;
        while !reader.eof() {
            let pos = reader.original_position();
            let op = reader.read_operator()?;
            self.op(pos, &op)?;
        }
        self.finish(reader.original_position())
    }

    /// Reads the local defintions from the given `BinaryReader`, often sourced
    /// from a `FunctionBody`.
    ///
    /// This function will automatically advance the `BinaryReader` forward,
    /// leaving reading operators up to the caller afterwards.
    pub fn read_locals(&mut self, reader: &mut BinaryReader<'_>) -> Result<()> {
        for _ in 0..reader.read_var_u32()? {
            let offset = reader.original_position();
            let cnt = reader.read_var_u32()?;
            let ty = reader.read_type()?;
            self.define_locals(offset, cnt, ty)?;
        }
        Ok(())
    }

    /// Defines locals into this validator.
    ///
    /// This should be used if the application is already reading local
    /// definitions and there's no need to re-parse the function again.
    pub fn define_locals(&mut self, offset: usize, count: u32, ty: Type) -> Result<()> {
        self.validator.define_locals(offset, count, ty)
    }

    /// Validates the next operator in a function.
    ///
    /// This functions is expected to be called once-per-operator in a
    /// WebAssembly function. Each operator's offset in the original binary and
    /// the operator itself are passed to this function to provide more useful
    /// error messages.
    pub fn op(&mut self, offset: usize, operator: &Operator<'_>) -> Result<()> {
        self.validator
            .process_operator(operator, &self.resources)
            .map_err(|e| e.set_offset(offset))?;
        Ok(())
    }

    /// Function that must be called after the last opcode has been processed.
    ///
    /// This will validate that the function was properly terminated with the
    /// `end` opcode. If this function is not called then the function will not
    /// be properly validated.
    ///
    /// The `offset` provided to this function will be used as a position for an
    /// error if validation fails.
    pub fn finish(&mut self, offset: usize) -> Result<()> {
        self.validator.finish().map_err(|e| e.set_offset(offset))?;
        Ok(())
    }

    /// Returns the underlying module resources that this validator is using.
    pub fn resources(&self) -> &T {
        &self.resources
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::WasmFuncType;

    struct EmptyResources;

    impl WasmModuleResources for EmptyResources {
        type FuncType = EmptyFuncType;

        fn table_at(&self, _at: u32) -> Option<crate::TableType> {
            todo!()
        }
        fn memory_at(&self, _at: u32) -> Option<crate::MemoryType> {
            todo!()
        }
        fn event_at(&self, _at: u32) -> Option<crate::EventType> {
            todo!()
        }
        fn global_at(&self, _at: u32) -> Option<crate::GlobalType> {
            todo!()
        }
        fn func_type_at(&self, _type_idx: u32) -> Option<&Self::FuncType> {
            Some(&EmptyFuncType)
        }
        fn type_of_function(&self, _func_idx: u32) -> Option<&Self::FuncType> {
            todo!()
        }
        fn element_type_at(&self, _at: u32) -> Option<Type> {
            todo!()
        }
        fn element_count(&self) -> u32 {
            todo!()
        }
        fn data_count(&self) -> u32 {
            todo!()
        }
        fn is_function_referenced(&self, _idx: u32) -> bool {
            todo!()
        }
    }

    struct EmptyFuncType;

    impl WasmFuncType for EmptyFuncType {
        fn len_inputs(&self) -> usize {
            0
        }
        fn len_outputs(&self) -> usize {
            0
        }
        fn input_at(&self, _at: u32) -> Option<Type> {
            todo!()
        }
        fn output_at(&self, _at: u32) -> Option<Type> {
            todo!()
        }
    }

    #[test]
    fn operand_stack_height() {
        let mut v = FuncValidator::new(0, 0, &EmptyResources, &Default::default()).unwrap();

        // Initially zero values on the stack.
        assert_eq!(v.operand_stack_height(), 0);

        // Pushing a constant value makes use have one value on the stack.
        assert!(v.op(0, &Operator::I32Const { value: 0 }).is_ok());
        assert_eq!(v.operand_stack_height(), 1);

        // Entering a new control block does not affect the stack height.
        assert!(v
            .op(
                1,
                &Operator::Block {
                    ty: crate::TypeOrFuncType::Type(crate::Type::EmptyBlockType)
                }
            )
            .is_ok());
        assert_eq!(v.operand_stack_height(), 1);

        // Pushing another constant value makes use have two values on the stack.
        assert!(v.op(2, &Operator::I32Const { value: 99 }).is_ok());
        assert_eq!(v.operand_stack_height(), 2);
    }
}