1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
use std::cell::UnsafeCell;
use std::mem::MaybeUninit;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread;

use cache_padded::CachePadded;

use crate::{PopError, PushError};

/// A slot in a queue.
struct Slot<T> {
    /// The current stamp.
    stamp: AtomicUsize,

    /// The value in this slot.
    value: UnsafeCell<MaybeUninit<T>>,
}

/// A bounded queue.
pub struct Bounded<T> {
    /// The head of the queue.
    ///
    /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
    /// packed into a single `usize`. The lower bits represent the index, while the upper bits
    /// represent the lap. The mark bit in the head is always zero.
    ///
    /// Values are popped from the head of the queue.
    head: CachePadded<AtomicUsize>,

    /// The tail of the queue.
    ///
    /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
    /// packed into a single `usize`. The lower bits represent the index, while the upper bits
    /// represent the lap. The mark bit indicates that the queue is closed.
    ///
    /// Values are pushed into the tail of the queue.
    tail: CachePadded<AtomicUsize>,

    /// The buffer holding slots.
    buffer: Box<[Slot<T>]>,

    /// A stamp with the value of `{ lap: 1, mark: 0, index: 0 }`.
    one_lap: usize,

    /// If this bit is set in the tail, that means the queue is closed.
    mark_bit: usize,
}

impl<T> Bounded<T> {
    /// Creates a new bounded queue.
    pub fn new(cap: usize) -> Bounded<T> {
        assert!(cap > 0, "capacity must be positive");

        // Head is initialized to `{ lap: 0, mark: 0, index: 0 }`.
        let head = 0;
        // Tail is initialized to `{ lap: 0, mark: 0, index: 0 }`.
        let tail = 0;

        // Allocate a buffer of `cap` slots initialized with stamps.
        let mut buffer = Vec::with_capacity(cap);
        for i in 0..cap {
            // Set the stamp to `{ lap: 0, mark: 0, index: i }`.
            buffer.push(Slot {
                stamp: AtomicUsize::new(i),
                value: UnsafeCell::new(MaybeUninit::uninit()),
            });
        }

        // Compute constants `mark_bit` and `one_lap`.
        let mark_bit = (cap + 1).next_power_of_two();
        let one_lap = mark_bit * 2;

        Bounded {
            buffer: buffer.into(),
            one_lap,
            mark_bit,
            head: CachePadded::new(AtomicUsize::new(head)),
            tail: CachePadded::new(AtomicUsize::new(tail)),
        }
    }

    /// Attempts to push an item into the queue.
    pub fn push(&self, value: T) -> Result<(), PushError<T>> {
        let mut tail = self.tail.load(Ordering::Relaxed);

        loop {
            // Check if the queue is closed.
            if tail & self.mark_bit != 0 {
                return Err(PushError::Closed(value));
            }

            // Deconstruct the tail.
            let index = tail & (self.mark_bit - 1);
            let lap = tail & !(self.one_lap - 1);

            // Inspect the corresponding slot.
            let slot = &self.buffer[index];
            let stamp = slot.stamp.load(Ordering::Acquire);

            // If the tail and the stamp match, we may attempt to push.
            if tail == stamp {
                let new_tail = if index + 1 < self.buffer.len() {
                    // Same lap, incremented index.
                    // Set to `{ lap: lap, mark: 0, index: index + 1 }`.
                    tail + 1
                } else {
                    // One lap forward, index wraps around to zero.
                    // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
                    lap.wrapping_add(self.one_lap)
                };

                // Try moving the tail.
                match self.tail.compare_exchange_weak(
                    tail,
                    new_tail,
                    Ordering::SeqCst,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => {
                        // Write the value into the slot and update the stamp.
                        unsafe {
                            slot.value.get().write(MaybeUninit::new(value));
                        }
                        slot.stamp.store(tail + 1, Ordering::Release);
                        return Ok(());
                    }
                    Err(t) => {
                        tail = t;
                    }
                }
            } else if stamp.wrapping_add(self.one_lap) == tail + 1 {
                crate::full_fence();
                let head = self.head.load(Ordering::Relaxed);

                // If the head lags one lap behind the tail as well...
                if head.wrapping_add(self.one_lap) == tail {
                    // ...then the queue is full.
                    return Err(PushError::Full(value));
                }

                tail = self.tail.load(Ordering::Relaxed);
            } else {
                // Yield because we need to wait for the stamp to get updated.
                thread::yield_now();
                tail = self.tail.load(Ordering::Relaxed);
            }
        }
    }

