1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
//! In-memory representation of compiled machine code, with labels and fixups to
//! refer to those labels. Handles constant-pool island insertion and also
//! veneer insertion for out-of-range jumps.
//!
//! This code exists to solve three problems:
//!
//! - Branch targets for forward branches are not known until later, when we
//!   emit code in a single pass through the instruction structs.
//!
//! - On many architectures, address references or offsets have limited range.
//!   For example, on AArch64, conditional branches can only target code +/- 1MB
//!   from the branch itself.
//!
//! - The lowering of control flow from the CFG-with-edges produced by
//!   [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
//!   edge blocks when the register allocator does not need to insert any
//!   spills/reloads/moves in edge blocks, results in many suboptimal branch
//!   patterns. The lowering also pays no attention to block order, and so
//!   two-target conditional forms (cond-br followed by uncond-br) can often by
//!   avoided because one of the targets is the fallthrough. There are several
//!   cases here where we can simplify to use fewer branches.
//!
//! This "buffer" implements a single-pass code emission strategy (with a later
//! "fixup" pass, but only through recorded fixups, not all instructions). The
//! basic idea is:
//!
//! - Emit branches as they are, including two-target (cond/uncond) compound
//!   forms, but with zero offsets and optimistically assuming the target will be
//!   in range. Record the "fixup" for later. Targets are denoted instead by
//!   symbolic "labels" that are then bound to certain offsets in the buffer as
//!   we emit code. (Nominally, there is a label at the start of every basic
//!   block.)
//!
//! - As we do this, track the offset in the buffer at which the first label
//!   reference "goes out of range". We call this the "deadline". If we reach the
//!   deadline and we still have not bound the label to which an unresolved branch
//!   refers, we have a problem!
//!
//! - To solve this problem, we emit "islands" full of "veneers". An island is
//!   simply a chunk of code inserted in the middle of the code actually produced
//!   by the emitter (e.g., vcode iterating over instruction structs). The emitter
//!   has some awareness of this: it either asks for an island between blocks, so
//!   it is not accidentally executed, or else it emits a branch around the island
//!   when all other options fail (see `Inst::EmitIsland` meta-instruction).
//!
//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
//!   that implements a longer-range reference to a label. The idea is that, for
//!   example, a branch with a limited range can branch to a "veneer" instead,
//!   which is simply a branch in a form that can use a longer-range reference. On
//!   AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
//!   can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
//!   conditional branch's label reference can be fixed up with a "veneer" to
//!   achieve a longer range.
//!
//! - To implement all of this, we require the backend to provide a `LabelUse`
//!   type that implements a trait. This is nominally an enum that records one of
//!   several kinds of references to an offset in code -- basically, a relocation
//!   type -- and will usually correspond to different instruction formats. The
//!   `LabelUse` implementation specifies the maximum range, how to patch in the
//!   actual label location when known, and how to generate a veneer to extend the
//!   range.
//!
//! That satisfies label references, but we still may have suboptimal branch
//! patterns. To clean up the branches, we do a simple "peephole"-style
//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
//! informs the buffer of branches in the code and, in the case of conditionals,
//! the code that would have been emitted to invert this branch's condition. We
//! track the "latest branches": these are branches that are contiguous up to
//! the current offset. (If any code is emitted after a branch, that branch or
//! run of contiguous branches is no longer "latest".) The latest branches are
//! those that we can edit by simply truncating the buffer and doing something
//! else instead.
//!
//! To optimize branches, we implement several simple rules, and try to apply
//! them to the "latest branches" when possible:
//!
//! - A branch with a label target, when that label is bound to the ending
//!   offset of the branch (the fallthrough location), can be removed altogether,
//!   because the branch would have no effect).
//!
//! - An unconditional branch that starts at a label location, and branches to
//!   another label, results in a "label alias": all references to the label bound
//!   *to* this branch instruction are instead resolved to the *target* of the
//!   branch instruction. This effectively removes empty blocks that just
//!   unconditionally branch to the next block. We call this "branch threading".
//!
//! - A conditional followed by an unconditional, when the conditional branches
//!   to the unconditional's fallthrough, results in (i) the truncation of the
//!   unconditional, (ii) the inversion of the condition's condition, and (iii)
//!   replacement of the conditional's target (using the original target of the
//!   unconditional). This is a fancy way of saying "we can flip a two-target
//!   conditional branch's taken/not-taken targets if it works better with our
//!   fallthrough". To make this work, the emitter actually gives the buffer
//!   *both* forms of every conditional branch: the true form is emitted into the
//!   buffer, and the "inverted" machine-code bytes are provided as part of the
//!   branch-fixup metadata.
//!
//! - An unconditional B preceded by another unconditional P, when B's label(s) have
//!   been redirected to target(B), can be removed entirely. This is an extension
//!   of the branch-threading optimization, and is valid because if we know there
//!   will be no fallthrough into this branch instruction (the prior instruction
//!   is an unconditional jump), and if we know we have successfully redirected
//!   all labels, then this branch instruction is unreachable. Note that this
//!   works because the redirection happens before the label is ever resolved
//!   (fixups happen at island emission time, at which point latest-branches are
//!   cleared, or at the end of emission), so we are sure to catch and redirect
//!   all possible paths to this instruction.
//!
//! # Branch-optimization Correctness
//!
//! The branch-optimization mechanism depends on a few data structures with
//! invariants, which are always held outside the scope of top-level public
//! methods:
//!
//! - The latest-branches list. Each entry describes a span of the buffer
//!   (start/end offsets), the label target, the corresponding fixup-list entry
//!   index, and the bytes (must be the same length) for the inverted form, if
//!   conditional. The list of labels that are bound to the start-offset of this
//!   branch is *complete* (if any label has a resolved offset equal to `start`
//!   and is not an alias, it must appear in this list) and *precise* (no label
//!   in this list can be bound to another offset). No label in this list should
//!   be an alias.  No two branch ranges can overlap, and branches are in
//!   ascending-offset order.
//!
//! - The labels-at-tail list. This contains all MachLabels that have been bound
//!   to (whose resolved offsets are equal to) the tail offset of the buffer.
//!   No label in this list should be an alias.
//!
//! - The label_offsets array, containing the bound offset of a label or
//!   UNKNOWN. No label can be bound at an offset greater than the current
//!   buffer tail.
//!
//! - The label_aliases array, containing another label to which a label is
//!   bound or UNKNOWN. A label's resolved offset is the resolved offset
//!   of the label it is aliased to, if this is set.
//!
//! We argue below, at each method, how the invariants in these data structures
//! are maintained (grep for "Post-invariant").
//!
//! Given these invariants, we argue why each optimization preserves execution
//! semantics below (grep for "Preserves execution semantics").

use crate::binemit::{Addend, CodeOffset, CodeSink, Reloc, StackMap};
use crate::ir::{ExternalName, Opcode, SourceLoc, TrapCode};
use crate::machinst::{BlockIndex, MachInstLabelUse, VCodeConstant, VCodeConstants, VCodeInst};
use crate::timing;
use cranelift_entity::{entity_impl, SecondaryMap};

use log::trace;
use smallvec::SmallVec;
use std::mem;
use std::string::String;

