1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
// This file is part of Substrate.

// Copyright (C) 2020-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Tools for analyzing the benchmark results.

use std::collections::BTreeMap;
use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};
use crate::BenchmarkResults;

pub use linregress::RegressionModel;

pub struct Analysis {
	pub base: u128,
	pub slopes: Vec<u128>,
	pub names: Vec<String>,
	pub value_dists: Option<Vec<(Vec<u32>, u128, u128)>>,
	pub model: Option<RegressionModel>,
}

pub enum BenchmarkSelector {
	ExtrinsicTime,
	StorageRootTime,
	Reads,
	Writes,
}

impl Analysis {
	// Useful for when there are no components, and we just need an median value of the benchmark results.
	// Note: We choose the median value because it is more robust to outliers.
	fn median_value(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
		if r.is_empty() { return None }

		let mut values: Vec<u128> = r.iter().map(|result|
			match selector {
				BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
				BenchmarkSelector::StorageRootTime => result.storage_root_time,
				BenchmarkSelector::Reads => result.reads.into(),
				BenchmarkSelector::Writes => result.writes.into(),
			}
		).collect();

		values.sort();
		let mid = values.len() / 2;

		Some(Self {
			base: values[mid],
			slopes: Vec::new(),
			names: Vec::new(),
			value_dists: None,
			model: None,
		})
	}

	pub fn median_slopes(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
		if r[0].components.is_empty() { return Self::median_value(r, selector) }

		let results = r[0].components.iter().enumerate().map(|(i, &(param, _))| {
			let mut counted = BTreeMap::<Vec<u32>, usize>::new();
			for result in r.iter() {
				let mut p = result.components.iter().map(|x| x.1).collect::<Vec<_>>();
				p[i] = 0;
				*counted.entry(p).or_default() += 1;
			}
			let others: Vec<u32> = counted.iter().max_by_key(|i| i.1).expect("r is not empty; qed").0.clone();
			let values = r.iter()
				.filter(|v|
					v.components.iter()
						.map(|x| x.1)
						.zip(others.iter())
						.enumerate()
						.all(|(j, (v1, v2))| j == i || v1 == *v2)
				).map(|result| {
					// Extract the data we are interested in analyzing
					let data = match selector {
						BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
						BenchmarkSelector::StorageRootTime => result.storage_root_time,
						BenchmarkSelector::Reads => result.reads.into(),
						BenchmarkSelector::Writes => result.writes.into(),
					};
					(result.components[i].1, data)
				})
				.collect::<Vec<_>>();
			(format!("{:?}", param), i, others, values)
		}).collect::<Vec<_>>();

		let models = results.iter().map(|(_, _, _, ref values)| {
			let mut slopes = vec![];
			for (i, &(x1, y1)) in values.iter().enumerate() {
				for &(x2, y2) in values.iter().skip(i + 1) {
					if x1 != x2 {
						slopes.push((y1 as f64 - y2 as f64) / (x1 as f64 - x2 as f64));
					}
				}
			}
			slopes.sort_by(|a, b| a.partial_cmp(b).expect("values well defined; qed"));
			let slope = slopes[slopes.len() / 2];

			let mut offsets = vec![];
			for &(x, y) in values.iter() {
				offsets.push(y as f64 - slope * x as f64);
			}
			offsets.sort_by(|a, b| a.partial_cmp(b).expect("values well defined; qed"));
			let offset = offsets[offsets.len() / 2];

			(offset, slope)
		}).collect::<Vec<_>>();

		let models = models.iter()
			.zip(results.iter())
			.map(|((offset, slope), (_, i, others, _))| {
				let over = others.iter()
					.enumerate()
					.filter(|(j, _)| j != i)
					.map(|(j, v)| models[j].1 * *v as f64)
					.fold(0f64, |acc, i| acc + i);
				(*offset - over, *slope)
			})
			.collect::<Vec<_>>();

		let base = models[0].0.max(0f64) as u128;
		let slopes = models.iter().map(|x| x.1.max(0f64) as u128).collect::<Vec<_>>();