    /// Attempts to pop an item from the queue.
    pub fn pop(&self) -> Result<T, PopError> {
        let mut head = self.head.load(Ordering::Relaxed);

        loop {
            // Deconstruct the head.
            let index = head & (self.mark_bit - 1);
            let lap = head & !(self.one_lap - 1);

            // Inspect the corresponding slot.
            let slot = &self.buffer[index];
            let stamp = slot.stamp.load(Ordering::Acquire);

            // If the the stamp is ahead of the head by 1, we may attempt to pop.
            if head + 1 == stamp {
                let new = if index + 1 < self.buffer.len() {
                    // Same lap, incremented index.
                    // Set to `{ lap: lap, mark: 0, index: index + 1 }`.
                    head + 1
                } else {
                    // One lap forward, index wraps around to zero.
                    // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
                    lap.wrapping_add(self.one_lap)
                };

                // Try moving the head.
                match self.head.compare_exchange_weak(
                    head,
                    new,
                    Ordering::SeqCst,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => {
                        // Read the value from the slot and update the stamp.
                        let value = unsafe { slot.value.get().read().assume_init() };
                        slot.stamp
                            .store(head.wrapping_add(self.one_lap), Ordering::Release);
                        return Ok(value);
                    }
                    Err(h) => {
                        head = h;
                    }
                }
            } else if stamp == head {
                crate::full_fence();
                let tail = self.tail.load(Ordering::Relaxed);

                // If the tail equals the head, that means the queue is empty.
                if (tail & !self.mark_bit) == head {
                    // Check if the queue is closed.
                    if tail & self.mark_bit != 0 {
                        return Err(PopError::Closed);
                    } else {
                        return Err(PopError::Empty);
                    }
                }

                head = self.head.load(Ordering::Relaxed);
            } else {
                // Yield because we need to wait for the stamp to get updated.
                thread::yield_now();
                head = self.head.load(Ordering::Relaxed);
            }
        }
    }

    /// Returns the number of items in the queue.
    pub fn len(&self) -> usize {
        loop {
            // Load the tail, then load the head.
            let tail = self.tail.load(Ordering::SeqCst);
            let head = self.head.load(Ordering::SeqCst);

            // If the tail didn't change, we've got consistent values to work with.
            if self.tail.load(Ordering::SeqCst) == tail {
                let hix = head & (self.mark_bit - 1);
                let tix = tail & (self.mark_bit - 1);

                return if hix < tix {
                    tix - hix
                } else if hix > tix {
                    self.buffer.len() - hix + tix
                } else if (tail & !self.mark_bit) == head {
                    0
                } else {
                    self.buffer.len()
                };
            }
        }
    }

    /// Returns `true` if the queue is empty.
    pub fn is_empty(&self) -> bool {
        let head = self.head.load(Ordering::SeqCst);
        let tail = self.tail.load(Ordering::SeqCst);

        // Is the tail equal to the head?
        //
        // Note: If the head changes just before we load the tail, that means there was a moment
        // when the queue was not empty, so it is safe to just return `false`.
        (tail & !self.mark_bit) == head
    }

    /// Returns `true` if the queue is full.
    pub fn is_full(&self) -> bool {
        let tail = self.tail.load(Ordering::SeqCst);
        let head = self.head.load(Ordering::SeqCst);

        // Is the head lagging one lap behind tail?
        //
        // Note: If the tail changes just before we load the head, that means there was a moment
        // when the queue was not full, so it is safe to just return `false`.
        head.wrapping_add(self.one_lap) == tail & !self.mark_bit
    }

    /// Returns the capacity of the queue.
    pub fn capacity(&self) -> usize {
        self.buffer.len()
    }

    /// Closes the queue.
    ///
    /// Returns `true` if this call closed the queue.
    pub fn close(&self) -> bool {
        let tail = self.tail.fetch_or(self.mark_bit, Ordering::SeqCst);
        tail & self.mark_bit == 0
    }

    /// Returns `true` if the queue is closed.
    pub fn is_closed(&self) -> bool {
        self.tail.load(Ordering::SeqCst) & self.mark_bit != 0
    }
}

impl<T> Drop for Bounded<T> {
    fn drop(&mut self) {
        // Get the index of the head.
        let hix = self.head.load(Ordering::Relaxed) & (self.mark_bit - 1);

        // Loop over all slots that hold a value and drop them.
        for i in 0..self.len() {
            // Compute the index of the next slot holding a value.
            let index = if hix + i < self.buffer.len() {
                hix + i
            } else {
                hix + i - self.buffer.len()
            };

            // Drop the value in the slot.
            let slot = &self.buffer[index];
            unsafe {
                let value = slot.value.get().read().assume_init();
                drop(value);
            }
        }
    }
}