/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
/// in bulk.
///
/// This struct uses `SmallVec`s to support small-ish function bodies without
/// any heap allocation. As such, it will be several kilobytes large. This is
/// likely fine as long as it is stack-allocated for function emission then
/// thrown away; but beware if many buffer objects are retained persistently.
pub struct MachBuffer<I: VCodeInst> {
    /// The buffer contents, as raw bytes.
    data: SmallVec<[u8; 1024]>,
    /// Any relocations referring to this code. Note that only *external*
    /// relocations are tracked here; references to labels within the buffer are
    /// resolved before emission.
    relocs: SmallVec<[MachReloc; 16]>,
    /// Any trap records referring to this code.
    traps: SmallVec<[MachTrap; 16]>,
    /// Any call site records referring to this code.
    call_sites: SmallVec<[MachCallSite; 16]>,
    /// Any source location mappings referring to this code.
    srclocs: SmallVec<[MachSrcLoc; 64]>,
    /// Any stack maps referring to this code.
    stack_maps: SmallVec<[MachStackMap; 8]>,
    /// The current source location in progress (after `start_srcloc()` and
    /// before `end_srcloc()`).  This is a (start_offset, src_loc) tuple.
    cur_srcloc: Option<(CodeOffset, SourceLoc)>,
    /// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
    label_offsets: SmallVec<[CodeOffset; 16]>,
    /// Label aliases: when one label points to an unconditional jump, and that
    /// jump points to another label, we can redirect references to the first
    /// label immediately to the second.
    ///
    /// Invariant: we don't have label-alias cycles. We ensure this by,
    /// before setting label A to alias label B, resolving B's alias
    /// target (iteratively until a non-aliased label); if B is already
    /// aliased to A, then we cannot alias A back to B.
    label_aliases: SmallVec<[MachLabel; 16]>,
    /// Constants that must be emitted at some point.
    pending_constants: SmallVec<[MachLabelConstant; 16]>,
    /// Fixups that must be performed after all code is emitted.
    fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
    /// Current deadline at which all constants are flushed and all code labels
    /// are extended by emitting long-range jumps in an island. This flush
    /// should be rare (e.g., on AArch64, the shortest-range PC-rel references
    /// are +/- 1MB for conditional jumps and load-literal instructions), so
    /// it's acceptable to track a minimum and flush-all rather than doing more
    /// detailed "current minimum" / sort-by-deadline trickery.
    island_deadline: CodeOffset,
    /// How many bytes are needed in the worst case for an island, given all
    /// pending constants and fixups.
    island_worst_case_size: CodeOffset,
    /// Latest branches, to facilitate in-place editing for better fallthrough
    /// behavior and empty-block removal.
    latest_branches: SmallVec<[MachBranch; 4]>,
    /// All labels at the current offset (emission tail). This is lazily
    /// cleared: it is actually accurate as long as the current offset is
    /// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
    /// be considered as empty.
    ///
    /// For correctness, this *must* be complete (i.e., the vector must contain
    /// all labels whose offsets are resolved to the current tail), because we
    /// rely on it to update labels when we truncate branches.
    labels_at_tail: SmallVec<[MachLabel; 4]>,
    /// The last offset at which `labels_at_tail` is valid. It is conceptually
    /// always describing the tail of the buffer, but we do not clear
    /// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
    /// when the offset has grown past this (`labels_at_tail_off`) point.
    /// Always <= `cur_offset()`.
    labels_at_tail_off: CodeOffset,
    /// Map used constants to their [MachLabel].
    constant_labels: SecondaryMap<VCodeConstant, MachLabel>,
}

/// A `MachBuffer` once emission is completed: holds generated code and records,
/// without fixups. This allows the type to be independent of the backend.
pub struct MachBufferFinalized {
    /// The buffer contents, as raw bytes.
    pub data: SmallVec<[u8; 1024]>,
    /// Any relocations referring to this code. Note that only *external*
    /// relocations are tracked here; references to labels within the buffer are
    /// resolved before emission.
    relocs: SmallVec<[MachReloc; 16]>,
    /// Any trap records referring to this code.
    traps: SmallVec<[MachTrap; 16]>,
    /// Any call site records referring to this code.
    call_sites: SmallVec<[MachCallSite; 16]>,
    /// Any source location mappings referring to this code.
    srclocs: SmallVec<[MachSrcLoc; 64]>,
    /// Any stack maps referring to this code.
    stack_maps: SmallVec<[MachStackMap; 8]>,
}

static UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
static UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);

/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
/// the point at which it is used by emitted code; the buffer records "fixups"
/// for references to the label, and will come back and patch the code
/// appropriately when the label's location is eventually known.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct MachLabel(u32);
entity_impl!(MachLabel);

impl MachLabel {
    /// Get a label for a block. (The first N MachLabels are always reseved for
    /// the N blocks in the vcode.)
    pub fn from_block(bindex: BlockIndex) -> MachLabel {
        MachLabel(bindex)
    }

    /// Get the numeric label index.
    pub fn get(self) -> u32 {
        self.0
    }

    /// Creates a string representing this label, for convenience.
    pub fn to_string(&self) -> String {
        format!("label{}", self.0)
    }
}

impl Default for MachLabel {
    fn default() -> Self {
        UNKNOWN_LABEL
    }
}

/// A stack map extent, when creating a stack map.
pub enum StackMapExtent {
    /// The stack map starts at this instruction, and ends after the number of upcoming bytes
    /// (note: this is a code offset diff).
    UpcomingBytes(CodeOffset),

    /// The stack map started at the given offset and ends at the current one. This helps
    /// architectures where the instruction size has not a fixed length.
    StartedAtOffset(CodeOffset),
}

impl<I: VCodeInst> MachBuffer<I> {
    /// Create a new section, known to start at `start_offset` and with a size limited to
    /// `length_limit`.
    pub fn new() -> MachBuffer<I> {
        MachBuffer {
            data: SmallVec::new(),
            relocs: SmallVec::new(),
            traps: SmallVec::new(),
            call_sites: SmallVec::new(),
            srclocs: SmallVec::new(),
            stack_maps: SmallVec::new(),
            cur_srcloc: None,
            label_offsets: SmallVec::new(),
            label_aliases: SmallVec::new(),
            pending_constants: SmallVec::new(),
            fixup_records: SmallVec::new(),
            island_deadline: UNKNOWN_LABEL_OFFSET,
            island_worst_case_size: 0,
            latest_branches: SmallVec::new(),
            labels_at_tail: SmallVec::new(),
            labels_at_tail_off: 0,
            constant_labels: SecondaryMap::new(),
        }
    }

    /// Debug-only: check invariants of labels and branch-records described
    /// under "Branch-optimization Correctness" above.
    #[cfg(debug)]
    fn check_label_branch_invariants(&self) {
        let cur_off = self.cur_offset();
        // Check that every entry in latest_branches has *correct*
        // labels_at_this_branch lists. We do not check completeness because
        // that would require building a reverse index, which is too slow even
        // for a debug invariant check.
        let mut last_end = 0;
        for b in &self.latest_branches {
            debug_assert!(b.start < b.end);
            debug_assert!(b.end <= cur_off);
            debug_assert!(b.start >= last_end);
            last_end = b.end;
            for &l in &b.labels_at_this_branch {
                debug_assert_eq!(self.resolve_label_offset(l), b.start);
                debug_assert_eq!(self.label_aliases[l.0 as usize], UNKNOWN_LABEL);
            }
        }