		Some(Self {
			base,
			slopes,
			names: results.into_iter().map(|x| x.0).collect::<Vec<_>>(),
			value_dists: None,
			model: None,
		})
	}

	pub fn min_squares_iqr(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
		if r[0].components.is_empty() { return Self::median_value(r, selector) }

		let mut results = BTreeMap::<Vec<u32>, Vec<u128>>::new();
		for result in r.iter() {
			let p = result.components.iter().map(|x| x.1).collect::<Vec<_>>();
			results.entry(p).or_default().push(match selector {
					BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
					BenchmarkSelector::StorageRootTime => result.storage_root_time,
					BenchmarkSelector::Reads => result.reads.into(),
					BenchmarkSelector::Writes => result.writes.into(),
				})
		}

		for (_, rs) in results.iter_mut() {
			rs.sort();
			let ql = rs.len() / 4;
			*rs = rs[ql..rs.len() - ql].to_vec();
		}

		let mut data = vec![("Y", results.iter().flat_map(|x| x.1.iter().map(|v| *v as f64)).collect())];

		let names = r[0].components.iter().map(|x| format!("{:?}", x.0)).collect::<Vec<_>>();
		data.extend(names.iter()
			.enumerate()
			.map(|(i, p)| (
				p.as_str(),
				results.iter()
					.flat_map(|x| Some(x.0[i] as f64)
						.into_iter()
						.cycle()
						.take(x.1.len())
					).collect::<Vec<_>>()
			))
		);

		let data = RegressionDataBuilder::new().build_from(data).ok()?;

		let model = FormulaRegressionBuilder::new()
			.data(&data)
			.formula(format!("Y ~ {}", names.join(" + ")))
			.fit()
			.ok()?;

		let slopes = model.parameters.regressor_values.iter()
			.enumerate()
			.map(|(_, x)| (*x + 0.5) as u128)
			.collect();

		let value_dists = results.iter().map(|(p, vs)| {
			// Avoid divide by zero
			if vs.len() == 0 { return (p.clone(), 0, 0) }
			let total = vs.iter()
				.fold(0u128, |acc, v| acc + *v);
			let mean = total / vs.len() as u128;
			let sum_sq_diff = vs.iter()
				.fold(0u128, |acc, v| {
					let d = mean.max(*v) - mean.min(*v);
					acc + d * d
				});
			let stddev = (sum_sq_diff as f64 / vs.len() as f64).sqrt() as u128;
			(p.clone(), mean, stddev)
		}).collect::<Vec<_>>();

		Some(Self {
			base: (model.parameters.intercept_value + 0.5) as u128,
			slopes,
			names,
			value_dists: Some(value_dists),
			model: Some(model),
		})
	}
}

fn ms(mut nanos: u128) -> String {
	let mut x = 100_000u128;
	while x > 1 {
		if nanos > x * 1_000 {
			nanos = nanos / x * x;
			break;
		}
		x /= 10;
	}
	format!("{}", nanos as f64 / 1_000f64)
}

impl std::fmt::Display for Analysis {
	fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
		if let Some(ref value_dists) = self.value_dists {
			writeln!(f, "\nData points distribution:")?;
			writeln!(f, "{}   mean µs  sigma µs       %", self.names.iter().map(|p| format!("{:>5}", p)).collect::<Vec<_>>().join(" "))?;
			for (param_values, mean, sigma) in value_dists.iter() {
				if *mean == 0 {
					writeln!(f, "{}  {:>8}  {:>8}  {:>3}.{}%",
						param_values.iter().map(|v| format!("{:>5}", v)).collect::<Vec<_>>().join(" "),
						ms(*mean),
						ms(*sigma),
						"?",
						"?"
					)?;
				} else {
					writeln!(f, "{}  {:>8}  {:>8}  {:>3}.{}%",
						param_values.iter().map(|v| format!("{:>5}", v)).collect::<Vec<_>>().join(" "),
						ms(*mean),
						ms(*sigma),
						(sigma * 100 / mean),
						(sigma * 1000 / mean % 10)
					)?;
				}
			}
		}
		if let Some(ref model) = self.model {
			writeln!(f, "\nQuality and confidence:")?;
			writeln!(f, "param     error")?;
			for (p, se) in self.names.iter().zip(model.se.regressor_values.iter()) {
				writeln!(f, "{}      {:>8}", p, ms(*se as u128))?;
			}
		}