        // Check that every label is unresolved, or resolved at or before
        // cur_offset. If at cur_offset, must be in `labels_at_tail`.
        for (i, &off) in self.label_offsets.iter().enumerate() {
            let label = MachLabel(i as u32);
            debug_assert!(off == UNKNOWN_LABEL_OFFSET || off <= cur_off);
            if off == cur_off {
                debug_assert!(
                    self.labels_at_tail_off == cur_off && self.labels_at_tail.contains(&label)
                );
            }
        }

        // Check that every label in `labels_at_tail_off` is precise, i.e.,
        // resolves to the cur offset.
        debug_assert!(self.labels_at_tail_off <= cur_off);
        if self.labels_at_tail_off == cur_off {
            for &l in &self.labels_at_tail {
                debug_assert_eq!(self.resolve_label_offset(l), cur_off);
                debug_assert_eq!(self.label_aliases[l.0 as usize], UNKNOWN_LABEL);
            }
        }
    }

    #[cfg(not(debug))]
    fn check_label_branch_invariants(&self) {
        // Nothing.
    }

    /// Current offset from start of buffer.
    pub fn cur_offset(&self) -> CodeOffset {
        self.data.len() as CodeOffset
    }

    /// Add a byte.
    pub fn put1(&mut self, value: u8) {
        trace!("MachBuffer: put byte @ {}: {:x}", self.cur_offset(), value);
        self.data.push(value);

        // Post-invariant: conceptual-labels_at_tail contains a complete and
        // precise list of labels bound at `cur_offset()`. We have advanced
        // `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
        // before, it is not anymore (and it cannot become equal, because
        // `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
        // conceptually empty (even though it is only lazily cleared). No labels
        // can be bound at this new offset (by invariant on `label_offsets`).
        // Hence the invariant holds.
    }

    /// Add 2 bytes.
    pub fn put2(&mut self, value: u16) {
        trace!(
            "MachBuffer: put 16-bit word @ {}: {:x}",
            self.cur_offset(),
            value
        );
        let bytes = value.to_le_bytes();
        self.data.extend_from_slice(&bytes[..]);

        // Post-invariant: as for `put1()`.
    }

    /// Add 4 bytes.
    pub fn put4(&mut self, value: u32) {
        trace!(
            "MachBuffer: put 32-bit word @ {}: {:x}",
            self.cur_offset(),
            value
        );
        let bytes = value.to_le_bytes();
        self.data.extend_from_slice(&bytes[..]);

        // Post-invariant: as for `put1()`.
    }

    /// Add 8 bytes.
    pub fn put8(&mut self, value: u64) {
        trace!(
            "MachBuffer: put 64-bit word @ {}: {:x}",
            self.cur_offset(),
            value
        );
        let bytes = value.to_le_bytes();
        self.data.extend_from_slice(&bytes[..]);

        // Post-invariant: as for `put1()`.
    }

    /// Add a slice of bytes.
    pub fn put_data(&mut self, data: &[u8]) {
        trace!(
            "MachBuffer: put data @ {}: len {}",
            self.cur_offset(),
            data.len()
        );
        self.data.extend_from_slice(data);

        // Post-invariant: as for `put1()`.
    }

    /// Reserve appended space and return a mutable slice referring to it.
    pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
        trace!("MachBuffer: put data @ {}: len {}", self.cur_offset(), len);
        let off = self.data.len();
        let new_len = self.data.len() + len;
        self.data.resize(new_len, 0);
        &mut self.data[off..]

        // Post-invariant: as for `put1()`.
    }

    /// Align up to the given alignment.
    pub fn align_to(&mut self, align_to: CodeOffset) {
        trace!("MachBuffer: align to {}", align_to);
        assert!(align_to.is_power_of_two());
        while self.cur_offset() & (align_to - 1) != 0 {
            self.put1(0);
        }

        // Post-invariant: as for `put1()`.
    }

    /// Allocate a `Label` to refer to some offset. May not be bound to a fixed
    /// offset yet.
    pub fn get_label(&mut self) -> MachLabel {
        let l = self.label_offsets.len() as u32;
        self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
        self.label_aliases.push(UNKNOWN_LABEL);
        trace!("MachBuffer: new label -> {:?}", MachLabel(l));
        MachLabel(l)

        // Post-invariant: the only mutation is to add a new label; it has no
        // bound offset yet, so it trivially satisfies all invariants.
    }

    /// Reserve the first N MachLabels for blocks.
    pub fn reserve_labels_for_blocks(&mut self, blocks: BlockIndex) {
        trace!("MachBuffer: first {} labels are for blocks", blocks);
        debug_assert!(self.label_offsets.is_empty());
        self.label_offsets
            .resize(blocks as usize, UNKNOWN_LABEL_OFFSET);
        self.label_aliases.resize(blocks as usize, UNKNOWN_LABEL);

        // Post-invariant: as for `get_label()`.
    }

    /// Reserve the next N MachLabels for constants.
    pub fn reserve_labels_for_constants(&mut self, constants: &VCodeConstants) {
        trace!(
            "MachBuffer: next {} labels are for constants",
            constants.len()
        );
        for c in constants.keys() {
            self.constant_labels[c] = self.get_label();
        }

        // Post-invariant: as for `get_label()`.
    }

    /// Retrieve the reserved label for a constant.
    pub fn get_label_for_constant(&self, constant: VCodeConstant) -> MachLabel {
        self.constant_labels[constant]
    }

    /// Bind a label to the current offset. A label can only be bound once.
    pub fn bind_label(&mut self, label: MachLabel) {
        trace!(
            "MachBuffer: bind label {:?} at offset {}",
            label,
            self.cur_offset()
        );
        debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
        debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
        let offset = self.cur_offset();
        self.label_offsets[label.0 as usize] = offset;
        self.lazily_clear_labels_at_tail();
        self.labels_at_tail.push(label);

        // Invariants hold: bound offset of label is <= cur_offset (in fact it
        // is equal). If the `labels_at_tail` list was complete and precise
        // before, it is still, because we have bound this label to the current
        // offset and added it to the list (which contains all labels at the
        // current offset).

        self.check_label_branch_invariants();
        self.optimize_branches();

        // Post-invariant: by `optimize_branches()` (see argument there).
        self.check_label_branch_invariants();
    }

    /// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
    /// offset that it applies to.
    fn lazily_clear_labels_at_tail(&mut self) {
        let offset = self.cur_offset();
        if offset > self.labels_at_tail_off {
            self.labels_at_tail_off = offset;
            self.labels_at_tail.clear();
        }

        // Post-invariant: either labels_at_tail_off was at cur_offset, and
        // state is untouched, or was less than cur_offset, in which case the
        // labels_at_tail list was conceptually empty, and is now actually
        // empty.
    }

    /// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
    fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
        let mut iters = 0;
        while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
            label = self.label_aliases[label.0 as usize];
            // To protect against an infinite loop (despite our assurances to
            // ourselves that the invariants make this impossible), assert out
            // after 1M iterations. The number of basic blocks is limited
            // in most contexts anyway so this should be impossible to hit with
            // a legitimate input.
            iters += 1;
            assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
        }
        self.label_offsets[label.0 as usize]

        // Post-invariant: no mutations.
    }

    /// Emit a reference to the given label with the given reference type (i.e.,
    /// branch-instruction format) at the current offset.  This is like a
    /// relocation, but handled internally.
    ///
    /// This can be called before the branch is actually emitted; fixups will
    /// not happen until an island is emitted or the buffer is finished.
    pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
        trace!(
            "MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
            offset,
            label,
            kind
        );

        // Add the fixup, and update the worst-case island size based on a
        // veneer for this label use.
        self.fixup_records.push(MachLabelFixup {
            label,
            offset,
            kind,
        });
        if kind.supports_veneer() {
            self.island_worst_case_size += kind.veneer_size();
            self.island_worst_case_size &= !(I::LabelUse::ALIGN - 1);
        }
        let deadline = offset + kind.max_pos_range();
        if deadline < self.island_deadline {
            self.island_deadline = deadline;
        }

        // Post-invariant: no mutations to branches/labels data structures.
        self.check_label_branch_invariants();
    }

    /// Inform the buffer of an unconditional branch at the given offset,
    /// targetting the given label. May be used to optimize branches.
    /// The last added label-use must correspond to this branch.
    /// This must be called when the current offset is equal to `start`; i.e.,
    /// before actually emitting the branch. This implies that for a branch that
    /// uses a label and is eligible for optimizations by the MachBuffer, the
    /// proper sequence is:
    ///
    /// - Call `use_label_at_offset()` to emit the fixup record.
    /// - Call `add_uncond_branch()` to make note of the branch.
    /// - Emit the bytes for the branch's machine code.
    ///
    /// Additional requirement: no labels may be bound between `start` and `end`
    /// (exclusive on both ends).
    pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
        assert!(self.cur_offset() == start);
        debug_assert!(end > start);
        assert!(!self.fixup_records.is_empty());
        let fixup = self.fixup_records.len() - 1;
        self.lazily_clear_labels_at_tail();
        self.latest_branches.push(MachBranch {
            start,
            end,
            target,
            fixup,
            inverted: None,
            labels_at_this_branch: self.labels_at_tail.clone(),
        });

        // Post-invariant: we asserted branch start is current tail; the list of
        // labels at branch is cloned from list of labels at current tail.
        self.check_label_branch_invariants();
    }

    /// Inform the buffer of a conditional branch at the given offset,
    /// targetting the given label. May be used to optimize branches.
    /// The last added label-use must correspond to this branch.
    ///
    /// Additional requirement: no labels may be bound between `start` and `end`
    /// (exclusive on both ends).
    pub fn add_cond_branch(
        &mut self,
        start: CodeOffset,
        end: CodeOffset,
        target: MachLabel,
        inverted: &[u8],
    ) {
        assert!(self.cur_offset() == start);
        debug_assert!(end > start);
        assert!(!self.fixup_records.is_empty());
        debug_assert!(inverted.len() == (end - start) as usize);
        let fixup = self.fixup_records.len() - 1;
        let inverted = Some(SmallVec::from(inverted));
        self.lazily_clear_labels_at_tail();
        self.latest_branches.push(MachBranch {
            start,
            end,
            target,
            fixup,
            inverted,
            labels_at_this_branch: self.labels_at_tail.clone(),
        });

        // Post-invariant: we asserted branch start is current tail; labels at
        // branch list is cloned from list of labels at current tail.
        self.check_label_branch_invariants();
    }

    fn truncate_last_branch(&mut self) {
        self.lazily_clear_labels_at_tail();
        // Invariants hold at this point.

        let b = self.latest_branches.pop().unwrap();
        assert!(b.end == self.cur_offset());

        // State:
        //    [PRE CODE]
        //  Offset b.start, b.labels_at_this_branch:
        //    [BRANCH CODE]
        //  cur_off, self.labels_at_tail -->
        //    (end of buffer)
        self.data.truncate(b.start as usize);
        self.fixup_records.truncate(b.fixup);
        while let Some(last_srcloc) = self.srclocs.last() {
            if last_srcloc.end <= b.start {
                break;
            }
            self.srclocs.pop();
        }
        // State:
        //    [PRE CODE]
        //  cur_off, Offset b.start, b.labels_at_this_branch:
        //    (end of buffer)
        //
        //  self.labels_at_tail -->  (past end of buffer)
        let cur_off = self.cur_offset();
        self.labels_at_tail_off = cur_off;
        // State:
        //    [PRE CODE]
        //  cur_off, Offset b.start, b.labels_at_this_branch,
        //  self.labels_at_tail:
        //    (end of buffer)
        //
        // resolve_label_offset(l) for l in labels_at_tail:
        //    (past end of buffer)

        trace!(
            "truncate_last_branch: truncated {:?}; off now {}",
            b,
            cur_off
        );

        // Fix up resolved label offsets for labels at tail.
        for &l in &self.labels_at_tail {
            self.label_offsets[l.0 as usize] = cur_off;
        }
        // Old labels_at_this_branch are now at cur_off.
        self.labels_at_tail
            .extend(b.labels_at_this_branch.into_iter());

        // Post-invariant: this operation is defined to truncate the buffer,
        // which moves cur_off backward, and to move labels at the end of the
        // buffer back to the start-of-branch offset.
        //
        // latest_branches satisfies all invariants:
        // - it has no branches past the end of the buffer (branches are in
        //   order, we removed the last one, and we truncated the buffer to just
        //   before the start of that branch)
        // - no labels were moved to lower offsets than the (new) cur_off, so
        //   the labels_at_this_branch list for any other branch need not change.
        //
        // labels_at_tail satisfies all invariants:
        // - all labels that were at the tail after the truncated branch are
        //   moved backward to just before the branch, which becomes the new tail;
        //   thus every element in the list should remain (ensured by `.extend()`
        //   above).
        // - all labels that refer to the new tail, which is the start-offset of
        //   the truncated branch, must be present. The `labels_at_this_branch`
        //   list in the truncated branch's record is a complete and precise list
        //   of exactly these labels; we append these to labels_at_tail.
        // - labels_at_tail_off is at cur_off after truncation occurs, so the
        //   list is valid (not to be lazily cleared).
        //
        // The stated operation was performed:
        // - For each label at the end of the buffer prior to this method, it
        //   now resolves to the new (truncated) end of the buffer: it must have
        //   been in `labels_at_tail` (this list is precise and complete, and
        //   the tail was at the end of the truncated branch on entry), and we
        //   iterate over this list and set `label_offsets` to the new tail.
        //   None of these labels could have been an alias (by invariant), so
        //   `label_offsets` is authoritative for each.
        // - No other labels will be past the end of the buffer, because of the
        //   requirement that no labels be bound to the middle of branch ranges
        //   (see comments to `add_{cond,uncond}_branch()`).
        // - The buffer is truncated to just before the last branch, and the
        //   fixup record referring to that last branch is removed.
        self.check_label_branch_invariants();
    }

    fn optimize_branches(&mut self) {
        self.lazily_clear_labels_at_tail();
        // Invariants valid at this point.

        trace!(
            "enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
            self.latest_branches,
            self.labels_at_tail,
            self.fixup_records
        );

        // We continue to munch on branches at the tail of the buffer until no
        // more rules apply. Note that the loop only continues if a branch is
        // actually truncated (or if labels are redirected away from a branch),
        // so this always makes progress.
        while let Some(b) = self.latest_branches.last() {
            let cur_off = self.cur_offset();
            trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
            // If there has been any code emission since the end of the last branch or
            // label definition, then there's nothing we can edit (because we
            // don't move code once placed, only back up and overwrite), so
            // clear the records and finish.
            if b.end < cur_off {
                break;
            }

            // Invariant: we are looking at a branch that ends at the tail of
            // the buffer.