		writeln!(f, "\nModel:")?;
		writeln!(f, "Time ~= {:>8}", ms(self.base))?;
		for (&t, n) in self.slopes.iter().zip(self.names.iter()) {
			writeln!(f, "    + {} {:>8}", n, ms(t))?;
		}
		writeln!(f, "              µs")
	}
}

impl std::fmt::Debug for Analysis {
	fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
		write!(f, "{}", self.base)?;
		for (&m, n) in self.slopes.iter().zip(self.names.iter()) {
			write!(f, " + ({} * {})", m, n)?;
		}
		write!(f,"")
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::BenchmarkParameter;

	fn benchmark_result(
		components: Vec<(BenchmarkParameter, u32)>,
		extrinsic_time: u128,
		storage_root_time: u128,
		reads: u32,
		writes: u32,
	) -> BenchmarkResults {
		BenchmarkResults {
			components,
			extrinsic_time,
			storage_root_time,
			reads,
			repeat_reads: 0,
			writes,
			repeat_writes: 0,
		}
	}

	#[test]
	fn analysis_median_slopes_should_work() {
		let data = vec![
			benchmark_result(vec![(BenchmarkParameter::n, 1), (BenchmarkParameter::m, 5)], 11_500_000, 0, 3, 10),
			benchmark_result(vec![(BenchmarkParameter::n, 2), (BenchmarkParameter::m, 5)], 12_500_000, 0, 4, 10),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 5)], 13_500_000, 0, 5, 10),
			benchmark_result(vec![(BenchmarkParameter::n, 4), (BenchmarkParameter::m, 5)], 14_500_000, 0, 6, 10),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 1)], 13_100_000, 0, 5, 2),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 3)], 13_300_000, 0, 5, 6),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 7)], 13_700_000, 0, 5, 14),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 10)], 14_000_000, 0, 5, 20),
		];

		let extrinsic_time = Analysis::median_slopes(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
		assert_eq!(extrinsic_time.base, 10_000_000);
		assert_eq!(extrinsic_time.slopes, vec![1_000_000, 100_000]);

		let reads = Analysis::median_slopes(&data, BenchmarkSelector::Reads).unwrap();
		assert_eq!(reads.base, 2);
		assert_eq!(reads.slopes, vec![1, 0]);

		let writes = Analysis::median_slopes(&data, BenchmarkSelector::Writes).unwrap();
		assert_eq!(writes.base, 0);
		assert_eq!(writes.slopes, vec![0, 2]);
	}

	#[test]
	fn analysis_median_min_squares_should_work() {
		let data = vec![
			benchmark_result(vec![(BenchmarkParameter::n, 1), (BenchmarkParameter::m, 5)], 11_500_000, 0, 3, 10),
			benchmark_result(vec![(BenchmarkParameter::n, 2), (BenchmarkParameter::m, 5)], 12_500_000, 0, 4, 10),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 5)], 13_500_000, 0, 5, 10),
			benchmark_result(vec![(BenchmarkParameter::n, 4), (BenchmarkParameter::m, 5)], 14_500_000, 0, 6, 10),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 1)], 13_100_000, 0, 5, 2),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 3)], 13_300_000, 0, 5, 6),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 7)], 13_700_000, 0, 5, 14),
			benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 10)], 14_000_000, 0, 5, 20),
		];

		let extrinsic_time = Analysis::min_squares_iqr(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
		assert_eq!(extrinsic_time.base, 10_000_000);
		assert_eq!(extrinsic_time.slopes, vec![1_000_000, 100_000]);

		let reads = Analysis::min_squares_iqr(&data, BenchmarkSelector::Reads).unwrap();
		assert_eq!(reads.base, 2);
		assert_eq!(reads.slopes, vec![1, 0]);

		let writes = Analysis::min_squares_iqr(&data, BenchmarkSelector::Writes).unwrap();
		assert_eq!(writes.base, 0);
		assert_eq!(writes.slopes, vec![0, 2]);
	}
}