            // For any branch, conditional or unconditional:
            // - If the target is a label at the current offset, then remove
            //   the conditional branch, and reset all labels that targetted
            //   the current offset (end of branch) to the truncated
            //   end-of-code.
            //
            // Preserves execution semantics: a branch to its own fallthrough
            // address is equivalent to a no-op; in both cases, nextPC is the
            // fallthrough.
            if self.resolve_label_offset(b.target) == cur_off {
                trace!("branch with target == cur off; truncating");
                self.truncate_last_branch();
                continue;
            }

            // If latest is an unconditional branch:
            //
            // - If the branch's target is not its own start address, then for
            //   each label at the start of branch, make the label an alias of the
            //   branch target, and remove the label from the "labels at this
            //   branch" list.
            //
            //   - Preserves execution semantics: an unconditional branch's
            //     only effect is to set PC to a new PC; this change simply
            //     collapses one step in the step-semantics.
            //
            //   - Post-invariant: the labels that were bound to the start of
            //     this branch become aliases, so they must not be present in any
            //     labels-at-this-branch list or the labels-at-tail list. The
            //     labels are removed form the latest-branch record's
            //     labels-at-this-branch list, and are never placed in the
            //     labels-at-tail list. Furthermore, it is correct that they are
            //     not in either list, because they are now aliases, and labels
            //     that are aliases remain aliases forever.
            //
            // - If there is a prior unconditional branch that ends just before
            //   this one begins, and this branch has no labels bound to its
            //   start, then we can truncate this branch, because it is entirely
            //   unreachable (we have redirected all labels that make it
            //   reachable otherwise). Do so and continue around the loop.
            //
            //   - Preserves execution semantics: the branch is unreachable,
            //     because execution can only flow into an instruction from the
            //     prior instruction's fallthrough or from a branch bound to that
            //     instruction's start offset. Unconditional branches have no
            //     fallthrough, so if the prior instruction is an unconditional
            //     branch, no fallthrough entry can happen. The
            //     labels-at-this-branch list is complete (by invariant), so if it
            //     is empty, then the instruction is entirely unreachable. Thus,
            //     it can be removed.
            //
            //   - Post-invariant: ensured by truncate_last_branch().
            //
            // - If there is a prior conditional branch whose target label
            //   resolves to the current offset (branches around the
            //   unconditional branch), then remove the unconditional branch,
            //   and make the target of the unconditional the target of the
            //   conditional instead.
            //
            //   - Preserves execution semantics: previously we had:
            //
            //         L1:
            //            cond_br L2
            //            br L3
            //         L2:
            //            (end of buffer)
            //
            //     by removing the last branch, we have:
            //
            //         L1:
            //            cond_br L2
            //         L2:
            //            (end of buffer)
            //
            //     we then fix up the records for the conditional branch to
            //     have:
            //
            //         L1:
            //           cond_br.inverted L3
            //         L2:
            //
            //     In the original code, control flow reaches L2 when the
            //     conditional branch's predicate is true, and L3 otherwise. In
            //     the optimized code, the same is true.
            //
            //   - Post-invariant: all edits to latest_branches and
            //     labels_at_tail are performed by `truncate_last_branch()`,
            //     which maintains the invariants at each step.

            if b.is_uncond() {
                // Set any label equal to current branch's start as an alias of
                // the branch's target, if the target is not the branch itself
                // (i.e., an infinite loop).
                //
                // We cannot perform this aliasing if the target of this branch
                // ultimately aliases back here; if so, we need to keep this
                // branch, so break out of this loop entirely (and clear the
                // latest-branches list below).
                //
                // Note that this check is what prevents cycles from forming in
                // `self.label_aliases`. To see why, consider an arbitrary start
                // state:
                //
                // label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
                // Ln, which is not aliased.
                //
                // We would create a cycle if we assigned label_aliases[Ln]
                // = L1.  Note that the below assignment is the only write
                // to label_aliases.
                //
                // By our other invariants, we have that Ln (`l` below)
                // resolves to the offset `b.start`, because it is in the
                // set `b.labels_at_this_branch`.
                //
                // If L1 were already aliased, through some arbitrarily deep
                // chain, to Ln, then it must also resolve to this offset
                // `b.start`.
                //
                // By checking the resolution of `L1` against this offset,
                // and aborting this branch-simplification if they are
                // equal, we prevent the below assignment from ever creating
                // a cycle.
                if self.resolve_label_offset(b.target) != b.start {
                    let redirected = b.labels_at_this_branch.len();
                    for &l in &b.labels_at_this_branch {
                        trace!(
                            " -> label at start of branch {:?} redirected to target {:?}",
                            l,
                            b.target
                        );
                        self.label_aliases[l.0 as usize] = b.target;
                        // NOTE: we continue to ensure the invariant that labels
                        // pointing to tail of buffer are in `labels_at_tail`
                        // because we already ensured above that the last branch
                        // cannot have a target of `cur_off`; so we never have
                        // to put the label into `labels_at_tail` when moving it
                        // here.
                    }
                    // Maintain invariant: all branches have been redirected
                    // and are no longer pointing at the start of this branch.
                    let mut_b = self.latest_branches.last_mut().unwrap();
                    mut_b.labels_at_this_branch.clear();

                    if redirected > 0 {
                        trace!(" -> after label redirects, restarting loop");
                        continue;
                    }
                } else {
                    break;
                }

                let b = self.latest_branches.last().unwrap();

                // Examine any immediately preceding branch.
                if self.latest_branches.len() > 1 {
                    let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
                    trace!(" -> more than one branch; prev_b = {:?}", prev_b);
                    // This uncond is immediately after another uncond; we
                    // should have already redirected labels to this uncond away
                    // (but check to be sure); so we can truncate this uncond.
                    if prev_b.is_uncond()
                        && prev_b.end == b.start
                        && b.labels_at_this_branch.is_empty()
                    {
                        trace!(" -> uncond follows another uncond; truncating");
                        self.truncate_last_branch();
                        continue;
                    }

                    // This uncond is immediately after a conditional, and the
                    // conditional's target is the end of this uncond, and we've
                    // already redirected labels to this uncond away; so we can
                    // truncate this uncond, flip the sense of the conditional, and
                    // set the conditional's target (in `latest_branches` and in
                    // `fixup_records`) to the uncond's target.
                    if prev_b.is_cond()
                        && prev_b.end == b.start
                        && self.resolve_label_offset(prev_b.target) == cur_off
                    {
                        trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
                        // Save the target of the uncond (this becomes the
                        // target of the cond), and truncate the uncond.
                        let target = b.target;
                        let data = prev_b.inverted.clone().unwrap();
                        self.truncate_last_branch();

                        // Mutate the code and cond branch.
                        let off_before_edit = self.cur_offset();
                        let prev_b = self.latest_branches.last_mut().unwrap();
                        let not_inverted = SmallVec::from(
                            &self.data[(prev_b.start as usize)..(prev_b.end as usize)],
                        );

                        // Low-level edit: replaces bytes of branch with
                        // inverted form. cur_off remains the same afterward, so
                        // we do not need to modify label data structures.
                        self.data.truncate(prev_b.start as usize);
                        self.data.extend_from_slice(&data[..]);

                        // Save the original code as the inversion of the
                        // inverted branch, in case we later edit this branch
                        // again.
                        prev_b.inverted = Some(not_inverted);
                        self.fixup_records[prev_b.fixup].label = target;
                        trace!(" -> reassigning target of condbr to {:?}", target);
                        prev_b.target = target;
                        debug_assert_eq!(off_before_edit, self.cur_offset());
                        continue;
                    }
                }
            }

            // If we couldn't do anything with the last branch, then break.
            break;
        }

        self.purge_latest_branches();

        trace!(
            "leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
            self.latest_branches,
            self.labels_at_tail,
            self.fixup_records
        );
    }

    fn purge_latest_branches(&mut self) {
        // All of our branch simplification rules work only if a branch ends at
        // the tail of the buffer, with no following code; and branches are in
        // order in latest_branches; so if the last entry ends prior to
        // cur_offset, then clear all entries.
        let cur_off = self.cur_offset();
        if let Some(l) = self.latest_branches.last() {
            if l.end < cur_off {
                trace!("purge_latest_branches: removing branch {:?}", l);
                self.latest_branches.clear();
            }
        }

        // Post-invariant: no invariant requires any branch to appear in
        // `latest_branches`; it is always optional. The list-clear above thus
        // preserves all semantics.
    }

    /// Emit a constant at some point in the future, binding the given label to
    /// its offset. The constant will be placed at most `max_distance` from the
    /// current offset.
    pub fn defer_constant(
        &mut self,
        label: MachLabel,
        align: CodeOffset,
        data: &[u8],
        max_distance: CodeOffset,
    ) {
        trace!(
            "defer_constant: eventually emit {} bytes aligned to {} at label {:?}",
            data.len(),
            align,
            label
        );
        let deadline = self.cur_offset().saturating_add(max_distance);
        self.island_worst_case_size += data.len() as CodeOffset;
        self.island_worst_case_size =
            (self.island_worst_case_size + I::LabelUse::ALIGN - 1) & !(I::LabelUse::ALIGN - 1);
        self.pending_constants.push(MachLabelConstant {
            label,
            align,
            data: SmallVec::from(data),
        });
        if deadline < self.island_deadline {
            self.island_deadline = deadline;
        }
    }

    /// Is an island needed within the next N bytes?
    pub fn island_needed(&self, distance: CodeOffset) -> bool {
        let worst_case_end_of_island = self.cur_offset() + distance + self.island_worst_case_size;
        worst_case_end_of_island > self.island_deadline
    }

    /// Emit all pending constants and veneers. Should only be called if
    /// `island_needed()` returns true, i.e., if we actually reach a deadline:
    /// otherwise, unnecessary veneers may be inserted.
    pub fn emit_island(&mut self) {
        // We're going to purge fixups, so no latest-branch editing can happen
        // anymore.
        self.latest_branches.clear();

        let pending_constants = mem::replace(&mut self.pending_constants, SmallVec::new());
        for MachLabelConstant { label, align, data } in pending_constants.into_iter() {
            self.align_to(align);
            self.bind_label(label);
            self.put_data(&data[..]);
        }

        let fixup_records = mem::replace(&mut self.fixup_records, SmallVec::new());
        let mut new_fixups = SmallVec::new();
        for MachLabelFixup {
            label,
            offset,
            kind,
        } in fixup_records.into_iter()
        {
            trace!(
                "emit_island: fixup for label {:?} at offset {} kind {:?}",
                label,
                offset,
                kind
            );
            // We eagerly perform fixups whose label targets are known, if not out
            // of range, to avoid unnecessary veneers.
            let label_offset = self.resolve_label_offset(label);
            let known = label_offset != UNKNOWN_LABEL_OFFSET;
            let in_range = if known {
                if label_offset >= offset {
                    (label_offset - offset) <= kind.max_pos_range()
                } else {
                    (offset - label_offset) <= kind.max_neg_range()
                }
            } else {
                false
            };

            trace!(
                " -> label_offset = {}, known = {}, in_range = {} (pos {} neg {})",
                label_offset,
                known,
                in_range,
                kind.max_pos_range(),
                kind.max_neg_range()
            );

            let start = offset as usize;
            let end = (offset + kind.patch_size()) as usize;
            if in_range {
                debug_assert!(known); // implied by in_range.
                let slice = &mut self.data[start..end];
                trace!("patching in-range!");
                kind.patch(slice, offset, label_offset);
            } else if !known && !kind.supports_veneer() {
                // Nothing for now. Keep it for next round.
                new_fixups.push(MachLabelFixup {
                    label,
                    offset,
                    kind,
                });
            } else if !in_range && kind.supports_veneer() {
                // Allocate space for a veneer in the island.
                self.align_to(I::LabelUse::ALIGN);
                let veneer_offset = self.cur_offset();
                trace!("making a veneer at {}", veneer_offset);
                let slice = &mut self.data[start..end];
                // Patch the original label use to refer to the veneer.
                trace!(
                    "patching original at offset {} to veneer offset {}",
                    offset,
                    veneer_offset
                );
                kind.patch(slice, offset, veneer_offset);
                // Generate the veneer.
                let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
                let (veneer_fixup_off, veneer_label_use) =
                    kind.generate_veneer(veneer_slice, veneer_offset);
                trace!(
                    "generated veneer; fixup offset {}, label_use {:?}",
                    veneer_fixup_off,
                    veneer_label_use
                );
                // If the label is known (but was just out of range), do the
                // veneer label-use fixup now too; otherwise, save it for later.
                if known {
                    let start = veneer_fixup_off as usize;
                    let end = (veneer_fixup_off + veneer_label_use.patch_size()) as usize;
                    let veneer_slice = &mut self.data[start..end];
                    trace!("doing veneer fixup right away too");
                    veneer_label_use.patch(veneer_slice, veneer_fixup_off, label_offset);
                } else {
                    new_fixups.push(MachLabelFixup {
                        label,
                        offset: veneer_fixup_off,
                        kind: veneer_label_use,
                    });
                }
            } else {
                panic!(
                    "Cannot support label-use {:?} (known = {}, in-range = {})",
                    kind, known, in_range
                );
            }
        }

        self.fixup_records = new_fixups;
        self.island_deadline = UNKNOWN_LABEL_OFFSET;
    }

    /// Finish any deferred emissions and/or fixups.
    pub fn finish(mut self) -> MachBufferFinalized {
        let _tt = timing::vcode_emit_finish();

        while !self.pending_constants.is_empty() || !self.fixup_records.is_empty() {
            // `emit_island()` will emit any pending veneers and constants, and
            // as a side-effect, will also take care of any fixups with resolved
            // labels eagerly.
            self.emit_island();
        }

        // Ensure that all labels have been fixed up after the last island is emitted. This is a
        // full (release-mode) assert because an unresolved label means the emitted code is
        // incorrect.
        assert!(self.fixup_records.is_empty());

        let mut srclocs = self.srclocs;
        srclocs.sort_by_key(|entry| entry.start);

        MachBufferFinalized {
            data: self.data,
            relocs: self.relocs,
            traps: self.traps,
            call_sites: self.call_sites,
            srclocs,
            stack_maps: self.stack_maps,
        }
    }

    /// Add an external relocation at the current offset.
    pub fn add_reloc(
        &mut self,
        srcloc: SourceLoc,
        kind: Reloc,
        name: &ExternalName,
        addend: Addend,
    ) {
        let name = name.clone();
        self.relocs.push(MachReloc {
            offset: self.data.len() as CodeOffset,
            srcloc,
            kind,
            name,
            addend,
        });
    }

    /// Add a trap record at the current offset.
    pub fn add_trap(&mut self, srcloc: SourceLoc, code: TrapCode) {
        self.traps.push(MachTrap {
            offset: self.data.len() as CodeOffset,
            srcloc,
            code,
        });
    }

    /// Add a call-site record at the current offset.
    pub fn add_call_site(&mut self, srcloc: SourceLoc, opcode: Opcode) {
        self.call_sites.push(MachCallSite {
            ret_addr: self.data.len() as CodeOffset,
            srcloc,
            opcode,
        });
    }

    /// Set the `SourceLoc` for code from this offset until the offset at the
    /// next call to `end_srcloc()`.
    pub fn start_srcloc(&mut self, loc: SourceLoc) {
        self.cur_srcloc = Some((self.cur_offset(), loc));
    }

    /// Mark the end of the `SourceLoc` segment started at the last
    /// `start_srcloc()` call.
    pub fn end_srcloc(&mut self) {
        let (start, loc) = self
            .cur_srcloc
            .take()
            .expect("end_srcloc() called without start_srcloc()");
        let end = self.cur_offset();
        // Skip zero-length extends.
        debug_assert!(end >= start);
        if end > start {
            self.srclocs.push(MachSrcLoc { start, end, loc });
        }
    }

    /// Add stack map metadata for this program point: a set of stack offsets
    /// (from SP upward) that contain live references.
    ///
    /// The `offset_to_fp` value is the offset from the nominal SP (at which the `stack_offsets`
    /// are based) and the FP value. By subtracting `offset_to_fp` from each `stack_offsets`
    /// element, one can obtain live-reference offsets from FP instead.
    pub fn add_stack_map(&mut self, extent: StackMapExtent, stack_map: StackMap) {
        let (start, end) = match extent {
            StackMapExtent::UpcomingBytes(insn_len) => {
                let start_offset = self.cur_offset();
                (start_offset, start_offset + insn_len)
            }
            StackMapExtent::StartedAtOffset(start_offset) => {
                let end_offset = self.cur_offset();
                debug_assert!(end_offset >= start_offset);
                (start_offset, end_offset)
            }
        };
        self.stack_maps.push(MachStackMap {
            offset: start,
            offset_end: end,
            stack_map,
        });
    }
}

impl MachBufferFinalized {
    /// Get a list of source location mapping tuples in sorted-by-start-offset order.
    pub fn get_srclocs_sorted(&self) -> &[MachSrcLoc] {
        &self.srclocs[..]
    }

    /// Get the total required size for the code.
    pub fn total_size(&self) -> CodeOffset {
        self.data.len() as CodeOffset
    }

    /// Emit this buffer to the given CodeSink.
    pub fn emit<CS: CodeSink>(&self, sink: &mut CS) {
        // N.B.: we emit every section into the .text section as far as
        // the `CodeSink` is concerned; we do not bother to segregate
        // the contents into the actual program text, the jumptable and the
        // rodata (constant pool). This allows us to generate code assuming
        // that these will not be relocated relative to each other, and avoids
        // having to designate each section as belonging in one of the three
        // fixed categories defined by `CodeSink`. If this becomes a problem
        // later (e.g. because of memory permissions or similar), we can
        // add this designation and segregate the output; take care, however,
        // to add the appropriate relocations in this case.

        let mut next_reloc = 0;
        let mut next_trap = 0;
        let mut next_call_site = 0;
        for (idx, byte) in self.data.iter().enumerate() {
            if next_reloc < self.relocs.len() {
                let reloc = &self.relocs[next_reloc];
                if reloc.offset == idx as CodeOffset {
                    sink.reloc_external(reloc.srcloc, reloc.kind, &reloc.name, reloc.addend);
                    next_reloc += 1;
                }
            }
            if next_trap < self.traps.len() {
                let trap = &self.traps[next_trap];
                if trap.offset == idx as CodeOffset {
                    sink.trap(trap.code, trap.srcloc);
                    next_trap += 1;
                }
            }
            if next_call_site < self.call_sites.len() {
                let call_site = &self.call_sites[next_call_site];
                if call_site.ret_addr == idx as CodeOffset {
                    sink.add_call_site(call_site.opcode, call_site.srcloc);
                    next_call_site += 1;
                }
            }
            sink.put1(*byte);
        }

        sink.begin_jumptables();
        sink.begin_rodata();
        sink.end_codegen();
    }

    /// Get the stack map metadata for this code.
    pub fn stack_maps(&self) -> &[MachStackMap] {
        &self.stack_maps[..]
    }
}

/// A constant that is deferred to the next constant-pool opportunity.
struct MachLabelConstant {
    /// This label will refer to the constant's offset.
    label: MachLabel,
    /// Required alignment.
    align: CodeOffset,
    /// This data will be emitted when able.
    data: SmallVec<[u8; 16]>,
}

/// A fixup to perform on the buffer once code is emitted. Fixups always refer
/// to labels and patch the code based on label offsets. Hence, they are like
/// relocations, but internal to one buffer.
#[derive(Debug)]
struct MachLabelFixup<I: VCodeInst> {
    /// The label whose offset controls this fixup.
    label: MachLabel,
    /// The offset to fix up / patch to refer to this label.
    offset: CodeOffset,
    /// The kind of fixup. This is architecture-specific; each architecture may have,
    /// e.g., several types of branch instructions, each with differently-sized
    /// offset fields and different places within the instruction to place the
    /// bits.
    kind: I::LabelUse,
}

/// A relocation resulting from a compilation.
struct MachReloc {
    /// The offset at which the relocation applies, *relative to the
    /// containing section*.
    offset: CodeOffset,
    /// The original source location.
    srcloc: SourceLoc,
    /// The kind of relocation.
    kind: Reloc,
    /// The external symbol / name to which this relocation refers.
    name: ExternalName,
    /// The addend to add to the symbol value.
    addend: i64,
}

/// A trap record resulting from a compilation.
struct MachTrap {
    /// The offset at which the trap instruction occurs, *relative to the
    /// containing section*.
    offset: CodeOffset,
    /// The original source location.
    srcloc: SourceLoc,
    /// The trap code.
    code: TrapCode,
}

/// A call site record resulting from a compilation.
struct MachCallSite {
    /// The offset of the call's return address, *relative to the containing section*.
    ret_addr: CodeOffset,
    /// The original source location.
    srcloc: SourceLoc,
    /// The call's opcode.
    opcode: Opcode,
}

/// A source-location mapping resulting from a compilation.
#[derive(Clone, Debug)]
pub struct MachSrcLoc {
    /// The start of the region of code corresponding to a source location.
    /// This is relative to the start of the function, not to the start of the
    /// section.
    pub start: CodeOffset,
    /// The end of the region of code corresponding to a source location.
    /// This is relative to the start of the section, not to the start of the
    /// section.
    pub end: CodeOffset,
    /// The source location.
    pub loc: SourceLoc,
}

/// Record of stack map metadata: stack offsets containing references.
#[derive(Clone, Debug)]
pub struct MachStackMap {
    /// The code offset at which this stack map applies.
    pub offset: CodeOffset,
    /// The code offset just past the "end" of the instruction: that is, the
    /// offset of the first byte of the following instruction, or equivalently,
    /// the start offset plus the instruction length.
    pub offset_end: CodeOffset,
    /// The stack map itself.
    pub stack_map: StackMap,
}

/// Record of branch instruction in the buffer, to facilitate editing.
#[derive(Clone, Debug)]
struct MachBranch {
    start: CodeOffset,
    end: CodeOffset,
    target: MachLabel,
    fixup: usize,
    inverted: Option<SmallVec<[u8; 8]>>,
    /// All labels pointing to the start of this branch. For correctness, this
    /// *must* be complete (i.e., must contain all labels whose resolved offsets
    /// are at the start of this branch): we rely on being able to redirect all
    /// labels that could jump to this branch before removing it, if it is
    /// otherwise unreachable.
    labels_at_this_branch: SmallVec<[MachLabel; 4]>,
}

impl MachBranch {
    fn is_cond(&self) -> bool {
        self.inverted.is_some()
    }
    fn is_uncond(&self) -> bool {
        self.inverted.is_none()
    }
}

// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
#[cfg(all(test, feature = "arm64"))]
mod test {
    use super::*;
    use crate::isa::aarch64::inst::xreg;
    use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
    use crate::machinst::MachInstEmit;
    use crate::settings;
    use std::default::Default;

    fn label(n: u32) -> MachLabel {
        MachLabel::from_block(n)
    }
    fn target(n: u32) -> BranchTarget {
        BranchTarget::Label(label(n))
    }

    #[test]
    fn test_elide_jump_to_next() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(2);
        buf.bind_label(label(0));
        let inst = Inst::Jump { dest: target(1) };
        inst.emit(&mut buf, &info, &mut state);
        buf.bind_label(label(1));
        let buf = buf.finish();
        assert_eq!(0, buf.total_size());
    }

    #[test]
    fn test_elide_trivial_jump_blocks() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(4);

        buf.bind_label(label(0));
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: target(1),
            not_taken: target(2),
        };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Jump { dest: target(3) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(2));
        let inst = Inst::Jump { dest: target(3) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(3));

        let buf = buf.finish();
        assert_eq!(0, buf.total_size());
    }

    #[test]
    fn test_flip_cond() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(4);

        buf.bind_label(label(0));
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: target(1),
            not_taken: target(2),
        };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Udf {
            trap_code: TrapCode::Interrupt,
        };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(2));
        let inst = Inst::Nop4;
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(3));

        let buf = buf.finish();

        let mut buf2 = MachBuffer::new();
        let mut state = Default::default();
        let inst = Inst::TrapIf {
            kind: CondBrKind::NotZero(xreg(0)),
            trap_code: TrapCode::Interrupt,
        };
        inst.emit(&mut buf2, &info, &mut state);
        let inst = Inst::Nop4;
        inst.emit(&mut buf2, &info, &mut state);

        let buf2 = buf2.finish();

        assert_eq!(buf.data, buf2.data);
    }

    #[test]
    fn test_island() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(4);

        buf.bind_label(label(0));
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: target(2),
            not_taken: target(3),
        };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(1));
        while buf.cur_offset() < 2000000 {
            if buf.island_needed(0) {
                buf.emit_island();
            }
            let inst = Inst::Nop4;
            inst.emit(&mut buf, &info, &mut state);
        }

        buf.bind_label(label(2));
        let inst = Inst::Nop4;
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(3));
        let inst = Inst::Nop4;
        inst.emit(&mut buf, &info, &mut state);

        let buf = buf.finish();

        assert_eq!(2000000 + 8, buf.total_size());

        let mut buf2 = MachBuffer::new();
        let mut state = Default::default();
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: BranchTarget::ResolvedOffset(1048576 - 4),
            not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
        };
        inst.emit(&mut buf2, &info, &mut state);

        let buf2 = buf2.finish();

        assert_eq!(&buf.data[0..8], &buf2.data[..]);
    }

    #[test]
    fn test_island_backward() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(4);

        buf.bind_label(label(0));
        let inst = Inst::Nop4;
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Nop4;
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(2));
        while buf.cur_offset() < 2000000 {
            let inst = Inst::Nop4;
            inst.emit(&mut buf, &info, &mut state);
        }

        buf.bind_label(label(3));
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: target(0),
            not_taken: target(1),
        };
        inst.emit(&mut buf, &info, &mut state);

        let buf = buf.finish();

        assert_eq!(2000000 + 12, buf.total_size());

        let mut buf2 = MachBuffer::new();
        let mut state = Default::default();
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: BranchTarget::ResolvedOffset(8),
            not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
        };
        inst.emit(&mut buf2, &info, &mut state);
        let inst = Inst::Jump {
            dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
        };
        inst.emit(&mut buf2, &info, &mut state);

        let buf2 = buf2.finish();

        assert_eq!(&buf.data[2000000..], &buf2.data[..]);
    }

    #[test]
    fn test_multiple_redirect() {
        // label0:
        //   cbz x0, label1
        //   b label2
        // label1:
        //   b label3
        // label2:
        //   nop
        //   nop
        //   b label0
        // label3:
        //   b label4
        // label4:
        //   b label5
        // label5:
        //   b label7
        // label6:
        //   nop
        // label7:
        //   ret
        //
        // -- should become:
        //
        // label0:
        //   cbz x0, label7
        // label2:
        //   nop
        //   nop
        //   b label0
        // label6:
        //   nop
        // label7:
        //   ret

        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(8);

        buf.bind_label(label(0));
        let inst = Inst::CondBr {
            kind: CondBrKind::Zero(xreg(0)),
            taken: target(1),
            not_taken: target(2),
        };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Jump { dest: target(3) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(2));
        let inst = Inst::Nop4;
        inst.emit(&mut buf, &info, &mut state);
        inst.emit(&mut buf, &info, &mut state);
        let inst = Inst::Jump { dest: target(0) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(3));
        let inst = Inst::Jump { dest: target(4) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(4));
        let inst = Inst::Jump { dest: target(5) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(5));
        let inst = Inst::Jump { dest: target(7) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(6));
        let inst = Inst::Nop4;
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(7));
        let inst = Inst::Ret;
        inst.emit(&mut buf, &info, &mut state);

        let buf = buf.finish();

        let golden_data = vec![
            0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
            0x1f, 0x20, 0x03, 0xd5, // nop
            0x1f, 0x20, 0x03, 0xd5, // nop
            0xfd, 0xff, 0xff, 0x17, // b 0
            0x1f, 0x20, 0x03, 0xd5, // nop
            0xc0, 0x03, 0x5f, 0xd6, // ret
        ];

        assert_eq!(&golden_data[..], &buf.data[..]);
    }

    #[test]
    fn test_handle_branch_cycle() {
        // label0:
        //   b label1
        // label1:
        //   b label2
        // label2:
        //   b label3
        // label3:
        //   b label4
        // label4:
        //   b label1  // note: not label0 (to make it interesting).
        //
        // -- should become:
        //
        // label0, label1, ..., label4:
        //   b label0
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(5);

        buf.bind_label(label(0));
        let inst = Inst::Jump { dest: target(1) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Jump { dest: target(2) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(2));
        let inst = Inst::Jump { dest: target(3) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(3));
        let inst = Inst::Jump { dest: target(4) };
        inst.emit(&mut buf, &info, &mut state);

        buf.bind_label(label(4));
        let inst = Inst::Jump { dest: target(1) };
        inst.emit(&mut buf, &info, &mut state);

        let buf = buf.finish();

        let golden_data = vec![
            0x00, 0x00, 0x00, 0x14, // b 0
        ];

        assert_eq!(&golden_data[..], &buf.data[..]);
    }
}